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Abstract This paper presents a real-time abnormal situ-

ation detection method in crowded scenes based on the

crowd motion characteristics including the particle energy

and the motion directions. The particle energy is deter-

mined by computation of optical flow derived from two

adjacent frames. The particle energy is modified by mul-

tiplying the foreground to background ratio. The motion

directions are measured by mutual information of the

direction histograms of two neighboring motion vector

fields. Mutual information is used to measure the similarity

between two direction histograms derived from three

adjacent frames. The direction probability distribution for

each frame can be directly estimated from the direction

histogram by dividing the entries by the total number of the

vectors. A metric for all the video frames is computed

using normalized mutual information to detect the abnor-

mal situation. Both the modified particle energy and mutual

information of direction histograms contribute to the

detection of the abnormal events. Furthermore, the

dynamic abnormality is measured to detect the dynamical

movement associated with severe change in the motion

state according to the spatio-temporal characteristics. In

experiments, we will show that the proposed method

detects the abnormal situations effectively.

Keywords Video scene analysis � Crowd behaviors �
Abnormal event detection � Optical flow

1 Introduction

With the rapidly growing of Internet and storage capacity,

IP-based video monitoring systems have become popular

applications. As network video technology has improved,

the cost of installing a surveillance system has dropped

significantly, leading to an exponential increase in the use

of security cameras. A typical video surveillance system

employs a number of networked cameras and with the

development of new technology. However, many of these

cameras can have disjointed views [22, 23]. Human mon-

itoring of surveillance cameras can be both expensive and

ineffective due to the fact that each camera provides a huge

amount of information [25], and even formally trained

operations can lose concentration and miss important

details after only ten minutes. Consequently, users are

turning to intelligent software for automated video sur-

veillance [29].

The ability to detect unusual or abnormal events is one

of the most important issues to be addressed in the devel-

opment of intelligent surveillance systems [9, 34, 35]. In

particular, abnormal situation detection in crowded scenes

is a challenging problem due to the potential complexity of

a situation [9, 34, 35]. The properties of these unusual

events may vary depending on environmental factors such

as lighting (day/night), space (indoor/outdoor), and time of

day (peak/off peak). The challenge problem is composed of
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several sub-challenges such as low-level processing, opti-

cal flow analysis and recognition based on classifying

methodology. We considered a variety of motion charac-

teristics including direction and magnitude. Due to the

complexity of the crowded scenes, the direction histogram

peaks are needed to identify significant local peaks, but are

difficult to obtain. Various motion speeds can be detected

using the standard approach of differences between frames,

and although it not easily attained in real-world scenarios,

especially in crowds, the perceived motion speed can be

measured by the local level of movement or the local area

size.

Crowd density is an important aspect of the foreground

image and is related to image potential energy model.

Based on the results of foreground segmentation, we can

estimate crowd density on each flow respectively using the

texture feature [18] or the moment feature [27]. Since these

estimations are not satisfactory because of their inaccurate

results, there are other approaches [14, 17, 16] in which

crowd density can be obtained with more precision. In this

paper, crowd density is estimated by the foreground to

background ratio in each frame. In general, real world,

actions usually occur in crowded scenes which have clut-

tered and dynamic environments. In these scenes, object

segmentation results are often unreliable. Consequently, it

is not always possible to track individual objects, especially

in high-density crowds. In this paper, we will present real-

time abnormal situation detection methods based on fea-

tures of motion vectors and trajectories of moving objects

in crowded scenes. We concentrate on monitoring emer-

gency situations in crowds by classifying patterns of nor-

mal motion flow to identify unusual or emergency events.

In this paper, abnormal situations are detected using par-

ticle advection, energy, and the normalized mutual infor-

mation (NMI). We have compared our proposed method

based on energy and NMI with the existing methods [19,

32] to evaluate the accuracy of abnormal events detection.

The remainder of this paper has six sections. In Sect. 3,

we describe an overview of the application model and the

process flow of our proposed methods. In Sect. 4, we

address the problem of identifying the optical flow that

contains velocity and direction. Section 5 explains grid size

determination algorithm and presents abnormal situation

detection methods in real time. Section 6 shows qualitative

and quantitative experimental results. Section 2 reviews

related work on video analysis of crowded scene. Finally,

we conclude this paper in Sect. 7.

2 Related work

To classify abnormal events in crowds, normal behaviors

are modeled and deviations from those models are

considered abnormal. In [2], HMM and principal compo-

nent analysis are used. The authors combine Hidden Mar-

kov Models, spectral clustering, and principal component

analysis of optical flow vectors for detecting crowd emer-

gency scenarios. However, their experiments were carried

out on simulated data.

