
SPECIAL ISSUE PAPER

Embedded and real-time architecture for bio-inspired
vision-based robot navigation

Laurent Fiack • Nicolas Cuperlier • Benoı̂t Miramond

Received: 22 May 2013 / Accepted: 16 December 2013 / Published online: 22 January 2014

� Springer-Verlag Berlin Heidelberg 2014

Abstract A recent trend in several robotics tasks is to

consider vision as the primary sense to perceive the envi-

ronment or to interact with humans. Therefore, vision pro-

cessing becomes a central and challenging matter for the

design of real-time control architectures. We follow in this

paper a biological inspiration to propose a real-time and

embedded control system relying on visual attention to learn

specific actions in each place recognized by our robot. Faced

with a performance challenge, the attentionalmodel allows to

reduce vision processing to a few regions of the visual field.

However, the computational complexity of the visual chain

remains an issue for a processing system embedded onto an

indoor robot. That is why we propose as the first part of our

system, a full-hardware architecture prototyped onto recon-

figurable devices to detect salient features at the camera

frequency. The second part learns continuously these features

in order to implement specific robotics tasks. This neural

control layer is implemented as embedded software making

the robot fully autonomous froma computation point of view.

The integration of such a system onto the robot enables not

only to accelerate the frame rate of the visual processing, to

relieve the control architecture but also to compress the data-

flow at the output of the camera, thus reducing communica-

tion and energy consumption. We present in this paper the

complete embedded sensorimotor architecture and the

experimental setup. The presented results demonstrate its

real-time behavior in vision-based navigation tasks.

Keywords Real-time vision � Feature detection � FPGA �
Robot navigation � Sensation/action

1 Introduction

Vision modality plays a center role in robotics for a number

of tasks like self-localization, navigation, object recogni-

tion and manipulation, target tracking, social interaction

between robot and human, imitation, etc. While computer

vision systems are becoming increasingly powerful, real-

time visual processing still represents a major challenge for

autonomous robots. Indeed, visual systems require large

computing capabilities which make them hard to embed.

At the opposite, biological vision systems have developed

through millions of years of evolution, efficient and robust

solutions. Studying the complex neural structures involved

in biological visual processes allows to elaborate better

computational vision system by applying the findings. But

to make this progress usable for autonomous robot, it is

necessary that the hardware implementation of these

algorithms also satisfies the real-time processing require-

ment, the power consumption limitation inherent to

embedded systems as well as constraints regarding the

weight and the size of the solution. Hence, smart cameras

are proposed as an alternative to get visual low-level pro-

cessing back into the robot.

Moreover, these visual systems are not considered iso-

lated anymore but as part of an architecture integrated in its

environment. They take into account several parameters

related to the dynamic properties of the systems they

belong to (see active vision [2]). These visual processing

algorithms strongly depend on the dynamics of interactions

between the system and its environment by continuous

feedback regulating even the low-level visual stages such

as the attentional mechanisms in biological systems.

The robotic missions considered in this paper consist of

a subset of a complex cognitive system allowing a robot

equipped with a digital camera to navigate and to perceive

L. Fiack � N. Cuperlier � B. Miramond (&)

ETIS Lab UMR 8051 CNRS/ENSEA/UCP,

6 Avenue du Ponceau, 95014 Cergy-Pontoise Cedex, France

e-mail: miramond@ensea.fr

123

J Real-Time Image Proc (2015) 10:699–722

DOI 10.1007/s11554-013-0391-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-013-0391-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-013-0391-9&domain=pdf

objects. The global architecture in which the visual system

is integrated is biologically inspired and based on the

interactions between the processing of the visual flow and

the robot movements (Per-Ac architecture [18]). The

learning of the sensorimotor associations allows the system

to regulate its dynamics [13, 32] and, therefore, navigate,

recognize objects, or create a visual compass in real time.

The notion of real-time system is still an ambiguous

term, with different definitions and interpretations accord-

ing to the application domain or the design abstraction

level. From a formal aspect the real-time constraint has

been defined as the respect of the notion of deadline, that is

to say the date at which a specific task must be executed.

But one has then to define when a specific cognitive task is

finished. In the context of robotics also, the design of a

real-time system can have several definitions and conse-

quences. Firstly, the different domains of application of

these robots can specifically bring critical constraints

according to the interaction between the robots and their

environment (patrol in factory, cars assembly line, etc.) or

worse with humans (medical robots, companion robot,

autonomous vehicle, etc.). In this robotics case, the real-

time constraint corresponds to determinism, proven and

predictive behavior at every stage of the system: comput-

ing, mechanics, electronics, mechatronics, etc. In this

context, the design of the computing part of a robot has no

differences with other real-time systems. The problem is

related to the method employed to specify the system and

its constraints, to refine progressively this specification and

finally to reach an implementation whose real-time

behavior is proven [44].

It is specifically the case of the visual subsystem of a

robot where the time required to process a frame must be

predictable. First, vision is often used as the primary sense

for robots to perceive their environment. Secondly, the

richness of the information provided by vision has also as a

consequence the need for excessive computing. Therefore,

the rhythm at which the robot computes visual data

becomes the rhythm at which he perceives the external

world, at which he can react to a changing environment or

at which he can interact with humans. Finally, vision

processing becomes the internal rhythm of evolution of the

entire robot. All the other cognitive parts of the robot

(fusion with different modalities, recognition, tracking,

navigation, interacting, etc.) can easily be limited by vision

processing. They must then adapt their own rate to that of

vision. The robot can basically meet internal limitations to

explore the world before this one has changed.

We are specifically interested in this paper in the design

and the use of a real-time and embedded vision system for

robot navigation. In the application domain of robot

patrolling, the robot is considered as fully autonomous and

all the computing parts of the robot are designed as

dedicated embedded systems. The robot is not considered

as a remote set of sensors, but as a programmed and

independent agent, taking its own decisions on the basis of

learning. That is the reason why we propose in this paper a

specific real-time and embedded vision system. The sys-

tem, and our contribution, is composed of two main parts:

– the Vision layer: a smart camera extracting visual

features according to a bio-inspired attentional model;

– the Neural control layer: an embedded framework

implementing higher cognitive tasks such as those

implicated in the navigation scenario proposed in this

paper.

A particular optimization effort has been done on vision

for the both reasons presented before: richness of this sense

and its importance in the sensation–action loop.

Thus, we present a visual processing system in the form

of an embedded platform targeting several robot missions.

On the one hand, the platform consists of a specific hard-

ware architecture that should provide intensive computa-

tion capabilities to deal with low-level image processing.

The proposed architecture combines video sensing, image

processing and communication into a System-on-Chip

(SoC) embedded onto the robot. This vision system is

designed as a full hardware architecture deployed onto a

FPGA device. On the other hand, the platform also pro-

vides a programmable embedded processing part imple-

menting the neural architecture responsible for multimodal

fusion and learning. This complementarity brings the

flexibility needed to allow a variety of vision-based navi-

gation missions. Finally, the proposed system processes

video frames in real time and reduces the amount of data

communication between the visual and the control layer

without loss of relevant information.

The paper presents the set of computing subsystems

(from perception to learning and action) embedded onto the

robot to realize vision-based navigation.

The rest of the paper is organized as follows.

Section 2 presents and analyzes the existing approaches

in the context of homing behavior, attentional models and

SoC for vision. An abundant literature deals with these

different subjects but no approach has been proposed to

jointly build and optimize a complete processing system

from sensing to decision-making. Section 3 presents the

multi-scale attentional approach proposed as support of the

Vision layer of our platform. Section 4 describes the

architecture of the vision system and the parameters that

are used to configure the smart camera. Section 5 presents

the performance results achievable with our smart camera.

Section 6 describes the Neural control layer. We focus on

the neural architecture responsible for place/action learning

in this paper. But this embedded framework also imple-

ments several tasks used in other robot behaviors. Section 7

700 J Real-Time Image Proc (2015) 10:699–722

123

presents the experimental platform coupling Vision and

Neural control layers. We also present the behavioral

results obtained during homing-based robotic missions.

Finally, we conclude and outline future works in Sect. 8.

2 State of the art

2.1 Context of the study

Among different perceptual modalities, vision is certainly

the most important building block of a bio-inspired cogni-

tive robot. Vision enables robots to perceive the external

world in order to perform a large range of tasks such as

navigation, object tracking and manipulation, and even

interaction with humans. This broad range of tasks often

relies on different models and architectures of artificial

vision. According to a given task, the visual processing

often uses only a subset of the available algorithms like

optical flow, feature points extraction and recognition (over

one or several scale spaces). For instance, navigation often

relies on low resolution images to only capture the main

regularities from the environment, whereas object recog-

nition may need to characterize an object over several scales

in order to take into account more details of the object.

In the context of this work, we aim to design the cog-

nitive architecture of an autonomous robot patrolling in an

unknown environment (coarse-grain vision) and coming

back periodically to its home location (homing behavior).

At that time, the robot has to locate its energy connection

(fine-grain vision) and plug its battery. We thus need a

visual algorithmic chain bringing either low or high-reso-

lution data according to the robot’s state and to the battery

level. The present paper only focuses on a subset of this

scenario: the homing navigation task. We describe a vision-

based architecture for mobile robot navigation achieving a

sensory–motor task (homing behavior) in real time in an

unknown indoor environment.

In the following sections we study and discuss, the

existing approaches in the domains of homing navigation

and visual attention models. Next subsection deals with the

available implementations of real-time vision systems in an

embedded context.

2.2 Homing behavior

Homing is an efficient navigation strategy to reach a par-

ticular place in an open environment (such as a single

room). Insects like ants, bees, and wasps are known to use

visual information, in conjunction with a compass, to

return to their nest [10, 17, 27, 41]. Similarly, birds, rats

and primates can return to a place by using visual cues.

Even if the implicated neural structures may be different,

the sensory–motor learning used by insects to navigate can

also, a priori, be used by mammals. Furthermore, in

mammals like rats, a particular brain structure named

hippocampus is involved during navigation tasks. In this

brain structure, particular cells, named Place Cells (PC),

have been discovered. These cells exhibit a firing pattern

strongly correlated with a particular location in the envi-

ronment [35]. Based on the spatial properties of these cells,

several models of homing behavior have been proposed:

homing can be based on directional place field1 [46], on

Place Cells encoding obstacle proximity [8, 9]) or Place

Cells learning landmarks configuration [18, 20]. Our robot

control architecture is directly inspired from [18, 20, 32].