Lagrangian particle dynamics [1] is used for the detec-

tion of flow instabilities and is an efficient methodology

only for the segmentation of high-density crowd flows such

as marathons or political events. However, since all parti-

cles with the same source or destination must be grouped

together, it may be difficult to extract all of the semanti-

cally important dominant motions in a given video.

In [11], optical flow is used to detect when abnormal

events occur without necessarily pointing the precise

region of interest into the frames. The approach does not

need a huge amount of data to enable learning pattern

frequency but it is necessary to carefully define, in

advance, an appropriate threshold and the regions of

interest for every scenario. This approach works on uni-

directional areas such as elevators. Also, the authors only

considered the variance of motion characteristics such as

direction variance and motion magnitude variance, but

ignored the total value of the motion magnitude in a crowd

event. The author also included direction histogram peaks

in their system, but in most crowd scenes, the direction

histogram peaks are hard to obtain.

Social force model [19] is used for the detection of

abnormal behaviors in crowds. The method consists in

matching a grid of particles with the frame and moving

them along the underlying flow field. Then, the social force

is computed between moving particles to extract interac-

tion forces, to finally determine the ongoing behavior of the

crowd through the change of interaction forces in time.

Chaotic invariants [32] of Lagrangian particle trajectories

are used to model abnormal patterns in crowded scenes.

In [31], events are modeled by grouping low-level

motion features into topics using hierarchical Bayesian

models. This method processes simple local motion fea-

tures and ignores global context. Thus, it is well suited for

modeling behavior correlations between stationary and

moving objects but cannot model complex behaviors that

occur in a big area of the scene. Also, a hierarchical pLSA

[13] has been proposed to incorporate semantic scene

representation to model global and local behavior patterns.

However, these models do not incorporate timestamps

associated with the occurrence of activities.

3 Application model and problem description

Our goal is to automatically recognize abnormal events in

crowded scenes. Figure 1 shows examples of crowded and
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complicated scenes, such as a crossroad, a school, and

shopping malls. Typical public scenes are crowded, creat-

ing difficulties for segmentation or tracking. In such

scenes, it is often not easy to track individual objects

because of frequent occlusions among objects, and because

many different types of events often happen simulta-

neously. In this paper, we propose an intelligent video

surveillance system to: (i) discover motion vectors and

crowd flows in crowded scenes as shown in Fig. 1b–d; (ii)

detect abnormal events as shown in Fig. 1c, d.

Our approach utilizes motion flows of the features based

on optical flow in a scene. Generally, most traditional

approaches on anomaly crowd event in visual surveillance

systems analyze motion patterns following four steps:

(i) preprocessing and feature extraction including back-

ground modeling [33] and optical flow computation [5], (ii)

detecting and tracking of the motion flows present in the

scene [20], (iii) extraction of motion patterns from the

tracks, and eventually (iv) detection of events using motion

patterns information. The change detection module starts

with the adaptive mixture of Gaussians algorithm to extract

the foreground and to exclude the noise [36]. We apply a

median filter to the feature set and then use a mean filter to

smooth the motion field and to remove the noise features.

The proposed methods analyze motion flows to detect the

abnormal situation in crowded scenes. The methods are to

measure motion features including speed and direction of

motion flows based on a spatio-temporal approach. The speed

is directly related to the length of the vectors. For each frame,

the speed of every vector is calculated by its length and the

number of tracking frames of the feature point associate with

the vector. Also, the average vector of the optical flow vectors

in a crowded scene is obtained by the direction and the mag-

nitude of all the vectors in the frame.

Figure 2 illustrates the process flow of our proposed

methods. A typical scenario for the abnormal behavior

determination is as follows. First, our method extracts fea-

tures from image sequences and adjusts feature values for

effective measurement. Second, energy and direction histo-

grams are calculated by motion vectors in a given image

sequence. In the feature vector energy calculation step, the

features are extracted by grid-based particle advection. In this

paper, the features are a grid of points. We assume that the

feature number of people is relatively stable in adjacent

frames. Third, the mutual information and normalizedmutual

information are calculated by the direction histogram. In

order to get a desirable output, it is necessary to choose the

appropriate threshold carefully. Unfortunately, it is difficult

to determine this threshold, and the false alarm rate is usually

high. We propose the grid size determination algorithm to

compute and optimize the thresholds. Finally, abnormal

behavior is detected based on optimized thresholds and

results are displayed on the screen.

4 Motion vector and data characterization

In this section, we address the problem of identifying the

optical flow that contains velocity and direction.

(a)Typical crowded scene (b) Motion flows (c) Abnormal situation in
outdoor scene

(d) Abnormal situation in
indoor scene

Fig. 1 Illustration of crowded objects motion analysis method

Fig. 2 Illustration of the general process flow for abnormal behavior

detection

J Real-Time Image Proc (2015) 10:771–784 773

123



4.1 Motion vector

A motion vector is represented by a line segment with a

definite direction, connecting an initial point p with a ter-

minal point q. When coordinates of a initial point are p
i;j
k =

(x
i;j
k , y

i;j
k ), motion vector M

i;j
k is obtained from tracking

features of a series of images which are two adjacent

frames i, i� 1. M
i;j
k is composed of a initial position p

i;j
k ,

magnitude d
i;j
k , and direction a

i;j
k as follows:

M
i;j
k ¼ ðpi;jk ; d

i;j
k ; a

i;j
k Þ; ð1Þ

where i is a frame number, j is a block number, and k is a

motion vector number. Magnitude d
i;j
k is computed by

d
i;j
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi;jk � x
i�1;j
k Þ2 þ ðyi;jk � y

i�1;j
k Þ2

q

: ð2Þ

In addition, velocity v
i;j
k is calculated by

v
i;j
k ¼

Pm
k¼1 d

i;j
k

m
; ð3Þ

where m is the number of vectors in block j of frame i.

Orientation a
i;j
k of M

i;j
k is determined by the coordinates

of the initial points which are two adjacent frames. The

principal crowd directions are calculated considering the

density percentage of feature points in each direction. If

this percentage is bigger than a threshold, we assume there

is a crowd in that direction.

For computing efficiently, the maximum number of fea-

tures is limited and the camera image is divided into m �
� � n blocks. m and n values should be determined on

viewing distance between a camera and a object. In this

paper, the particle energy is measured by multiplying the

foreground If to background ratio ri of ith image as follows:

ri ¼
If

Iwidth � Iheight
; ð4Þ

where Iwidth and Iheight are the width and the height of a

background image, respectively. This ratio is a rough

estimate of the crowd density. The accurate crowd density

information is not necessary for abnormal events detection.

4.2 Direction histogram of motion vector

We constructed a direction histogram from the motion

vectors in a frame. In this paper, we divide 2p into 36 bins

for the direction histogram. The calculated histogram

indicates the direction distribution and direction tendency

of the frame. For example, 2p is divided into eight bins, the

Cartesian plane is divided into eight parts where each part

is a direction between the angles [a, a ? 45] and a 2 {0,

45, 90, 135, 180, 225, 270, 315} using the following

equation:

A
i;j
k ¼ e; if

2p
N

� ðe� 1Þ
� �

\
a
i;j
k þ 2p

2p
h

� 2p
N

� e
� �

;

1� e�N;

ð5Þ

where h is the number of direction histogram bins and N is

the number of quantization levels.

However, the direction of moving vectors can vary with

the density percentage of feature points in each direction.

Thus, depending on the direction distribution, each domi-

nant directional window wi should be adjusted to classify

the principal and minor crowd directions. After analyzing

the direction histogram for each frame based on dominant

directional window selection method, the opposite direc-

tion of motion vector can be detected by direction proba-

bility distribution. For each direction, the size of wi is

determined by threshold aiEth, which is calculated by

aiEth ¼
1

NðbÞ � nbðMi
kÞ; ð6Þ

where nbðMi
kÞ is the total number of vectors. To find wi in

the histogram, x-intercept xa is obtained by intersection

with the graph and y ¼ aiEth using the following equation:

xa ¼

0; if pð0Þ� aiEth

j; if pðjÞ � pðjþ 1Þ� 0 and pðjÞ� aiEth

jþ 1; if pðjÞ � pðjþ 1Þ� 0 and pðjÞ� aiEth

b� 1; if pðb� 1Þ� aiEth

8

>

>

<

>

>

:

ð7Þ

The following set of X represents the bin number b in the

histogram, when the number of vectors is above aiEth.

X 2 x1; x2; :::; xa; ::; xnf g; 0� a\NðbÞ; a 2 N ð8Þ

Consequently, wi is calculated by

wi ¼
xa; xaþ1½ �; if a is an odd number and

xa 6¼ 0 and xn 6¼ NðbÞ
xn�1; xa½ �; if xa ¼ 0 and xn ¼ NðbÞ

8

>

<

>

:

ð9Þ

4.3 Magnitude of motion vector

Figure 3 shows the simulation result of magnitude distri-

bution of type 1–5 vectors, when ten moving objects move

from a left region to a right region. Generally, static fea-

tures move less than a minimum magnitude. By contrast,

noise features have magnitudes that exceed the threshold.

Noise features are the isolated features that have a big

angle and magnitude difference with their near neighbors

due to tracking calculation errors. In the simulations, we set

the minimum motion magnitude to � ð¼ 1:0e�6Þ pixel per

frame and the maximum to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðIwidthÞ2þðIheightÞ2
p

2
pixels per

frame. The minimum and maximum values were taken

experimentally. As objects move faster, the more features

of motion vectors are lost. Ideally, the 4 � 4 � 3 motion
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vectors can be obtained from a object that is of size 15 � 15

pixels andmoves at 67 pixels per secondwhen a grid of points

is 5 � 5. However, motion features of the type 4 were not

obtained in frames 50, 54, 58, 62, 64, 69, 74, 78, and 82.