2.3 Attention models

Bioinspired computer vision systems are a promising way

towards building more adaptive and more robust computer

vision solutions. Among the different possible solutions,

we will focus on the visual attention paradigm which can

help to overcome the complexity issue in computer vision

[43]. Visual attention is the ability of a vision system, to

only focus on the most relevant part of the image. Once

detected, these salient parts become the starting points of

the next visual processing stages (recognition, localization,

etc.) thus drastically reducing the amount of information to

process. Most of the psychophysical models of visual

attention describe it as a two-stage mechanism: a preat-

tentive stage that processes in parallel different kind of

feature extractions on the image and a second stage that

sequentially handles a subset of this information. For a

review, see Heinke and Humphreys [24]. With ‘A feature-

integration theory of attention’ [42], Treisman work has led

to numerous computational models among which we can

cite the saliency-based model of [26, 28]; the selective

tuning model of [43]. These early works have inspired

several models for object detection and recognition [36],

robot localization [18, 19, 20, 22, 37, 40], and robot nav-

igation [13, 15]. One can refer to [16] for a more detailed

review.

Our model is used to implement a homing navigation

strategy similar to [18, 19, 20]. At the opposite of [13, 15], it

does not require to build a map to allow the robot to reach a

particular (goal) place, since in this part of the scenario, the

robot evolves in an open environment (a room).

2.4 System-on-chip for artificial vision

The real-time execution of certain complex and regular

algorithms, such as those used in vision processing,

1 Place field is the projection in the environment of the locations

where a given PC fires.

J Real-Time Image Proc (2015) 10:699–722 701

123

sometimes need a joint optimization of the algorithm and

the computing architecture. This optimization process is

needed in the embedded context of autonomous robots

where computational power is limited. For the validation of

bio-inspired models, designing autonomous agents is the

base of our validation methodology. But it also brings

additional constraints regarding size, weight, energy con-

sumption, computational power, communication bottle-

neck, etc. And the best solution to face these constraints is

to design a specific hardware architecture implementing the

complex and heavy parts of the embedded computation.

The problem is then to identify into the algorithm the

functional blocks to deploy in hardware and software in

order to build a programmable and powerful system. The

final architecture is then called a SoC since integrating both

programmable and dedicated blocks in a single chip. This

type of solution is very efficient in term of density of

computation (millions of operations per second and per

Watt) compared to embedded processors or Graphical

Processing Units (GPU) [11]. Then this architecture can

either be deployed into a specific (Application Specific

Integrated Circuit, ASIC) or configurable device (Field

Programmable Gate Array, FPGA). We propose in this

paper an FPGA-based smart camera in order to provide

some flexibility for future robot missions. We will now

present existing works in the context of SoC architectures

for real-time vision. Most of them are based on feature

detection algorithms. The application domain of these

architectures does not necessarily focus on robotics, but the

same properties of the visual chain are targeted: invariant

to scale, rotation, and change in illumination, stability of

features. A real-time parallel SIFT detector has been pro-

posed in [6]. The proposed architecture detects features up

to 30 frames per second in 320x240 images. The system

has been configured for three octaves with five scales in

each one. The whole system is completely embedded on an

FPGA. The proposed architecture utilizes a 5 9 5 image

region as neighborhood for the keypoint computation. We

observed in our experimentations that this restriction could

be a hard limitation to detect robust keypoints. The system

has been applied to simultaneous localization and mapping

system for autonomous mobile robots, where robot navi-

gation environment maps are built based on features

extracted from images [5]. But authors do not provide

details on the utilization of their architecture in this

context.

FPGA-based architectures have also been proposed for

Speeded Up Robust Features (SURF) algorithm. Several

approaches [3, 7, 39] have been validated and compared on

different applications such as object deformations mea-

surement, vehicle tracking. The results show that efficient

FPGA-based feature detection can be obtained by

employing the SURF algorithm. But the matching step of

the SURF method is an expensive stage that greatly limits

the real-time behavior of the method. Indeed, it looks for

correspondences (match-points) between keypoints of two

different frames by means of the nearest neighbor distance.

In [3], the presented results show performances from 5 to

340 ms per frame without and with the matching stage.

The architecture proposed in [4] is based on a Harris and

Stephen detector and selects and sorts the features in real

time. The adaptive method used for points thresholding is

interesting. The variations in illumination imply a variations

in the number of the detected interest points. Using an

adaptive threshold is an efficient way to ensure the proper

number of points at each frame, but is not necessarily con-

venient for keypoints recognition at different times. Authors

also propose a hardware-sorting module. But the method

used to sort the detected interest points requires the presence

of all the points. For that reason, the sorting is done only after

the image treatment. We will present in Sect. 4 a hardware

method that sorts the points continuously at run-time fol-

lowing the flow of pixels coming from the camera. This

method allows to reduce significantly the amount ofmemory

since only most important keypoints are kept. Moreover, the

sort is only based on the interest value of each point and does

not consider an inhibition neighborhood that prevents near

keypoints unadapted to place recognition. This interest

points detection system is capable of processing the images

at an average speeds of 156 fps (frame per second) when

applied to 512 9 512 pixel images.

A different approach was proposed in [38]. This

approach presents an FPGA-based stream processor for

embedded real-time vision with Convolutional Networks.

This programmable architecture starts from the observation

that many recent visual recognition systems, such those

presented above, can be seen as multiple layers of convo-

lutional filter banks with various types of non-linearities.

The system presented in this paper is a programmable

ConvNet Processor (CNP), which can be thought of as a

SIMD (Single Instruction, Multiple Data) processor.

Implementing a particular ConvNet simply consists in

reprogramming the software layer of the processor, but also

requires to reconfigure the runtime connections, operators,

and DMA modes in the FPGA.

The programmable approach is very interesting. The

coupling between the hardware grid of programmable

convolvers and their control unit brings a high degree of

flexibility. But the sequential reuse of the convolver unit

between image filtering and features learning needs con-

stant access to external memory for the line buffers of the

convolver. This limits the performances reachable com-

pared to a hardwired architecture where line buffers can be

stored in the embedded RAM Blocks of the FPGA. But the

main limitation for our purpose concerns the utilization

methodology itself. Prior to being run on the CNP, a

702 J Real-Time Image Proc (2015) 10:699–722

123

ConvNet must be defined and trained on a conventional

machine. In the context of mobile robotics, their is no clear

separation between the learning phase and the running one.

The robot learns its environment during navigation through

each new room he meets. During its first patrol the robot

navigates and learns the place topography with the aid of a

human supervisor. Then the robot navigates alone and

realizes patrolling across the different rooms. Moreover it

seems obvious that there must be no differences into the

robot between the computing machine used for place

learning and recognition. However, for their application,

authors also built a custom board around a Xilinx Virtex-4

FPGA [14]. The system delivers around 10 frames per

second at VGA resolution for typical filter banks. The

platform proposed in [14] consumes 15 W in peak, camera

included, and is capable of more than 4.109 multiply-

accumulate operations per second in real vision applica-

tion. The consumption reduction obtained with this type of

realization is a confirmation for us to propose in a near

future our own specific board.

Another approach for flexibility is proposed in [45]. It

relies on a low-cost embedded system based on an archi-

tecture that integrates FPGA and DSP (Digital Signal

Processor) and thus integrates the parallelism of FPGA and

the flexibility of DSP. We are following in this paper an

identical choice for the hardware acceleration of a Differ-

ence of Gaussians pyramid. Once a complete octave has

been processed, both implementations down-sample the

Gaussian-filtered image by taking every other pixels in

each row and column, and treat this image as the first

image at the next octave. But unlike Zhong etal who aim

for flexibility, our main goal is compactness of the vision

system into a single System-on-Chip.

3 A multiscale attentional architecture

The current visual system integrates a multi-scale approach

to extract the visual primitives. In doing so, it also allows a

wider range of applications. Roughly the visual system

provides a local characterization of the key-points detected

on the image flow of a digital camera. This local charac-

terization feeds a neural network which can associate

motor actions with visual information: this neural network

can learn, for example, the direction of a displacement of

the robot as a function of the scene recognition. The neural

architecture is presented in Sect. 6.

The studied visual system can be divided into two main

modules described in the following sections:

– a multi-scale mechanism for characteristic points

extraction (key-points detection),

– a mechanism supplying a local feature of each key-

point.

3.1 The multiscale keypoints detection

The multi-resolution approach is now well known in the

vision community. A wide variety of key-points detectors

based on multi-resolution mechanisms can be found in the

literature. Among them are the Lindeberg interest point

detector [30], the Lowe detector [31] based on local

maxima of the image filtered by difference of Gaussians

(DoGs) or the Mikolajczyk detector [34], where key-points

correspond to those provided by the computation of a 2D

Harris function and fit local maxima of the Laplacian over

scales. The visual system described here is inspired by

cognitive psychology. The used detector extracts points in

the neighborhood of the key-points, which are sharp cor-

ners of the robots visual environment. More precisely, the

key-points correspond to the local maxima of the gradient

magnitude image filtered by difference of Gaussians

(DoGs). The detector is characterized by a good stability

(or equivariance [30]) over scales. Following the detector

itself, the system provides a list of sorted local features by

the way of competition between the corresponding key-

points.

Key-points are detected in a sampled scale space based

on an image pyramid. Pyramids are used in multi-resolu-

tion methods to avoid expensive computations due to fil-

tering operations. The algorithm used to construct the

pyramid is detailed and evaluated in [12]. The pyramid is

based on successive image filtering with 2D Gaussian

kernels normalized by a factor S.

These operations achieve successive smoothing of the

images. Two successive smoothing are carried out by two

Gaussian kernels with variance r2 = 1 and r2 = 2. The

scale factor doubles (achievement of an octave) and thus

the image is decimated by a factor of two without loss of

information. The same Gaussian kernels can be reused to

continue the pyramid construction. Interestingly, the kernel

sizes remain small (half-width and half-height of 3 r)
allowing a fast computation of the pyramid. Finally, the

images filtered by DoGs in the pyramid can be simply

obtained by subtracting two consecutive images. A repre-

sentation of the whole algorithm is given in Fig. 1.

Key-points detected on the images are the first N local

maxima existing in each DoG image of the pyramid. Thus,

the key-point search algorithm sorts the N first local

maxima according to their intensities and extracts their

coordinates. The shape of the neighborhood for the search

of maxima is a circular region with a radius of R pixels.

This value is one of the system parameters. The number

N which parametrizes the algorithm corresponds to a

maximal number of detections. Indeed, the robot may

explore various visual environments (indoor versus out-

door) and particularly more or less cluttered scenes may be

captured (e.g., walls with no salience versus complex

J Real-Time Image Proc (2015) 10:699–722 703

123

objects). A detection threshold (c) is set to avoid non-

salient key-points. This threshold is based on a minimal

value of the local maxima detected. The presence of this

threshold is even more important in the lowest resolutions

since the information is very coarse at these resolutions.

This particularity of the algorithm confers it a dynamical

aspect. Precisely, the number of key-points (and conse-

quently the number of local features) depends on the visual

scene and is not known a priori. Furthermore, the threshold

c could be set dynamically through a context recognition

feedback but discussing here this mechanism is not our

current purpose. However, even if this threshold is con-

sidered as a constant value, the number of detected key-

points varies dynamically according to the input visual

scene. Consequently, the number of computations (neigh-

borhood extractions) also depends on the input data.