Even though it is necessary to measure the average

number of moving motion vectors according to the direc-

tion histogram, a problem arises when all vectors do not

move in one direction, which means it can lose the feature

value of each individual motion vector that moves in the

opposite direction. The number of moving motion vectors

in each direction is calculated by

nbðAi;j
k ; tÞ ¼

X

t

i¼1

X

m

k¼1

nbðai;jk Þ; t� 3; ð10Þ

where t is selection time. Also, the direction probability

distribution for each frame can be directly estimated from

the direction histogram by dividing the entries by the total

number of the vectors as follows:

nb0ðAi;j
k ; tÞ ¼

nbðAi;j
k ; tÞ

nbðMi;j
k ; tÞ

; 0\A
i;j
k �N; ð11Þ

where nbðMi;j
k ; tÞ is the total number of vectors for time t.

Figure 3 shows the comparison of motion features of

type 6 with that of type 1. Motion features of type 6 are

obtained when one object moves from a right region to a

left region while ten objects moves from a left region to a

right region. The total number of motion features is

reduced by that of an opposite moving object. Thus,

magnitude distribution should be computed by considering

correlations between the magnitude and the direction of

vectors. The improved magnitude and velocity of vectors is

calculated by

d
0i;j

k;Ai;j
k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi;jk � x
i�1;j
k Þ2 þ ðyi;jk � y

i�1;j
k Þ2

q

;

if A
i;j
k 3 a

i;j
k

ð12Þ

v
0i;j

k;Ai;j
k

¼

Pn
i¼1

Pm
k¼1 d

0i;j

k;Ai;j
k

n� m
; if A

i;j
k ¼ e ð13Þ

V
i;j

k;Ai;j
k

¼ ½v
0i;j

k;Ai;j
k

� q; v
0i;j

k;Ai;j
k

þ q�; if A
i;j
k ¼ e ð14Þ

The calculation of direction and magnitude variances is

not sufficient to detect abnormal situation. We build a

direction histogram in which each column indicates the

number of vectors in a given angle. The result is a his-

togram that indicates the direction tendencies, and the

number of peaks in this histogram represents the different

directions.
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Fig. 3 Magnitude distribution of type 1–5 vectors. Ten objects move

from a left region to a right region at speeds of 67 (type 1), 80 (type

2), 100 (type 3), 133 (type 4), 200 (type 5) pixels for a second. Motion

features of type 6 are obtained when one object moves from a right

region to a left region while ten objects moves from a left region to a

right region
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4.4 Flux analysis based on vector direction depending

on grid size

Figure 4 shows a normalized direction histogram and

magnitude of vectors in an image of crosswalk when the

grid size are 2 � 2, 5 � 5, 10 � 10, and 20 � 20. In the

figure, the normalized value of the direction histogram Z is

calculated by

Zi;t ¼ nb0ðAi; tÞ � 100; ð15Þ

where Ai is derived from Eq. 5. As mentioned in Sect. 4.2, as

the grid size is smaller, the size of eachwi is larger, as shown in

Fig. 4a. When each grid size is 2 � 2, 5 � 5, 10 � 10, and

20 � 20, the values of ath is 11790.42, 1871.22, 451.08, and

114.17. When the grid size is 2�2, wi is in ½320	; 10	� and
½140	; 190	�. When the grid size is 20�20, wi is in ½340	; 0	�,
90	, 260	, and ½160	; 180	�. In other words, the sizes ofwi are

12, 9, 7, 8, when each grid size is 2 � 2, 5 � 5, 10 � 10, and

20 � 20. As the grid size is larger, the number of motion

vectors in a crowded area is reduced. On the other hand, the

number of motion vectors in a slack area is not changed. For

example, the graph of 20 � 20grid shows that additionalwi is

in 90	 and 260	. The motion vectors at 90	 and 260	 are

captured by two moving cars on the road and several pedes-

trian in the top right corner, respectively.

Depending on a grid of points, the motion vectors are

obtained from particle advection features of each frame. If

the number of features does not change among the video

sequence and the feature number for a object is relatively

stable in adjacent frames, these features can be refined

using a mask which represents the crowd region. As shown

in Fig. 4b, the graph of vectors in 20 � 20 grid shows a

wide range of magnitude. The variances of normalized

magnitude are 1.14, 2.31, 6.18, and 34.15 in 2 � 2, 5 � 5,

10 � 10, and 20 � 20 grids. As the grid size is smaller, the

variance of the magnitude is smaller.