For now we focus on the first scale of the detector, that

is the first difference of Gaussians.

3.2 The local image feature extraction

At this stage, the neighborhood of each key-point has to be

characterized in order to be learned by the neural network.

Existing approaches to locally characterize key-points are

numerous in the literature: local jets, scale invariant feature

transform (SIFT) and its variants, steerable filters, and so

forth. In the current application, we simply reuse a view-

based characterization where key-point neighborhoods are

represented in a log-polar space. This representation has

good properties in terms of scale and rotation robustness.

The local feature of each key-point is, therefore, a small

image resulting from the log-polar transformation of the

neighborhood (see Fig. 2).

The neighborhoods are extracted from the gradient

magnitude image at the scale; the key-point was found by

the detector. Each neighborhood extracted is a ring of

radius (5, 16) pixels. Excluding the small interior disk

avoids multiple representations of the central pixels in the

log-polar coordinates. The angular and logarithmic radius

scale of the log-polar mapping are sampled with, respec-

tively, h and q values. Each feature is thus an image of

dimension h 9 q pixels. The sizes of the rings and feature

images have been determined experimentally for an indoor

object recognition. The given parameters represent a trade-

off between stability and specificity of the features. Finally,

the small log-polar images are normalized before their use

by the rest of the neural architecture. By associating the

Fig. 2 Example of log-polar mapping. The image a represents the

log-polar mapping with q = 5 and h = 16 and the image, b is the

result of the remapping in the (q, h) space

SUBSAMPLE

SUBSAMPLE

GAUSSIAN

FILTER (1)

GAUSSIAN

FILTER (2)

GAUSSIAN

FILTER (2)

GAUSSIAN

FILTER (1)

GAUSSIAN

FILTER (2)

FILTER (1)

GAUSSIAN

GAUSSIAN

FILTER (1)

GRADIENT

CAMERA

Fig. 1 Representation of the Gaussian pyramid

704 J Real-Time Image Proc (2015) 10:699–722

123

data provided by the visual system with actions, the global

system allows the robot to behave coherently in its envi-

ronment [32].

3.3 Computational complexity of the visual chain

A first study was performed to point out the limitations of

the software implementation of the visual chain.

The following execution times correspond to the first

scale of the algorithm. They are measured on a laptop

equipped with an Intel T2300 @1.66GHz CPU, 2GB of

DDR2 RAM. These data are given for a resolution of

192 9 144.

Function Execution time (ms)

Gradient 1.09

Gauss 1 7.08

Gauss 2 7.02

DoG 0.44

Key-point search 3.29

Extraction 0.4

Total 19.32

One can easily see that for larger images this solution is

unacceptable. For instance, we can estimate that on this

type of platform the processing of VGA videos

(640 9 480) will reach less than one frame per second.

The precise real-time constraint is hard to define since it

depends on the robot’s task. Exactly, the robot has to

capture and perceive the important changes in its envi-

ronment. The rate of these changes is different for navi-

gation or object tracking. And for navigation tasks, the

speed of the robot strongly depends on the rhythm at which

he can perceive obstacles and moving peoples. In the

context of patrolling robots in unknown and changing

environment, presented in Sect. 2.1, we are proposing a

dedicated hardware architecture for visual processing.

The aim of this architecture is to meet the real-time chal-

lenge while remaining tightly coupled to the neural control

layer.

4 Hardware architecture of the vision SoC

We describe the first scale of the detector presented in Sect.

3. Since the functional blocks are configurable in size and

width, the rest of the visual chain corresponds to multiple

instantiations of this first scale.

The organization of our architecture is depicted in

Fig. 3. It is composed of a chain of custom Intellectual

Properties (IPs), written in VHDL, that takes its input from

a camera thanks to a streaming interface (instantiated as an

AXI streaming interface (see ARM [1]) into the prototype,

see Sect. 5).

The IP can be configured by the CPU thanks to a

memory-mapped interface.

The IP chain generates several results which can be read

back by the software part:

– A DoG or an intermediate processed image, selectable

thanks to a dedicated register;

– The list of key-points extracted and sorted by the IP at

the different frequency bands;

– The list of log-polar features associated to each key-

point.

The detected features are identified by their coordinates,

scale and octave.

Since most of the IPs follow a data-flow model of

computation and produce and consume pixels at inputs and

outputs, a standardized interface has been developed to

connect these IPs all together.

The coordinates of the pixels are mandatory for each IP

to take care of the side effects. Moreover, the learning of

the visual cells for the navigation needs to know the

coordinates of the key-points. The coordinates of the pixels

must then be transferred from one IP to one other. Across

the pipeline, these data must be either delayed or re-gen-

erated by each processing IPs depending on its latency.

According to these constraints, the standardized inter-

face is composed of the following signals:

– The pixel value,

– its coordinates (x, y),

– an enable signal.

Fig. 3 Global view of the hardware architecture for one scale. The

flow of pixel comes from the camera and goes to the CPU’s memory

through a DMA. An intermediate output can be selected thanks to a

dedicated register. Another register allow to select which feature to

read. Finally, the key-points can be read through the memory-mapped

interface

J Real-Time Image Proc (2015) 10:699–722 705

123

4.1 Gradient

The gradient magnitude is computed by a simplified ver-

sion of the Sobel operator.

If I is the input image, Gx and Gy represent, respectively,

the horizontal and vertical derivatives. These images are

computed thanks to a convolution by the classical Sobel

kernels (Eq. 1).

The main difference compared with the classical Sobel

operator is the calculation of the gradient magnitude image

G. We avoided the usage of a square root operator by

replacing it by a simple sum of absolute values (Eq. 2).

Gx ¼ I �
þ1 0 �1

þ2 0 �2

þ1 0 �1

2
4

3
5; Gy ¼ I �

þ1 þ2 þ1

0 0 0

�1 �2 �1

2
4

3
5

ð1Þ
G ¼ absðGxÞ þ absðGyÞ ð2Þ

The architecture used to compute the gradient magnitude is

depicted in Fig. 4.

A structure composed of shift registers and regular

registers is used to store the input pixels. Each clock cycle,

this structure outputs the eight pixels needed by the pro-

cessing part of the IP to compute the output pixel.

The computation part of the IP is built in a pipelined

way, allowing the throughput to increase, with a few extra

latency. The five extra cycles are not significant compared

with the line and the pixel latency imposed by the input

pixel memorization. Finally, the total latency of the IP is

imgwidth ? 6 clock cycles.

A side effectmanagement avoids the border of the image to

be corrupted. Here, we use a classical method that simply

consists in replacing allnon-existingpixels by zero in equation

Eq. 1. Thedetectionof thesenon-existingpixels is done thanks

to the coordinates of the input pixel and the imgwidth and

imgheight generic parameters. This side effect management

mechanismattenuates the gradientmagnitude on the border of

the images, but does not affect the other pixels.

4.2 Gaussian filter

The Gaussian filtering operation consists in the convolution

of the image by a Gaussian function

Gðx; yÞ ¼ 1

2pr2
e�

x2þy2

2r2 ð3Þ

In this formula, the term 1
2pr2 ensures that the area under the

Gaussian bell is equal to 1, that is to say the filter gain is

equal to 1.

This function is pre-processed and can be stored in a

7 9 7 or 9 9 9 array. The value of the coefficients depends

on the size of the buses. We can tune them so that the term
1

2pr2 can be achieved by a division by a power of two. This

allows us to replace it by a right shifter. In our case, for

compatibility with the software, we chose a 16-bit bus

width for the input pixels and for the coefficients and a

32-bit internal bus width.

The architecture of the IP, depicted in Fig. 5, is able to

process a pixel at each clock cycle. This point is mandatory

since the camera can send valid pixels at this rhythm.

In order to save some multiplier, the two-dimension

convolution is separated into two one-dimension convolu-

tions. One can see on the top of the Fig. 5a the vertical

convolution. The horizontal convolution is achieved by the

bottom of the IP.

As the Gaussian function is even, we know that some

coefficients will be equal (for instance: C(1) = C(- 1)).

We can benefit from this property to factorize the redun-

dant multipliers as depicted in Fig. 5b.

There are plenty of solutions to take care of the side

effects. The first solution is to crop the output image in

Fig. 4 Gradient magnitude IP. The management of the input pixels is

shown on the left, the computation of the gradient magnitude is shown

on the right

(a) (b)

Fig. 5 Gaussian Filter IP. In a, the two-dimension convolution is

separated into two one-dimension convolutions. In b, redundant

multipliers are suppressed

706 J Real-Time Image Proc (2015) 10:699–722

123

order to work only with valid pixels. With this solution, the

resolution will dramatically decrease, especially in the low

resolutions.

The solution is then to reduce the corruption induced by

the invalid pixels. Lets discuss the different approaches. The

invalid pixels can be set at themaximal value, thiswill lead to

bright borders. They can be set at the minimal value, leading

obviously to dark borders. They also can be set at the median

value, that will limit the impact. Another solution is tomirror

the image at the borders, but it will make the IP heavier.

To take a decision, we need to take a look at our

application. The first Gaussian filter takes its input from the

gradient magnitude IP. The gradient magnitude is usually

dark, unless the visual environment is full of salient points.

We need to keep in mind that the salient points will be

sorted by intensity, and that the lowest points will be dis-

carded. A bright border will lead to fake key-points

detection. The dark-border solution is better because it

allows to detect only true key-points.

4.3 Difference of Gaussian

The difference of Gaussian is computed thanks to a simple

subtract module. The difficulty of this IP is due to the fact

that its inputs are taken from the input and the output of the

same Gaussian filter IP.

One can then observe a delay between the input of the IP

coming from the filter latency. A shift register allows to

synchronize these two pixel flows, as shown in Fig. 6.

4.4 Key-point search

4.4.1 Classical approach

The key-point search algorithm consists in finding the local

maximums in the DoG images. For each pixel, the IP

searches in a disk of radius R if the pixel is greater than the

others, to determine if it is the maximum in this area. The

IP works in the manner of a classical convolution operator,

except that it is circular. To respect the working rhythm, a

pixel must be processed at each cycle.

A pixel must satisfy four criteria to be identified as a

key-point:

– It must be a local maximum as described above

(Fig. 7);

– There must be no other key-point in the detection disk.

As the half-disk above the pixel to process is already

tested, it is possible by storing the results to ensure that

this constraint is respected (Fig. 8). This block allows

to set different radius for the detection and the

inhibition;

– The value of the pixel must be greater than a noise

threshold c. The key-points then cannot be detected in a
monotonic area (Fig. 9);

– The pixel must be far enough from the border such that

all the pixels in the disk are valid. The (x, y) coordinates

of the pixel to process can be used again (Fig. 10).