5 Real-time abnormal event detection

5.1 Preprocessing step

In a preprocessing step, a grid of points is first generated as

the feature set. Adaptive Gaussian mixture modeling

(GMM) method [33] is applied to extracting the foreground

of the video scene. The motion vectors are captured using

optical flow technique, and the features are further refined

by removing these features with large variation in magni-

tude and direction of their motion vectors to their neigh-

boring motion vectors.

In our approach, both background removal and foreground

segmentation employ optical flow, but optical flow is not

exact, which will influence the performance of our frame-

work. The other factor is occlusions in crowd scene. When a

number of objects gather together, there will be lots of

occlusions in the crowd. This makes it very difficult to esti-

mate abnormal situation, because the texture of foreground

becomes chaotic and the edge is hard to find. The noise fea-

tures often come fromcalculation errors and are removed after

the optical flowmethod is applied to the refined feature set. In

this paper, we applied a 3 � 3 median filter to the feature set

and then used a 3 � 3 mean filter to smooth the motion field.

Motion smoother is used to smooth out the abrupt

motions. The motion analysis method needs to distinguish

the noise features from calculation errors. To achieve the

goal, we make the following assumptions depending on

angle
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Fig. 4 Normalized direction histogram and magnitude of vectors in an image of crosswalk when grid sizes are 2 � 2, 5 � 5, 10 � 10, and

20 � 20 (image resolution: 240 � 180)
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assumptions about the nature of motions. In particular, we

assume that normal motion is usually smooth with slow

variations from frame to frame. On the other hand, noise in

the motion involves rapid motion variations over time. In

other words, the high-frequency components in the motion

vector variations over time are considered to be effects of

error motion and therefore need to be removed. Removing

the high-frequency components can be done by applying

low-pass filters on the motion vectors. We chose to use a

moving average (MV) filter. The smoothed motion vectors

are obtained by convolving the original motion vectors

with the MV filter. Depending on the support of the filter,

we only used to store motion vectors for a few frames at

any time. For example, we need to store motion vectors for

ten frames in VGA resolution image when N = 10.

Therefore, real-time implementation is achievable because

it needs to deal with a few frames.

In order to compute the optical flow between successive

video frames in real time, the algorithm of Lucas and

Kanade [15] for feature tracking is used. A pyramidal

implementation of this algorithm is used to deal with larger

feature displacements by avoiding local minima in a coarse

to fine approach [6]. This method has proven to allow fast

and reliable computation of optical flow information [4, 3].

In the field of optical flow estimation, real-time imple-

mentations have been presented, however, were limited to

basic variational methods only [7, 8]. In our paper, we

combine both variational image resolutions and the speed

of numerical multi-grid strategies.

5.2 Grid size determination

The time complexity of methods should be considered to

support the real-time application, which is applied numerous

times and which, consequently, necessitates a trade-off

between accuracy and speed. The complexity of the proposed

algorithm is dependent on the one of the environment, which

is the feature number. One of the disadvantages of these

methods is their very high runtime complexity. Most feature

detection methods are time-consuming when the feature

number is large which makes the real-time application

impossible. Thus, it is necessary to select the appropriate grid

size and the regions of interest. Depending on the grid size

variant, its parameters, and the imagematerial, this can lead to

motion vector fields with a very high precision, but it can also

lead to inconsistent fields. If the size of a frame is

Iwidth � Iheight, the computational cost for one motion vector

field is O
Iwidth�Iheight

k2

� �

(k is the grid size) if no special precau-

tions are taken to reduce them.

In spite of the computational complexity raised by the

synthetic vision technique, we demonstrate the ability of

our proposed approach to address complex interaction

situations between numerous moving objects. The image

sequences and their complexities have a great influence on the

optical flow estimation. These complexities are object motion

complexity, camera motion complexity, and scene complex-

ity. In addition, the complexity of scenes from an image

sequence may vary during the processing. This complexity in

an image sequence means textures, shadows, distance of the

objects from the camera, the number of the objects in a scene,

size of the objects in a scene, velocity of themoving objects or

the camera, position of objects toward each other, type of the

movement of the objects or the camera.

The grid size determination algorithm is summarized in

Algorithm 1. In the initialization step, grid size Gp
w � G

p
h of

a point is determined by width Iwidth and height Iheight of an

image I as well as the ratio of the foreground to the

background for frames Ft during training phase as sum-

marized in Algorithm 2. qg is a system parameter related to

computational time for making the real-time application

possible. The parameter qg is calculated by

qg ¼
Te � Ts

NðFtÞ
� fps; ð16Þ

where Te andTs are an end time and a start time in framesFt in

grid g of a point to calculate the actual processing times of a

program. Then, the methods called get grid hðGp
h tempÞ

and get grid wðGp
w tempÞ find the grid size in the simulation

table. The training algorithm consists in defining the thresh-

olds for abnormal situation detection.
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5.3 Energy-based abnormal situation detection

To recognize abnormal situation in crowded scenes, several

methods are developed based on the crowd motion char-

acteristics including the particle energy and the motion

directions. The motion variation is derived from the par-

ticle energy of two adjacent frames.