4.4.2 Optimized IP

One can see on Sect. 5.1 that the classical design of this IP

is an obstacle to scalability due to the disk of comparators.

To avoid the scalability limit, we propose a solution

which considers a square window. First, for each input

pixel, a local maximum is found in the first line of the

window. This search algorithm is implemented as a tree of

comparators (see Fig. 11a). This maximum is then stored

in a shift register. The x coordinate of the maximum in the

window must also be stored.

Fig. 6 Difference of Gaussian IP. A shift register is responsible for

the synchronization of the two pixel flows. The difference is

computed by a simple subtract module

Fig. 7 Key-point search IP: local maximum detection

Fig. 8 Key-point search IP: key-point inhibition

J Real-Time Image Proc (2015) 10:699–722 707

123

The second part of this solution consists in searching a

vertical maximum among the horizontal maxima. If the

maximum is detected in the center of the window, it is

considered as a local maximum.

The knowledge of the vertical position of the maximum

is not required, to avoid the latency of the comparator tree,

the central vertical maximum is compared with the other

vertical maxima. One can see in Fig. 11b that the com-

parators can then work in parallel.

Finally, we still need to assure that the local maximum is

far enough from the sides of the image, and that the pixel is

above the noise threshold. The architectures described

above can be used again.

4.5 Key-point sort

The key-points are given to the sorting IP by the searching

IP. They are represented by an {x, y, value} structure. An

index representing which log-polar transform bloc will be

used is added to this structure. The sorting IP sorts these

structures in function of their value.

Once more, the IP must be able to respect the rhythm

given by the sensor. This time, we can take advantage of

the fact that at a given time only one point must be sorted.

Lets consider that at each time, the list of key-points—

that is the structures described above and stored in regis-

ters—is sorted. When a new point inputs, its value is

compared to the ones already sorted in the list. When its

value is large enough to be inserted, the structure is stored

in the right register. Every pixel below then shifts to the

bottom.

The architecture of this IP is depicted in Fig. 12.

4.6 Log-polar transformation

Two IPs are responsible for the log-polar mapping, Address

Generator and Transform.

The Address Generator (Fig. 13) converts the Cartesian

address into the log-polar one. A test ensures that the

incoming flow is in the neighborhood disk of the key-point,

and then its coordinates are subtracted from the coordinates

of the flow. These coordinates are the input of a look-up

table (LUT) which stores the log-polar coordinates.

The Transform IP (Fig. 14) reads the incoming pixels,

and put them into a memory at the address computed by the

Address Generator. This IP is built as a double-buffer to

compute an image while reading the previous one. The

zones of the outer rings containing more than one pixels

must be averaged. An accumulator is then build around the

memory. As the address conversion is done by a LUT, the

values for the average division can also be stored in a LUT.

One can see the global architecture of the Log-polar

transformation block on Fig. 15. These IPs are duplicated

N times, where N is the maximal number of key-points to

detect. The key-points are dispatched to an Address Gen-

erator depending on the index from the sort IP. As we

cannot shift down the content of the entire memory of a

Transform bloc, we can only overwrite the memory

Fig. 9 Key-point search IP:

threshold test

Fig. 10 Key-point search IP: coordinates test

(a)

(b)

Fig. 11 Optimized local maximum search IP with a (3 9 3) window.

In a, a horizontal maximum is found and sent, with its position, to (b).
In b, the central maximum is checked. If it is the maximum and if its

position corresponds to the center of the window, it is tagged as a

local maximum

Fig. 12 Key-point sort IP. The

{x, y, index, value} structures

are sorted by their values

708 J Real-Time Image Proc (2015) 10:699–722

123

corresponding to the lower key-point. That is why we need

a connection between the rank of the key-point and its

index.

Finally, a CPU can read all the data by selecting an

index. A memory (not represented) stores the value of the

key-point, its coordinates, and the relation between its rank

and its index, so that the CPU does not have to sort the

values again. It can read the log-polar feature as a RAM

memory.

5 Implementation results

5.1 Hardware resources consumption

We explore the impact of some parameters of the IP

described earlier on the hardware resources consumption.

This exploration will allow us to estimate the feasibility of

a hardware implementation of the full multi-scale atten-

tional architecture described in Sect. 3.

All figures represent a set of synthesis, before place and

route. The rest of the logic, as for instance the prepro-

cessing of the raw pixels or the AXI interconnect, do not

appear in the following results.

This exploration was done on a Xilinx Zynq 7020 which

is composed of 106k registers, 53k LUTs, 560 kB of

memory and 220 DSPs.

For different resolutions—1,920 9 1,080 (fullHD),

960 9 540 (half), and 480 9 270 (quarter)—we vary the

extraction radius and the maximal number of key-points to

detect. We also compare the disk search algorithm (see

Sect. 4.4) with the optimized one.

The impact of the number of key-points is depicted in

Fig. 16 when using the classical algorithm. We choose an

extraction radius of 12 as it appears to be the limit, when

integrated in the whole architecture, with the classical key-

point search algorithm.

Fig. 13 Log-polar transformation IP: the address generation. The

coordinates of the pixels coming from the gradient (Xin, Yin) are re-

arranged in function of the coordinates coming from the key-point

sort IP (Xkp, Ykp) and the extraction radius. The result is then sent to

the LUT if the incoming pixel must be extracted

Fig. 14 Log-polar transformation IP: the transformation itself

Fig. 15 Log-polar transformation IP. The N features can be extracted

and remapped in parallel

Fig. 16 Hardware consumption versus the number of key-points

given in percent. The radius is fixed to 12

J Real-Time Image Proc (2015) 10:699–722 709

123

The impact of the radius for both classical and opti-

mized approach is depicted in Fig. 17. We choose a max-

imum of 16 key-points.

One can see in Fig. 16 that the number of key-points has

a linear influence on the consumption of all the resources

even with the classical method. On the contrary, the

extraction radius, with the classical approach, has a qua-

dratic influence on the LUTs occupation (Fig. 17a). This is

due to the increase of the area of the comparators disk, as

shown in Sect. 4.4. With the optimized search IP, the

influence of the extraction radius becomes linear (Fig. 17b).

The influence of the radius on both classical and opti-

mized search IP is depicted in Fig. 18. This figure shows

that the influence of the radius on the consumption of the

optimized IP stays linear even with a higher radius.

The size of the image increases the needs of memory,

simply because more pixels must be stored to compute the

convolutions.

Finally, we plot the distribution of the consumptions of

each bloc in Fig. 19. The parameters are the following:

– 480 9 270 images,

– a maximum of 16 key-points,

– an extraction radius of 12.

First of all, note that the gauss column corresponds to

the sum of the two Gaussian filter blocs.

One can see again the benefits of the optimized

maximum search IP over the classical one. The differ-

ence in memory usage seems to be due to the synthe-

sizer which choose to use 36-bit wide memory instead

of 18-bit wide.

Finally, we can see that the logpol is the IP which

require the most part of the LUTs and memory. The

memory needs are due to the storage of the log-polar fea-

tures. The needs in LUTs are due to the fact that the IP is

duplicated 16 times; this parallelism is required because

some pixels can appear in various features.

(a)

(b)

Fig. 17 Hardware consumption versus the extraction radius given in

percent. The results for the classical approach are shown in (a) and
the optimized one in (b). The number of key-points is fixed to 16

Fig. 18 Consumption of the local max search IP. Comparison

between the classical (disk) and the optimized (square) approaches

Fig. 19 Hardware consumption per IP given in percent. The

consumption in element are displayed above each column

710 J Real-Time Image Proc (2015) 10:699–722

123

5.2 Toward a multi-scale implementation

The hardware implementation of the low-resolution led to a

working architecture. The architecture is able to process

the images given by the sensor at always above 60 fps.

The hardware resources consumption have been plotted

for different set of parameters. The distribution of the

resources over the different sub-IPs has been observed too.

We then saw that two IPs could be an obstacle to a multi-

scale implementation. The key-point search and the log-

polar transformation are greedy in resource consumption.

The search IP has been optimized so as to reduce

hardware resources consumption. This consumption

increases now linearly in function of the search radius.

The log-polar transform IP can be reduced too if some

hardware resources can be shared by several transform

blocks. Therefore, this hypothesis requires that a given

pixel cannot be in different features, that is the features do

not overlap.

In conclusion, we can consider an implementation of the

multi-scale architecture with two scales on our Zynq 7020.

A larger FPGA may be required to integrate the three

octaves presented in Sect. 3.

5.3 Compression rate

A 480 9 270 image with a 10-bit pixel width is composed

of 1.296 Mbit. The one-scale architecture generates a

maximum of 16 features. This set of 16 9 16 pixels with a

16-bit bus width is composed of 65,536 bits.

We can compute the compression rate s which is

s ¼ features set size

image size
¼ 0:05 ð4Þ

It corresponds to 5 % of the original image. The amount

of data communicated at the output of the smart camera is

thus significantly reduced as the energy consumed to

transmit them to the control layer. We can extrapolate the

compression rate that can be achieved with a multi-scale

architecture by multiplying this compression rate by the

number of scales. For the full multi-scale pyramid, the

compression rate of 30 % remains interesting considering

the quality of visual data extracted by the architecture.

6 Neural architecture for environment learning

We describe in this section the neuronal architecture that

controls the RobotSoC platform behavior. This neuronal

architecture is based on PerAc building blocks formultimodal

associations [18]. PerAc architecture models perception as a

dynamic process linking sensation (ie: vision) with action (ie:

movement). In this architecture, the robot perception and its

behavior result from a tight coupling between visual input and

motor action: a PerAc loop is a combination of a reflex

pathway and a categorization pathway.

Following a constructivist approach, we have then pro-

posed several neuromimetic control architectures of

increasing complexity (involving several PerAc loops) for

navigation of a mobile robot [32]. These models are all

inspired from mechanisms used by some insects like honey

bees and some mammals like rats or monkeys for self-

localization and navigation. More precisely, they result

from functional models of some cerebral structures and

their interplay. These models are mainly driven by vision

processes with such high computational cost that it is not

possible to execute them onto the embedded computer of

our previous robot platforms based on Robulab.2 Hence,

these architectures still need an external workstation

wirelessly linked to the robot that can handle the heavy

visual processing. This external link limits the autonomy of

the robot. As a response to this limitation, the RoboSoc

platform allows to embed all processes in the robot relying

on a hardware solution to perform most of the visual pro-

cessing and an onboard computer on which a neuronal

simulator (Promethe, see Gaussier and Zrehen [18], Matt-

hieu et al. [33]) runs the control model. To test the validity

of our robotic platform, we chose to evaluate RobotSoC

with our simplest PerAc architecture for navigation based

on a single sensorimotor loop.

We first describe how neuronal networks are simulated

in this work and after a brief overview of the neuronal

control architecture, we will detail each part of it. We will

end showing how this model can control a mobile robot

engaged in a visual navigation task: a homing behavior.

6.1 Neuronal framework

We describe here how neural networks are simulated by

our neuronal simulator Promethe.3 All neurons modeled in

this work are based on rate coding. Neuron activities are

coded by floating point values normalized between zero

and one. Neuronal networks are simulated with discrete

time step t. At each simulation time step, activity of all

neurons is calculated. Next in the same simulation time

step, a learning phase occurs to modify synaptic weights of

connections. In this paper, our architecture can involve

several time scales. Time scales behave here like imbri-

cated loops. So, several time steps of the deepest time scale

have to be performed for each single time step of the upper

scale.

2 A robulab from the Robosoft company equipped with an additional

computer based on a I5 processor.
3 More information on how the neuronal simulator works can be

found in [18, 33].

J Real-Time Image Proc (2015) 10:699–722 711

123

In this neuronal architecture, learning is a one shot

process driven by a specific signal named vigilance (see

Fig. 20). This binary global signal is distributed on most of

our neuronal networks (see Fig. 20). If this signal is equal

to zero, the weight values of synaptic connections of all

neurons remain unchanged. When set to one, it first triggers

the recruitment of a new neuron dedicated to learning the

current input and second enables the learning. Recruitment

is done sequentially taking the next unused neurons in the

network. Other neurons do not modify their synaptic con-

nections weight. We use in the learning equation of each

neuronal network the following binary term Vk
NN to model

this filtering effect that controls which neuron should learn.

For instance, in each neuronal network, when the global

vigilance signal is equal to one, Vk
NN is also equal to one

only if k is the index of the recruited neuron in the network

NN and is equal to zero otherwise.

6.2 Neuronal robot control architecture overview

The presented architecture aims to allow a robot to perform

a simple visual navigation (homing behavior). Visual input

is provided by a pan mounted camera that can take a

panorama of the environment surrounding the robot.

We develop our model following the PerAc concept (see

Fig. 20a). PerAc architecture allows online learning of

sensorimotor associations between a motor pathway (motor

order) and a categorization pathway (localisation). These

sensorimotor elements are the building blocks of the robot

behavior. They code the action to perform in a given per-

ceptual situation (location). The current location results

from an active visual scene analysis (visual attentional

mechanism, see Fig. 20b) which extracts and categorizes

salient features (landmarks) of captured images. This

learning step uses several neural networks along the cate-

gorization pathway of our model. A neural network (PS)

merging detected landmarks and their azimuth in the scene

is fed by this visual attentional mechanism. Activity of PS

neural network formed a visual sensory input that is spe-

cific of a given robot location in the environment.

Categorization pathway of our model ends with a neural

network (Place cell) that learns this visual sensory input.

Thus, place cells neurons have an activity that is correlated

with the spatial position of the robot in the environment.

Fig. 20 A PerAc architecture to control RobotSoC. a PerAc loop to

learn sensorimotor units. This architecture runs on a robot equipped

with a pan camera that can take a full panorama of the visual scene.

Each block represents one or more neural networks (specified in

parenthesis) performing a specific treatment on the information flow.

PerAc architecture aims to allow online learning of sensorimotor

associations between a reflex motor pathway (in green) and a

categorization pathway (in red). b Visual attentional loop. The spatial

landmark configuration results from a visual attentional process

performed at a finer time scale than the neural learning. This time

scale corresponds to the frame rate of the images provided by the

hardware visual system. It loops over all images corresponding to the

same panorama. The attentional mechanism allows to categorize both

the identity of the landmark (what) and its angular position related to

the magnetic north (where). Each landmark focused during this

process is accumulated into a product space matrix (PS) which codes

the landmark configuration extracted from the visual scene. Activity

of the product space neural network is reseted at the beginning of each

visual scene exploration (new panorama)

712 J Real-Time Image Proc (2015) 10:699–722

123

Finally, the sensorimotor association block in Fig. 20 drives

the robot behavior. This neural network codes the locali-

sation information which will be bound with an expected

motor action (direction) coming from the reflex pathway.

In this simple model, robot behavior learning is super-

vised by a user. Sensorimotor elements driving the robot

behavior result from a classical conditioning operation,

linking desired action (maintain a course) with a specific

robot position. Hence the user, at first, has to place the

robot at a chosen location. The robot is then stopped once it

is in the required orientation (desired action). The reflex

pathway unconditionally links the direction (orientation of

the robot) to the sensorimotor neural network.

The user then sets a vigilance signal for one (neural)

simulation time step allowing the model to learn the new

sensory input pattern corresponding to the current location.

A new neuron on the place cell neural network is recruited

to categorize the spatial configuration of the visual land-

marks detected in the entire panorama and preprocessed by

the hardware visual system. Then, sensorimotor neurons

learn to associate the recruited place cell neuron that pre-

dicts the current location, with the action provided by the

user (current orientation of the robot). These operations are

performed as many times as needed to define the desired

robot behavior. For example, in our homing behavior test,

only four of these sensorimotor units have to be learned.

In testing phase, no learning is allowed (no vigilance

signal) and sensory input patterns directly activate previ-

ously learned Place Cells according to the current visual

scene perceived. Contrary to the learning phase, panorama

of the visual scene is taken while the robot is moving. The

best recognized place cell, which has won the competition

and thus best predicts the current location, triggers the

previously learned activities on the sensorimotor neural

network. Hence, the categorization pathway can take con-

trol of the robot’s action and avoid the reflex pathway via

the Winner Takes All (WTA) competition performed by

the Action selection neural network.

6.2.1 Visual attentional mechanism

Categorization pathway of this PerAc architecture leads to

the creation of a visual sensory inputs that is inspired by the

mammal visual processing. Indeed, observations of mam-

mal visual processing have led to the identification of two

main pathways: the What and the Where [23]. The first

allows identifying the characteristic points (landmarks)

found in the retinal image and the second gives information

on their locations in this image (azimuth). Based on these

findings and following a PerAc approach, we have chosen

in our model to define the visual sensory input that results

from visual processing as the merge of these two kinds of

information (What and Where).

As mentioned before this neuronal robot controller is

driven by visual input coming from RobotSoC hardware

architecture (RobotSoC vision system). RobotSoC vision

system provides a sorted list of salient points (landmark

candidates) to our neuronal model which processes each of

these salient points one after the other via an attentional

mechanism. This attentional mechanism allows to catego-

rize both the identity of the landmark (what) and its angular

position related to the magnetic north (where) (see

Fig. 20b). Each landmark focused during this process is

accumulated into a product space matrix (PS) which codes

the landmark configuration extracted from the visual scene.

Thus, this attentionalmechanism focuses on salient points

extracted from the scene by the vision system. For each of

these salient points, two processes then occur in parallel:

– a categorization allowing to code for the corresponding

landmarks (pixels of a small local views: see Sect.

6.2.2).

– an angular position relative to the north, given by a

compass, is computed for this point (see Sect. 6.2.3).

This angle is coded on a neural population and a

gaussian diffusion is used to allow generalization.

Fusion of these two streams of information allows to

code the spatial landmark configuration via a constellation

of landmarks with their azimuths (see Sect. 6.2.4). A

simple feedback inhibition allows then to select the next

salient point (ocular saccade). The whole process can thus

be seen as a spotlight mechanism based on a visual atten-

tional process.

This process must be performed at a finer time scale

than the rest of the neural networks, since the attentional

mechanism must loop over all images corresponding to the

same panorama. This time scale corresponds to the frame

rate of the images provided by the hardware visual system.

At the end of this attentional process a maximum of (N) of

the most salient landmarks are recruited. The number of

visible landmarks needed is a trade-off between the

robustness of the algorithm and the computational and

memory cost of the process. In theory, if all landmarks in

the visual scene are fully recognized (without perceptual

aliasing), only three of them are needed to code a unique

location (triangulation). As some of them may not be

recognized in practice, for example in case of changing

condition like occlusion, we need to take into account more

landmarks to guarantee the robustness [18]. Activity of the

product space neural network is reset at the beginning of

each visual scene exploration (new panorama).

6.2.2 What: landmark identity layer (Pr)

The landmark layer is composed of neurons that each codes

for a small local view around one salient point. This layer

J Real-Time Image Proc (2015) 10:699–722 713

123

models the ‘‘what’’ information that might be coded in the

perirhinal cortex (Pr) (or in other areas of the ventral visual

pathway of the temporal cortex [29]). Pr neurons are all

connected to small local images provided by the hardware

visual system via alterable one to all connections.4 Weight

modification of link coming from a neuron k of this layer

are done according to the following rule:

DWPr
k;ij ¼ IijðtÞ:VPr

k ð5Þ

Wk,ij
Pr(t) is the weight of the link from pixel i, j to the

kith landmark neuron. Iij(t) is the intensity value of pixel

(i, j) from the small local view I at time t. Initially

Wk
NN = 0. As stated before, the vigilance signal triggers

the recruitment of a new neuron in the network. This

neuron is the only one that can learn in this network, since

Vk
Pr = 1 only when k is the index of the recruited neuron,

and Vk
Pr = 0 otherwise.

Activity Xk
Pr(t) of the kith landmark neuron at simula-

tion time step t is computed according to the following

equation:

XPr
k ðtÞ ¼ f RT 1� 1

NI :MI

XNI ;MI

i;j¼1

kWPr
k;ijðtÞ � IijðtÞk

 !
ð6Þ

with NI and MI the number of pixels on X and Y of the

corresponding small local view. Wk,ij
Pr(t) is the weight of

the link from pixel i, j to the kith landmark unit. Iij(t) is the

value of the ijith point of the small local view. f RTðxÞ ¼
1

1�RT
x� RT½ �þ is an activation function that extends the

dynamical range of the output. RT is a Recognition

Threshold. [x]? = x if x C 0 and 0 if not. More details on

the impact of this soft competition can be found in [22].

6.2.3 Where: landmark azimuth layer (Ph)

The parahippocampal layer (Ph) uses a neural population to

code the azimuth of the focus point (absolute direction

coming from the magnetic compass of our robot). No

learning is performed on this layer since it directly maps

analog compass values in a neural population. More pre-

cisely, the azimuth of a landmark h(t) is calculated by

applying the magnetic compass value to the center of the

image and by shifting this value according to the 9 posi-

tion of the landmark relative to the center in the image and

the horizontal opening angle of the camera used (hc):

hðtÞ ¼ hcompassðtÞ � ðXmax=2� xÞ � hc=Xmax ð7Þ

with Xmax the horizontal resolution of the image used.

Each of the NPh neurons of Ph (with activity Xi
Ph) has a

preferred direction for which it fires with maximal rate. Its

firing rate monotonously decreases from one to zero with

the angular distance between its preferred direction and the

direction of the current focus point h(t). Activity on Ph is

given by:

XPh
i ðtÞ ¼ f k2:p: i

NPh

� hðtÞk
� �

ð8Þ

with f a lateral diffusion around the neuron Xk
NN such that

activity decreases for near angles (f is a Gaussian function).