The particle energy is modified by each direction of

vectors. The directional crowd energy Ei
A
i;j
k

of each frame is

as follows:

Ei

A
i;j
k

¼ ri
X

n

j¼1

ðd0i;j
k;Ai;j

k

Þ2; ð17Þ

where ri is the ratio of foreground area to background area,

i is a frame number, j is a block number, and k is a motion

vector number.

The threshold magnitude Eth;Ai;j
k

of each direction is

determined by the maximum value of 8Ei

A
i;j
k

as follows:

Eth;Ai;j
k
¼ argmax

A
i;j
k

Ei
A
i;j
k

: ð18Þ

5.4 Dispersion-based abnormal situation detection

Ground truth flow clusters are defined by simple rules with

regard to flow direction and location. People in crowds

generally seek certain goals and destinations in the envi-

ronment. Thus, it is reasonable to consider each pedestrian

to have a desired direction and velocity. The direction

threshold of each divided direction is determined by the

maximum value of 8nb0ðAi;j
k Þ as follows:

A
A
i;j
k

th ¼ argmax
A
i;j
k

nb0ðAi;j
k Þ: ð19Þ

We also focus on the distribution of the particle in an

image. A probability distribution of motion vectors can be

estimated by counting the number of times each motion

vector value occurs in the image and dividing those num-

bers by the total number of occurrences. An image con-

sisting of almost a single intensity will have a low entropy

value; it contains very little information [26]. A high

entropy value will be yielded by an image with more or less

equal quantities of many different intensities, which is an

image containing a lot of information. We tried to measure

dispersion of a probability distribution with a single sharp

peak corresponds to a low entropy value, whereas a dis-

persed distribution yields a high entropy value. In this

paper, entropy [12] is defined as follows:

HðXÞ ¼
X

n

i¼1

N 0ðxiÞlog
1

N0ðxiÞ

� �

ð20Þ

where X is a discrete random variable with possible values

fx1; . . .; xng and N 0 is a probability distribution. Similarly,

the joint entropy is defined as

HðX; YÞ ¼
X

n

i¼1

X

m

j¼1

N 0ðxi; yjÞlog
1

N0ðxi; yiÞ

� �

; ð21Þ

where Y is a discrete random variable with possible values

fy1; . . .; yng:
However, the crowd limits individual movement and the

actual motion of pedestrian would differ from the desired

velocity. Furthermore, individuals tend to approach their

desired velocity based on the personal desire force.

Mutual information measures the mutual dependence of

two random variables. Mutual information method is

applied to measuring the similarity between two direction

histograms derived from three adjacent frames. The defi-

nition of mutual information is based on the entropy,
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IðX; YÞ ¼ HðXÞ þ HðYÞ � HðX; YÞ; ð22Þ

where HðXÞ and HðYÞ are the Shannon entropy [24] of X

and Y , respectively, computed on the probability distribu-

tion of the X and Y values.

This form contains the term HðX; YÞ, which means that

maximizing mutual information is related to minimizing

joint entropy. High mutual information indicates a large

reduction in uncertainty; low mutual information indicates

a small reduction; and zero mutual information between

two random variables means the variables are independent.

Both the modified particle energy and mutual information

of direction histograms contribute to the detection of the

abnormal events.

In our approach, a direction histogram is built from the

motion vectors in a certain frame. The calculated histogram

indicates the direction distribution and direction tendency

of the frame. In addition, the joint direction histogram is

computed using two successive vector fields similarly. The

two vector fields derived from three continuous frames.

The direction probability distribution for each frame can be

directly estimated from the direction histogram by dividing

the entries by the total number of the vectors. Furthermore,

entropy is used to describe the dispersion of direction

probability distribution. A metric for all the video frames is

computed using NMI to detect the abnormal event.

Normalized mutual information is expressed by the

normalized variant of mutual information to the joint

entropy. NMI is defined as follows,

NMIðX;YÞ ¼ 1� HðX;YÞ
maxðHðXÞ;HðXÞÞ ð23Þ

NMI has a fixed lower bound of 0 and upper bound of 1. It

takes the value of 1 when the two clusterings are identical

and 0 when the two clusterings are independent.

Consequently, the proposed method not only extracts

two sets of feature vectors which can be used to compute

the probability of direction distribution, but calculates the

mutual information based on the entropies of two proba-

bility distributions and the joint entropy.