Sigma value of this gaussian fixes the lateral diffusion size.

6.2.4 Visual sensory input: Product Space layer (PS)

The merging of ‘‘what’’ (landmark unit) and ‘‘where’’

(azimuth) information is performed in a sigma-pi neural

network called Product Spacer (PS).5 Neurons on PS

remain active until all small local views around each

salient point have been explored (accumulation). Neurons

of this network are arranged in a matrix. The number of

lines of this matrix is equal to NPr (hence they share the

same index i), the number of neurons in Pr and the number

of columns is set to five, meaning it can only be five dif-

ferent orientations for a given landmark (given by index l).

Neurons in this matrix thus have an activity noted Xil
PS(t).

PS is connected to Pr via one to neighborhood connec-

tions with fixed weight values equal to one. Hence, an

active neuron on the landmark layer pre-activates five

neurons in PS (the five neurons corresponding to the five

possible azimuth under which the robot could see this

landmark). PS is connected to Ph via one to all

connections.

Activity on PS is computed in three steps. First, it finds

maximum activity coming from the iith neuron of Pr

(Xk
NN): maxi2NPr

XPr
i ðtÞ:WPr�PS

il;i ðtÞ: Then, we determine the

maximum of all activities coming from the jith neuron of

Ph (Xk
NN): maxj2NPh

XPh
j ðtÞ:WPh�PS

il;j ðtÞ where NPr is the

number of neurons in Pr and NPh that of Ph.

In a second step, the product Pil of these two activities is

computed by:

PilðtÞ ¼ max
i2NPr

XPr
i ðtÞ:WPr�PS

il;i

� �
: max

j2NPh

XPh
j ðtÞ:WPh�PS

il;j

� �

ð9Þ

The last step, accumulates the Pil product with previous

product terms coming from already processed landmarks in

the same visual scene:

XPS
il ðt þ 1Þ ¼ XPS

il ðtÞ þ PilðtÞ
� �þ ð10Þ

4 A neuron of this layer is connected to all the pixels of a small local

image.

5 The merge may be performed in the superficial layer of the

entorhinal cortex or in the postrhinal cortex.

714 J Real-Time Image Proc (2015) 10:699–722

123

A PS neuron learns to be activated when a landmark is

recognized under a given angle. This activity gradually

decreases for near angles. Activity of all PS neurons are

forced to zero at the beginning of the attentional loop when

a new panorama is processed.

Learning is only performed on the weights between Ph

and PS. The weight is maximal (equal to one) for the angle

under which the corresponding landmark was learned.

Weights learning is the following:

WPh�PS
il;j ðtÞ ¼ XPr

il ðtÞ
� �

: XPh
j ðtÞ

� 	
:VPS

il ðtÞ

i ¼ argmaxp2NPr
XPr
p ðtÞ

� 	

j ¼ argmaxq2NPh
XPh
q ðtÞ

� 	
ð11Þ

Once again, learning on Wil,j
Ph-PS and recruitment of a new

neuron is only performed when the vigilance signal equals

one (Vk
NN = 1). Initially Wil,j

Ph–PS = 0. For a given rec-

ognized landmark i a new neuron at index il is recruited

sequentially along the index l of the PS matrix column.

The spatial landmarks constellation on PS, resulting

from the visual input process, characterizes one location.

We use a neural network modeling ‘‘Place Cells’’ (PC, see

Sect. 6.3) to learn the activity pattern on PS.

6.3 Robot localization: place cell layer (PC)

In our model, a PC neuron learns to categorize a particular

pattern of activity on the PS and hence a particular loca-

tion. Each PC neuron is linked with all neurons of the PS

via one to all connections that follow a Hebbian like

learning rule:

dWPS�PC
k;il

ðtÞ
dt

¼ VPC
k ðtÞ:XPS

il ðtÞ:XPC
k ðtÞ ð12Þ

Recruitment of a new neuron for encoding a new location

occurs when the neuromodulation vigilance input is set to

one. For this new neuron recruited at time t its activity is

set to the maximum value Xk
PC (t) = 1 and Vk

PC(t) is set to

one and zero otherwise.

The activity of the kth PC results from the computation

of the distance between the learned and the current PS

activity pattern and is expressed as follows:

XPC
k ðtÞ ¼ 1

Wj

XNPS

il

WPS�PC
k;il :XPS

il ðtÞ
 !

ð13Þ

with Wj ¼
PNPS

il WPS�PC
j;il :

Neurons of this layer models Place Cells (PC) discovered

in mammal brains. Place cells have a firing pattern strongly

correlated with a particular location in the environment:

they exhibit a high firing rate when the animal is at a given

location and are more silent when the animal is somewhere

else [35]. The PC layer of our model is then able to char-

acterize and so recognize different places in the environ-

ment: if the robot is at the exact position where the PC has

been learned, its activity is maximal. When the robot move

from this position, the activity of this PC decreases

according to the distance between the learned position and

the current one. Hence a PC keeps a certain amount of

activity around the learned position that corresponds to the

place field of the PC. Place field is the projection in the

environment of the locations where a given PC fires. Gen-

eralization of sensorimotor units is an interesting property

of this model exploited by the homing navigation strategy.

A competitive mechanism (Winner Takes All) is then used

to select the place cell that best recognizes the current place.

6.4 Orientation

This layer codes the current direction the robot is pointing

to. When the user moves the robot, the corresponding

direction is updated. This orientation neural network is a

simple mapping of the magnetic compass value expressed

with the same neural population code (describing the

absolute direction to follow at constant linear speed) as the

sensorimotor layer.

6.5 Sensorimotor association layer (SM)

Following the PerAc sensorimotor architecture [18, 32] we

define the robot perception of the goal place as a dynamical

process linking the sensations (landmark configuration

coded by PC) and their corresponding action. In our model,

neurons of the sensorimotor association neural network learn

to associate the winning place cell to an action (a direction to

follow in our case). Sensorimotor elements thus defined can

be used to perform a robust homing navigation behavior.

Each sensorimotor neuron is linked to both the PC

network via learned connections and the orientation net-

work trough constant connections. The weights of these

last links are fixed to a lower value than those coming from

the categorization neural networks (after learning), so that

activities coming from this later network can override

orientation network ones, after a sensorimotor association

has been learned.

The activity Xj
SM(t) of the jth neuron of this network at

simulation time step t is computed by:

XSM
j ðtÞ ¼ ð1� VSM

j ðtÞÞ:MSM
j ðtÞ þ VSM

j ðtÞ:SSMj ðtÞ
SSMj ðtÞ ¼ XPC

k ðtÞ:WPC�SM
j;k

MSM
j ðtÞ ¼ XOrientation

j ðtÞ:WOrientation�SM
j;j ð14Þ

Learning in the SM layer follows a Hebbian learning rule:

dWPC�SM
j;k ðtÞ
dt

¼ VSM
j :XPC

k ðtÞ:XSM
j ðtÞ ð15Þ

J Real-Time Image Proc (2015) 10:699–722 715

123

In a homing behavior, the associated action is the

direction to follow to reach the goal from the current place.

Thus, learning four sensorimotor associations pointing to

the goal is enough to allow the robot to navigate to this

place. These four sensorimotor associations forms an

attraction basin centered on the goal location (see 24 in

‘‘Appendix’’).

Even if this navigation strategy relies on very basic

sensorimotor learning it nevertheless allows robust

behavior in open indoor and outdoor environment [18,

2021, 22].

Note that when navigational tasks must be performed in

more complex environments (ie: multi-rooms and corridor,

mazes), the model can easily be extended to rely on

sequence of sensory–motor units (linking PC and action see

Giovannangeliet al. [22]) or on planification using a

topological map linking sensory–motor units describing

paths [13, 25]. Our approach of the perception relying on

dynamical sensorimotor attraction basins has also been

applied to object recognition [32].

6.6 Action selection layer (WTA)

This neural network is composed of a simple Winner Takes

All that selects a single action from those proposed by the

sensorimotor layer trough one to one links. Like in the SM

network, each neuron represents an action which corre-

sponds to the absolute orientation of the motor order the

robot must perform at constant speed.

7 Behavioral results

After giving a short overview of the experimental setup, we

then discuss the results.

7.1 Experimental setup for indoor navigation

In this work, we consider a robotic platform based on a

Robulab from Robosoft with 8 IR sensors, that embeds a PC

(Intel I5) used to implement the neural network that controls

the robot, a smart camera (vision system based on FPGA)

for the visual processing system, and a magnetic compass to

get an absolute orientation information (see Fig. 21).

We choose to evaluate our control architecture on a

simple homing behavior. Experiments are performed in

two phases. First, the robot learns four Place Cells (PC)

around the goal place. Each PC is spaced of 2.4m from its

two neighbors and 1.70 m of the goal center. The robot is

passively guided by the experimenter via a joystick to one

of the location to learn and is then oriented toward the goal

location. Learning of landmark, PrPh neurons, PC neuron

and the associated sensory–motor unit (action) is

supervised (a vigilance signal is triggered (Vk = 1) when

the experimenter press a joystick button). When a new

sensorimotor has to be learned (Vk = 1) a full panorama of

the surrounding is performed (Npictures learning are taken

over 270�). Second, the robot is placed at different loca-

tions in the environment and the joystick of the experi-

menter is disconnected.

Panorama of the surrounding is performed with less

pictures (N pictures are taken over 270�) when the robot is

in recognition phase. Hence, the robot vision system grabs

several pictures of the surrounding and extracts log polar

images of the 16 most salient points found in the images.

This information, together with their absolute orientations,

are sequentially processed and then integrated by the neural

architecture that finally results in activations of neurons of

the PC layer. Activity of these cells codes for their degree

of recognition of the current scene. A competition mech-

anism allows to select the best recognized PC and trigger

the corresponding (previously learned) movement. At this

Fig. 21 Robotic setup. We use a Robulab robot from Robosoft with

our hardware visual system, a magnetic compass and an embedded I5

PC. The robot is 40 cm large and 1 m height

716 J Real-Time Image Proc (2015) 10:699–722

123

time, the behavior of the robot (the direction it chooses to

follow) is only the expression of the best-recognized sen-

sory–motor unit.

In order to test the performance of the model, we choose

to record the trajectory of the robot from eight starting

points around the goal place.

First, we investigate, if the learned sensory–motor

association was correct by placing the robot around 60 cm

behind each of the four learned PC. Notice that the robot

was not placed at the exact location where the PC were

learned, but in the same alignment in respect to the goal.

Second, we test the generalization property of the sen-

sory–motor units by placing the robot at 4 other starting

points located between the place cells (at the frontiers of

their place fields).

In all the experiments we use the following parameters:

Table 1.