5.5 Dynamics-based abnormal situation detection

There are various measurements for system disorder such

as entropy and standard deviation. Entropy is an important

concept in physics and information theory, which is also

widely used as a quantitative measurement for uncertainty

or unpredictability. Standard deviation is an easy to com-

pute statistical feature describing the variance or diversity

of a group of data. Practically, we use NMI and standard

deviation to measure the motion disorder, because it leads

to a better overall performance while costing much less

computing compared with other measurements.

We focus on detecting abnormality in a dense crowded

environment and observing their dynamical move-

ment according to their spatio-temporal characteristics.

Such tracking system used the concept from dynamical

systems called Lagrangian particle dynamics, and idea

is taken from computational fluid dynamics (CFD)

analysis.

The crowd dynamics is to measure the sudden changes

of the motion in a video sequence. The calculation of

energy variance is not sufficient for abnormal event

detection because it only considers the magnitudes of

motion vectors while the directions of motion vectors have

been ignored. Thus, we include normalized mutual infor-

mation of direction histograms in our method. Normalized

dynamics D0 are calculated by

D0 ¼ c � Ei

A
i;j
k

� NMIðX;YÞ þ ð1� cÞ � Ei

A
i;j
k

� rðNMIðX;YÞÞ;

ð24Þ

where c 2 ½0; 1� is a fusing parameter, r denotes the stan-

dard deviation. The dynamic abnormality is very important

in crowd abnormality detection due to the fact that

abnormality is often associated with severely change in the

motion state, such as gathering, scattering and chaos situ-

ations. In experiments, we will show that our method can

detect the abnormal events effectively.

6 Experiments

To evaluate the performance of the proposed approach for

real-time abnormal situation detection, we conducted

experiments on four different datasets such as UCF [10],

UMN [21], prison riot, and open-street CCTV dataset. The

test sets are available at [21]. All experiments were run on

a computer with 4GB RAM and a 3.2GHz CPU.

Some of the standard measures we used in experiments

were misdetection rate, false alarm rate, and receiver

operating characteristic (ROC) curves [30] for evaluating

abnormal event detection algorithms. To have a more

detailed comparison of the different approaches, ROC

curves are plotted, which take into consideration both

detection rate and false alarm rate for multiple threshold

values. This procedure is repeated for multiple thresholds

to determine an ROC curve. Finally, the performance is

validated by plotting the ROC curves obtained over all

possible values of the threshold.

6.1 UFC dataset

In the experiments, we have analyzed the velocity and

direction of moving objects in a camera. Video clips were

retrieved from the publicly available UCF crowd dataset.
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Figure 5 shows the speed variance of motion vectors from

frame 1 to frame 247. In the figure, graph shows 12 peaks

in frame 24, 48, 72,..., 240, because the video stream

obtained from each camera is encoded at a frame rate of 25

fps using standard encoding algorithms such as H.263,

MPEG-1 or MPEG-4. To measure the speed of vectors

efficiently, these noise errors are removed by simple filters

according to encoding rate.

Figure 6 shows the number of vectors variation and the

computational time when image resolutions are 240 � 180

and 480 � 360. The test videos were encoded at 25 frames

per second. The duration of the test videos is approxi-

mately 10 s. To make the real-time application possible,

image sequences should be processed over a frame rate of

25 fps. As shown in Fig. 6a, as the grid size increases, the

number of vectors has dropped significantly. As shown in

Fig. 6b, the grid size should be over 9 � 9 and 4 � 4 for

real-time process, when image resolutions are 480 � 360

and 240 � 180, respectively.

In order to compare various grid sizes, the camera image

is divided into 2� 2, 5� 5, 10� 10, 20� 20 blocks when

maximum number of features is 103. As shown in Fig. 7,

the analyzed images contain too many motion vectors

when block size is 2� 2. Also, the analyzed images con-

tain little motion vectors when block sizes are 10� 10 and

20� 20. In this case, the appropriate block is 5� 5 for

real-time application.

6.2 UMN dataset

The UMN dataset consists of eleven video sequences

acquired in three different crowded scenarios including

both indoor and outdoor scenes. In the dataset, pedestrians

initially walk randomly and exhibit escape panic by run-

ning in different directions in the end. Figure 8 shows the

results of the proposed method obtained on the UMN

dataset. In the figure, the right images of each scene are the

detection results of the normal and abnormal situation from

the dataset.

Table 1 shows the experimental results for the grid size

in terms of the area under the ROC curve (AUC). The

AUCs of methods based on energy are 0.9949, 0.9948,

0.9939 when the grid size is 7, 5, 10 in scene 1, scene 2,

and scene 3, respectively. When the crowd density is low,

the method of the small grid size achieves better perfor-

mance than that of the large grid size. Scene 1 and scene 2

have high-density crowds. In these case, the small grid size

arises false alarms. Consequently, the optimal grid size is

determined by the crowd density. In this paper, we

achieved better performance based on the grid size deter-

mination algorithm.