Position measurement precision is 10 cm.6

7.2 Results

Figure 22 shows the results of the first experiment. The

sensory–motor associations are correctly learned and allow

the robot to reach the goal when the robot is placed closed

to one of the learned PC. Each trajectory (excepted from

PC4) only implies the recognition of a single place cell.

The trajectory starting from PC4 shows a brief recognition

of PC3. This can be explained by the fact that PC4 was

learned close from a desk and thus relies on proximal

landmarks. Proximal landmarks imply strong angular var-

iation while a relatively small displacement is performed.

This effect impacts the generalization property of this PC.

These four PC formed an attraction basin similar to the one

of Fig. 24c in ‘‘Appendix’’.

Figure 23 shows the trajectory performed by the robot

starting at four different places located near the frontiers

of the four place fields of the PC learned (second

experiment).

The trajectory is composed of different phases in which

the robot follows the direction of the best recognized PC at

each time. At a given point, best activated PC changes and

so do the path followed by the robot. Trajectories performed

by the robot are similar to the one of Fig. 24b. This behavior

allows to underline changes in PC recognition but is not

suitable for our final robot behavior. Obtained trajectories

could be enhanced by summing vectorially the response of

the three best recognized place cells (neighbor PC).

Figure 25 in ‘‘Appendix’’ shows the activity of each PC

along the last four trajectories.

These experiments underline the interest of the gener-

alization of these sensorimotor units as it is not necessary

to visit all the possible locations to derive a possible

action in the environment. In this experiment, each place

field radius is around 1.2m. Only four sensory–motor

associations have to be learned to cover an area greater

than 16m2 allowing the robot to reach the goal. The size

of the place field (from which directly depends the size of

the attraction basin) depends on the distance of the

landmarks. One can refer to [22] for a more detailed

study of the generalization property of the model in

indoor and outdoor environments.

8 Conclusion

Vision processing in the context of embedded robotics is

a great challenge both for real-time exploration of the

environment and for interactions with other agents or

humans. This constraint on the system behavior affects

the design of the different parts composing such robots.

This matter is addressed in this paper as a joint method

coupling local optimization of intensive computing and

global design of the perception/control couple as a regu-

lation loop. Meeting the embedded and real-time com-

putation challenge needed by vision processing requires

an optimized design that leads us to propose a specific

smart camera. Thus the approach presented in this paper

allows to embed all these tasks together into an autono-

mous robotic platform. That were the challenges addres-

sed and solved in this paper. The three main contributions

enabling these results are:

Table 1 Parameters of the presented system

Parameter Value

Image size 480 9 270

Nextracted keypoints 16

Nl 16

Nm 16

Npictures learning 16

Npictures recognition 8

DoG: r1 7

DoG: r2 2

DoG: size 16

RT 0.80

NPh 360

NPr 3,000

PS size NPr*5

� 0.2

6 The tracking system used to plot trajectories is subject to local

errors represented in figures by small jumps and discontinuities. Some

videos of the experiments are available at the following address:

http://www-etis.ensea.fr/robotsoc

J Real-Time Image Proc (2015) 10:699–722 717

123

http://www-etis.ensea.fr/robotsoc

– a globally coherent algorithmic method linking sensa-

tion to action via a visual attentional model,

– a hardware optimization of the vision attentional

model into a single System-on-Chip reaching real-

time exigencies. This hardware architecture is

designed with its HD CMOS sensor. We are

currently working on a specific board in order to

build an optimized smart camera, with small form

factor. The hardware architecture is already available

as an open access IP for several FPGA evaluation

boards.

– an embedded platform merging the proposed hard-

ware smart camera and the software neural architec-

ture. This part of the platform is not only responsible

for sensation/action learning, but also for integration

and fusion of vision with other sensors such as

compass.

All these points together bring to the robot autono-

mous and reactive capabilities important for the gener-

alization of this platform to other types of missions. For

example, we are currently working on the application of

this platform to missions alternating sequentially navi-

gation and object tracking. Thus the exigencies and the

level of details of the visual task become variable along

time. We are working both on a dynamically configu-

rable smart camera and on the associate control loop

from the neural architecture according to the robot’s

state.

Appendix

Open access design files

The FPGA-based vision architecture can be freely down-

loadable for several platforms7

– Altera DE2-115 board equipped with D5M camera,

– Xilinx Zynq ZC702 board equipped with the On-semi

camera.

150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

distance (cm)

di
st

an
ce

(c
m

)

Learned PC 4 Learned PC 1

Starting
point
 1

Learned PC 2Starting point 4Learned PC 3

Goal

Starting point 2

Starting
point
3

150 200 250 300 350 400 450 500
50

100

150

200

250

300

350

distance (cm)

di
st

an
ce

 (
cm

)

Starting point 4

Learned PC 1

Learned PC 2Learned PC 3

Starting
point
 1

Learned PC 4 Starting point 2

Starting
point
3

Goal

(a)

(b)

Fig. 23 Result of the homing from 4 starting places located near the

frontiers of the four place fields of the PC learned. Starting point of

each outward trip is marked by a red dot. a To avoid confusion, each

trajectory is printed with a single color. b A color circle and an arrow

show the 4 places where the PC were learned and the associated

movement. Color of the corresponding recognized PC is superim-

posed to the robot trajectory. Each trajectory involves several PC

recognition. The dashed red circle (50 cm diameter) symbolizes the

goal place to reach. Due to limitation on the environment size, the 4th

starting point is the same as the location of the PC4 since it is close of

a wall. Note that jumps are only due to position error of the tracker

used to plot the trajectories

100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

distance (cm)

di
st

an
ce

 (
cm

)

Learned PC 3
Starting
point
3

Learned PC 4
 and
 starting point 4

Learned PC 1

Starting
point
 1

Starting
point
 2

Learned PC 2

Goal

Fig. 22 Result of the homing from 4 starting places located behind

the learned PC. Starting point of each outward trip is marked by a red

dot, except for the 4th. Due to limitation on the environment size, the

4th starting point is the same as the location of the PC4 (since it is

close of a desk). A color circle and an arrow show the 4 places where

the PC were learned and their associated movement. Color of the

corresponding recognized PC is superimposed to the robot trajectory.

Trajectories from PC 1, 2 and 3 only rely on a single PC. The dashed

red circle (50 cm diameter) symbolizes the goal place to reach. Note

that jumps are only due to position error of the tracker used to plot the

trajectories

7 http://www-etis.ensea.fr/robotsoc.

718 J Real-Time Image Proc (2015) 10:699–722

123

http://www-etis.ensea.fr/robotsoc

The design files contain:

– the configuration file of the target FPGA (respectively,

Altera Cyclone IV 115kLE, and Zynq 7000),

– the flash image for the embedded processor (respec-

tively, Nios-II and dual-core Cortex A9). This

image contains the executable files that read back the

features.

One can then send the extracted features through an

Ethernet link to a distant computer or compute them

locally.

Additional figures

See Figs. 24 and 25.

Fig. 24 Homing mechanism based on a simple sensorimotor loop

relying on vision. A particular direction is associated with each

winning PC. This association is learned by a least mean square

algorithm. The system is then able to move in the learned direction

when the associated place cell wins the recognition competition. This

simple mechanism allows the system to exhibit robust behaviors by

just a few sensorimotor associations (a path following, b homing

task). An attraction basin (c) emerges from the sensorimotor dynamic

J Real-Time Image Proc (2015) 10:699–722 719

123

(a)

400 600 800 1000 1200 1400
timestep

(b)

500 1000 1500 2000 2500
timestep

(c) (d)

200 400 600 800
timestep

1000200 400 600 800
timestep

1000

720 J Real-Time Image Proc (2015) 10:699–722

123

References

1. ARM: Amba open specifications, the de facto standard for on-

chip communication. (2013) http://www.arm.com/products/sys

tem-ip/amba/amba-open-specifications.php

2. Ballard, D.H.: Animate vision. Artif. Intell. 48(1), 5786 (1991)

3. Battezzati, N., Colazzo, S., Maffione, M., Senepa, L.: Surf

algorithm in fpga: a novel architecture for high demanding

industrial applications. In: Rosenstiel, W, Thiele, L (eds.) DATE,

IEEE, pp. 161–162 (2012)

4. Birem, M., Berry, F.: Fpga-based real time extraction of visual

features. In: Conference (2010)

5. Bonato, V., Holanda, J., Marques, E.: An embedded multi-camera

system for simultaneous localization and mapping. In: Proceed-

ings of Applied Reconfigurable Computing, Lecture Notes on

Computer Science (2006)

6. Bonato, V., Marques, E., Constantinides, G.A.: A parallel hard-

ware architecture for scale and rotation invariant feature detec-

tion. IEEE Trans. Circ. Syst. Video Technol. 18(12), 1703–1712
(2008). doi:10.1109/TCSVT.2008.2004936

7. Bouris, D., Nikitakis, A., Walters, J.: Fast and efficient fpga-

based feature detection employing the surf algorithm. In: 2010

18th IEEE Annual International Symposium on, Field-Program-

mable Custom Computing Machines (FCCM), pp. 3–10 (2010).

doi:10.1109/FCCM.2010.11

8. Burgess, N, O’Keefe, J.: Neuronal computations underlying the

firing of place cells and their role in navigation. Hippocampus 7,
749–762 (1996)

9. Burgess, N., Recce, M., O’Keefe, J.: A model of hippocampal

function. Neural Netw. 7(6/7), 1065–1081 (1994)

10. Cartwright, B.A., Collett, T.S.: Landmark learning in bees.

J. Comp. Physiol. 151, 521–543 (1983)

11. Cope, B.: Implementation of 2d Convolution on fpga, gpu and

cpu. Tech. rep (2006)

12. Crowley, J.L., Riff, O.: Fast Computation of Scale Normalised

Gaussian Receptive Fields. Springer Lecture Notes in Computer

Science 2695 (2003)

13. Cuperlier, N., Quoy, M., Gaussier, P.: Neurobiologically inspired

mobile robot navigation and planning. Fronti. NeuroRobot. 1(1)
(2007)

14. Farabet, C., Poulet, C., LeCun, Y.: An fpga-based stream pro-

cessor for embedded real-time vision with convolutional net-

works. In: 2009 IEEE 12th International Conference on,

Computer Vision Workshops (ICCV Workshops), pp. 878–885

(2009). doi:10.1109/ICCVW.2009.5457611

15. Frintrop, S., Jensfelt, P.: Attentional landmarks and active gaze

control for visual SLAM. IEEE Trans. Robot. 24(5), 1054–1065
(2008). doi:10.1109/tro.2008.2004977

16. Frintrop, S., Rome, E., Christensen, H.I.: Computational visual

attention systems and their cognitive foundations: a survey. ACM

Trans. Appl. Percept. 7(1), 6:1–6:39 (2010). doi:10.1145/

1658349.1658355

17. Gallistel, C.R.: The Organization of Learning. MIT Press, Cam-

bridge (1993)

18. Gaussier, P., Zrehen, S.: Perac: a neural architecture to control

artificial animals. Robot. Auton. Syst. 16(24), 291320 (1995)

19. Gaussier, P., Joulain, C., Zrehen, S., Banquet, J.P., Revel, A.:

Visual navigation in an open environment without map. In:

International Conference On Intelligent Robots and Systems-

IROS’97, pp. 545–550. IEEE/RSJ, Grenoble, France (1997)

20. Gaussier, P., Joulain, C., Banquet, J.P., Leprêtre, S,. Revel, A.:

The visual homing problem: an example of robotic/biology cross

fertilization. Robot. Auton. Syst. 30, 115–180 (2000)

21. Gaussier, P., Revel, A., Banquet, J.P., Babeau, V.: From view

cells and place cells to cognitive map learning: processing stages

of the hippocampal system. Biol. Cybern. 86, 15–28 (2002)

22. Giovannangeli, C, Gaussier, P., Banquet, J.P.: Robustness of

visual place cells in dynamic indoor and outdoor environment.

Int. J. Adv. Rob. Syst. 3(2), 115–124 (2006)

23. Goodale, M.A., Milner, A.D.: Separate visual pathways for per-

ception and action. Trends Neurosci.15(1), 20–25 (1992)

24. Heinke, D., Humphreys, G.: Computational models of visual

selective attention: a review. Connect. Models Psychol. 273–312

(2005)

25. Hirel, J., Gaussier, P., Quoy, M.: Biologically inspired neural

networks for spatio-temporal planning in robotic navigation

tasks. In: 2011 IEEE International Conference on, Robotics and

Biomimetics (ROBIO), pp. 1627–1632 (2011). doi:10.1109/

ROBIO.2011.6181522

26. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual

attention for rapid scene analysis. IEEE Trans. Pattern Anal.

Mach. Intell. 20(11), 1254–1259 (1998). doi:10.1109/34.730558

27. Judd, S.P.D., Collet, T.S.: Multiple stored views and landmark

guidance in ants. Nature 392, 710–712 (1998)

28. Koch, C., Ullman, S.: Shifts in selective visual attention: towards

the underlying neural circuitry. Hum. Neurobiol 4, 219–227

(1985)

29. Kolb, B., Tees, R.: The Cerebral Cortex of the Rat. MIT Press,

Cambridge (1990)

30. Lindeberg, T.: Feature detection with automatic scale selection.

Int. J. Comput. Vis. 30(2), 79116 (1998)

31. Lowe, D.G.: Distinctive image features from scale-invariant

keypoints. Int. J. Comput. Vis. 60(2), 91110 (2004)

32. Maillard, M., Gapenne, O., Hafemeister, L., Gaussier, P.: Per-

ception as a dynamical sensori-motor attraction basin. In: Pro-

ceedings of the 8th European Conference on Advances in

Artificial Life (ECAL 05), vol. 3630, p. 3746 (2005)

33. Matthieu, L., Pierre, A., Philippe, G.: Distributed real time neural

networks in interactive complex systems. In: Proceedings of the

5th International Conference on Soft Computing as Transdisci-

plinary Science and Technology. ACM, New York, NY, USA,

CSTST ’08, pp. 95–100 (2008). doi:10.1145/1456223.1456247

34. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest

point detectors. Int. J. Comput. Vis. 60(1) (2004)
35. O’Keefe, J., Nadel, N.: The Hippocampus As a Cognitive Map.

Clarenton Press, Oxford (1978)

36. Oliva, A., Torralba, A., Castelhano, M.S., Henderson, J.M. Top-

down control of visual attention in object detection. In: Pro-

ceedings of the IEEE Int’l Conference on Image Processing (ICIP

’03) (2003)

37. Ouerhani, N., Hügli, H.: Robot self-localization using visual

attention. In: CIRA, IEEE, pp. 309–314 (2005)

38. Pham, P.H., Jelaca, D., Farabet, C., Martini, B., LeCun, Y.,

Culurciello, E.: Neuflow: dataflow vision processing system-on-

a-chip. In: International Midwest Symposium on Circuits and

Systems (MWSCAS’12) (2012)

bFig. 25 Activity of the four PC along the four trajectories starting

near the frontiers of the PC. The color code used is the same than in

Fig. 23. Activity of the winning PC is forced to one. Activities of the

other cells represent the similarity of the currently observed activity

pattern on PrPh layer and the one when the corresponding PC were

learned. a Activity of the PC layer on the trajectory from starting

point 1. PC2 and then PC4 are successively recognized. b Activity of

the PC layer on the trajectory from starting point 2. The sequence of

activated PC is PC4, PC2 for a short period, then PC1 and PC4 again.

c Activity of the PC layer on the trajectory from starting point 3. PC3

is first recognized then it is PC4. d Activity of the PC layer on the

trajectory from starting point 4. PC2 and next PC4 are activated

J Real-Time Image Proc (2015) 10:699–722 721

123

http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://dx.doi.org/10.1109/TCSVT.2008.2004936
http://dx.doi.org/10.1109/FCCM.2010.11
http://dx.doi.org/10.1109/ICCVW.2009.5457611
http://dx.doi.org/10.1109/tro.2008.2004977
http://dx.doi.org/10.1145/1658349.1658355
http://dx.doi.org/10.1145/1658349.1658355
http://dx.doi.org/10.1109/ROBIO.2011.6181522
http://dx.doi.org/10.1109/ROBIO.2011.6181522
http://dx.doi.org/10.1109/34.730558
http://dx.doi.org/10.1145/1456223.1456247

39. Schaeferling, M.: Flex-surf: A flexible architecture for fpga based

robust feature extraction for optical tracking systems. In: Con-

ference on Reconfigurable Computing and FPGAs (2010)

40. Siagian, C., Itti, L.: Biologically inspired mobile robot vision

localization. IEEE Trans. Robot. 25(4), 861–873 (2009)

41. Tinbergen, N.: The Study of Instinct. Oxford University Press,

London (1951)

42. Treisman, A.M., Gelade, G.: A feature-integration theory of

attention. Cogn. Psychol. 12(1), 97–136 (1980). doi:10.1016/

0010-0285(80)90005-5

43. Tsotsos, J.: Analyzing vision at the complexity level. Behav.

Brain Sci. 13(3), 423–469 (1990)

44. Verdier, F., Miramond, B., Maillard, M., Huck, E., Levebvre, T.:

Using high-level rtos models for hw/sw embedded architecture

exploration: case study on mobile robotic vision. EURASIP J.

Embed. Syst. (2008)

45. Zhong, S., Wang, J., Yan, L., Kang, L., Cao, Z.: A real-time

embedded architecture for sift. J. Syst. Archit. 59(1), 16–29

(2013). doi:10.1016/j.sysarc.2012.09.002

46. Zipser, D.: Biologically plausible models of place recognition

and goal location. In: McClelland, JL., Rumelhart, D.E (eds.)

Parallel Distributed Processing: Explorations in the Microstruc-

ture of Cognition, vol 2. MIT Press, Cambridge, MA.

pp. 423–470 (1986)

Laurent Fiack received Master degree in Autonomous System

Electronics from the University of Cergy-Pontoise and an Electrical

Engineering, Computer Science and Telecommunications Degree

from the Ecole Nationale Suprieure de l’Electronique et de ses

Applications specialized in Electronics and Embedded Systems, both

in 2012. He is currently a Ph.D. student working on a self-adaptive,

reconfigurable robot controller at the University of Cergy-Pontoise.

He is a member of the Architecture team at information processing

and system Lab (ETIS). His research interests include hardware

architecture, microprocessor systems, Algorithm Architecture Ade-

quacy, machine vision and robotics.

Nicolas Cuperlier was born in 1979 in Reims, France. He received

M.S. degree in Image and Signal Processing from Cergy-Pontoise

University in 2003. In 2006, he received a Ph.D. degree in computer

sciences from the same university for a work on autonomous mobile

robot navigation inspired by mammals neural processing. In 2007, he

conducted research in Neural Network modeling Attentional Vision

mechanisms at the The Computer Sciences Laboratory for Mechanics

and Engineering Sciences (LIMSI). He is now assistant professor at

the Cergy-Pontoise University in the neurocybernetic team of the

information processing and system Lab (ETIS) where he uses robots

as tools to study, in collaboration with neurobiologists, different

cognitive models from an ecological and developmental perspective.

Currently, his work focuses on the modelization of the cognitive

mechanisms involved in visual perception, motivated navigation,

action selection and the role of emotion in behavioral metacontrol.

Benoı̂t Miramond received M.S. degree in Architecture of

Integrated Circuits and Micro-Electronics in 2000 from the Pierre et

Marie Curie University. In 2003, he received a Ph.D. degree in

computer sciences from University of Evry Val d’Essonne for his

work on design space exploration for data-flow applications on

dynamically reconfigurable architectures. He conducted research in

real-time scheduling at the national institute for research in computer

science and control (INRIA) in 2004. He is now assistant professor at

the Cergy-Pontoise University in the information processing and

system Lab (ETIS). He is scientific animator of the Architecture team

of the ETIS Lab. Currently, his work focuses on bio-inspired

hardware architectures, self-organization in grid of processors and

smart cameras for artificial vision. Recently, he integrated these

different research subjects in the approach called Embodied Com-

puting at the frontier of digital architectures and neurosciences.

722 J Real-Time Image Proc (2015) 10:699–722

123

http://dx.doi.org/10.1016/0010-0285(80)90005-5
http://dx.doi.org/10.1016/0010-0285(80)90005-5
http://dx.doi.org/10.1016/j.sysarc.2012.09.002

	Embedded and real-time architecture for bio-inspired vision-based robot navigation
	Abstract
	Introduction
	State of the art
	Context of the study
	Homing behavior
	Attention models
	System-on-chip for artificial vision

	A multiscale attentional architecture
	The multiscale keypoints detection
	The local image feature extraction
	Computational complexity of the visual chain

	Hardware architecture of the vision SoC
	Gradient
	Gaussian filter
	Difference of Gaussian
	Key-point search
	Classical approach
	Optimized IP

	Key-point sort
	Log-polar transformation

	Implementation results
	Hardware resources consumption
	Toward a multi-scale implementation
	Compression rate

	Neural architecture for environment learning
	Neuronal framework
	Neuronal robot control architecture overview
	Visual attentional mechanism
	What: landmark identity layer (Pr)
	Where: landmark azimuth layer (Ph)
	Visual sensory input: Product Space layer (PS)

	Robot localization: place cell layer (PC)
	Orientation
	Sensorimotor association layer (SM)
	Action selection layer (WTA)

	Behavioral results
	Experimental setup for indoor navigation
	Results

	Conclusion
	Appendix
	Open access design files
	Additional figures

	References