Figure 9 shows the performance of the proposed method

on three different scenes of the UMN dataset. Table 2

compares the performance of our proposed methods in
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terms of the area under the ROC curve (AUC). In case of

UMN, the AUCs of methods based on energy, NMI, and

dynamics are 0.9791, 0.8958, 0.9901, respectively.

× 2 × 5

× 10

(a) Block size = 2 (b) Block size = 5

(c) Block size = 10 (d) Block size = 20 × 20

Fig. 7 Illustration of motion vectors depending on block size

(a) Normal and abnormal situations in scene 1

(b) Normal and abnormal situations in scene 2

(c) Normal and abnormal situations in scene 3

Fig. 8 Results of the proposed scheme on other sequences of the

UMN dataset

Table 1 Experimental results of grid size

Grid Scene

Scene 1 Scene 2 Scene 3

5 0.7952 0.9948 0.3497

7 0.9949 0.9897 0.7148

9 0.9748 0.9875 0.9181

10 0.9738 0.9696 0.9939

11 0.9233 0.8619 0.9904

12 0.8934 0.8556 0.9841

Bold values are the highest AUCs corresponding scenes

scene 1 ROC area: 0.9738 scene 2 ROC area: 0.9696
scene 3 ROC area: 0.9939 Reference

scene 1 ROC area: 0.9682                    scene 2 ROC area: 0.986
scene 3 ROC area: 0.7334 Reference

(a) ROC Curves of abnormal behavior detection on

(b) ROC Curves of abnormal behavior detection on
different scenes (NMI)
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Fig. 9 ROC performance on UMN dataset
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Table 3 provides the quantitative comparisons to the

state-of-the-art methods. The AUC of our method is from

0.9791 to 0.9969, which outperforms [19] and is compa-

rable to [32]. However, our method is a more general

solution because we did not use any feature extraction

methods. Most feature detection methods are time-con-

suming when the feature number is large which makes the

real-time application impossible. In addition, nearest

neighbor (NN) method can also be used in high-dimen-

sional space by comparing the distances between the

Table 2 Comparison of

experimental results when the

grid size is 10

Dataset Method Area

under

ROC

UMN Energy 0.9791

NMI 0.8958

Dynamics 0.9901

Table 3 Comparison of our proposed method with the stat-of-the-art

methods in the UMN dataset when the grid size is 10

Method Area under ROC

Chaotic invariants [32] 0.99

Social force [19] 0.96

Optical flow [19] 0.84

NN 0.93

Proposed method in scene 1 0.9969

Proposed method in scene 2 0.9791

Proposed method in scene 3 0.994

Proposed method in all scenes 0.9901

(a)Abnormal situation in scene 1

(b)Abnormal situation in scene 2

(c) Abnormal situation in scene 3

Fig. 10 Results of the proposed scheme on other sequences of the

prison dataset
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testing sample and each training samples. The AUC of NN

is 0.93, which is lower than ours. This demonstrates high

accuracy of our method over NN method.

6.3 Prison riot dataset

In order to evaluate the proposed method on real applica-

tions, we collected a real video set from websites. The

collected video dataset comprises of three sequences that

represent riots in prisons that are captured with different

angles, resolutions, background, and include abnormalities

like fist fighting, and clashing. All the collected sequences

start with a normal situation, which is then followed by a

sequence of abnormal behavioral frames. Figure 10 shows

the experimental results force obtained on the frames from

this dataset. Figure 11 illustrates the performance of the

proposed method on some frames of the different sequen-

ces in this dataset.

Table 4 compares the performance of our proposed

methods in terms of AUC. In the case of a prison riot

dataset, the AUCs of methods based on energy, NMI, and

dynamics are 0.8813, 0.9391, 0.9417, respectively.

7 Conclusion

In this paper, we have presented a real-time abnormal sit-

uation detection method in crowded scenes using the crowd

motion characteristics including the particle energy and the

motion directions. The motion variation is derived from the

particle energy of two adjacent frames, which is measured

by mutual information of the direction histograms of two

neighboring motion vector fields.

The direction histogram is built from the motion vectors in

frames.Thedirectionprobability distribution for each frame is

directly estimated from the direction histogram by dividing

the entries by the total number of the vectors. Furthermore,

entropy is used to describe the dispersion of direction proba-

bility distribution. A metric for all the video frames is com-

puted using NMI to detect abnormal situations.

The proposed method not only extracts two sets of

feature vectors which are used to compute the probability

of direction distribution, but calculates the mutual infor-

mation based on the entropies of two probability distribu-

tions and the joint entropy. In experiments, we expect that

our method can detect an abnormal situation effectively. In

the future, we plan to improve the threshold computation

by automating the construction of scenario models. Fur-

thermore, we will expand application domains, to include

complex domains such as animals and swarming insects.
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