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Abstract This work focuses on autonomous surface

reconstruction of small-scale objects with a robot and a 3D

sensor. The aim is a high-quality surface model allowing

for robotic applications such as grasping and manipulation.

Our approach comprises the generation of next-best-scan

(NBS) candidates and selection criteria, error minimization

between scan patches and termination criteria. NBS can-

didates are iteratively determined by a boundary detection

and surface trend estimation of the acquired model. To

account for both a fast and high-quality model acquisition,

that candidate is selected as NBS, which maximizes a

utility function that integrates an exploration and a mesh-

quality component. The modeling and scan planning

methods are evaluated on an industrial robot with a high-

precision laser striper system. While performing the new

laser scan, data are integrated on-the-fly into both, a tri-

angle mesh and a probabilistic voxel space. The efficiency

of the system in fast acquisition of high-quality 3D surface

models is proven with different cultural heritage, house-

hold and industrial objects.

Keywords 3Dmodeling �Next-best-view planning �
Active vision � Laser scanning

1 Introduction

Acquisition of 3D models is essential in several different

applications, such as cultural heritage digitization, rapid

prototyping and reverse engineering. Beyond these

classics, the demand for high-quality 3D models in robotic

applications such as object recognition, grasping and

manipulation is growing. Today, 3D models of unknown

objects are generated by hand-guided scanner systems,

manipulators, for which scans are manually planned [22],

or automatic modeling systems. The latter only work for

very small, mostly convex objects or require a very large,

fixed and expensive setup [14, 42]. Moreover, hand-guided

scanning is a very tedious and time-consuming task for the

human and the model quality strongly depends on the skill

of the operator. A robotic system, which autonomously

generates 3D models of unknown objects with an adjust-

able coverage or quality, would be highly beneficial.

Object recognition for example still performs well even if

the models are not nearly complete [18]. For grasp plan-

ning, models with higher quality and coverage are required

[32]. However, autonomous 3D modeling of complex

objects with a robotic system requires a coupling of 3D

modeling methods with autonomous view planning and

collision-free path planning.

In this work, we present an approach for autonomous 3D

modeling of unknown objects in real time. The presented

approach is not limited to a class of objects, like for

example convex shapes. We tackle the problem of arbitrary

objects by simultaneous exploration of the unknown

environment and surface modeling of the desired object.

The gathered information is used to iteratively find suitable

scan paths based on the object shape and plan collision-free

robot paths for these trajectories, until the desired model

quality is reached. This work is mainly focused on the

active scan planning aspect; however, the used concepts for

modeling and path planning are summarized and important

aspects are exposed to give a good overview and show the

interaction between the system components. The approach

is evaluated on various household, industrial and cultural
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heritage objects using an industrial robot with attached

laser striper.

This paper is organized as follows. In the next section,

we discuss related work in the field of view planning,

mapping, exploration and autonomous 3D modeling. Then,

in Sect. 3, an overview of our autonomous modeling sys-

tem is given. The generation of models and calculation of

features is described in Sect. 4, followed by our suggested

approach for planning of scans in Sect. 5. In Sect. 6, the

minimization of robot pose errors and in Sect. 7 the process

control are described. Experimental results are given in

Sect. 8, followed by the conclusion in Sect. 9.

2 Related work

According to Chen et al. [7], active vision perception in

robotics reached a peak in 1998 and became very active

again in the last years due to a variety of applications such

as purposive sensing, object and site modeling, robot

localization and mapping, navigation, path planning,

exploration, surveillance, tracking, search, recognition,

inspection, robotic manipulation, assembly and disassem-

bly. Chen et al. state that we are currently in another peak.

Further, the authors point out that inspection (15 %) and

object modeling (9 %) are the most addressed vision tasks.

2.1 NBV planning for object modeling

The planning of sensor views based on 3D sensor data is

usually referred to as next-best-view (NBV) planning [34].

The NBV problem has been addressed by several

researchers since the 1980s, but still remains an open

problem. NBV means that the robot needs to decide where

to position the sensor next to fulfill the given task. Scott

et al. [34] give a good overview of model-based and non-

model-based NBV algorithms (volumetric and surface-

based) for object modeling. In contrast to model-based

approaches, where the views can be planned off-line, for

non-model-based algorithms an NBV needs to be selected

in runtime since no a priori information about the target

object is given. Since a six-degrees-of-freedom (DOF)

workspace allows for infinite viewpoint candidates, a

search space is usually defined containing a fixed number

of viewpoints. Often, this search space is represented by

sampled viewpoints over a cylinder [29] or sphere model

[2, 40]. The viewpoints are limited by a fixed stand-off

distance such that the sensor frustum encloses the whole

object. Therefore, the candidate views always point to the

center of the cylinder or sphere, reducing the problem from

six to two DOF. These approaches lack taking into account

the important fact that sensor performance depends on the

stand-off distance to the surface. Besides, these approaches

cannot be applied to objects, the size of which exceeds the

camera field of view (FOV).

2.2 Mapping and exploration

In mobile robotics, NBV algorithms are used for explora-

tion of unknown environments. Low et al. [25] obtain 3D

models of larger environments using a mobile platform

with a 360� scanner, which limits the viewpoint space to a

3DOF problem. The authors introduce a hierarchical NBV

algorithm by grouping neighboring views into view vol-

umes and neighboring surface points into surfaces patches.

To apply information gain (IG) driven exploration,

usually metric grid maps are used. There are many map-

ping methods that integrate range data into a voxelmap

[38]. In the work of Suppa [36] different update strategies

for beam-based mapping relying on depth measurements

are compared. The necessity to consider sensor uncertainty

is demonstrated and a probabilistic approach which inter-

prets the sensor data is utilized. Well-known 2D-mapping

techniques [38] are introduced to 3D and a detailed survey

of update strategies and their application in the context of

robot work cell exploration is given. Suppa proposes using

a Bayesian update rule for voxels. This choice is supported

by Potthast et al. [30], who prove it to be more efficient

than using a simple approach for exploration of uncluttered

scenes with a humanoid robot and an eye-in-hand camera.

Suppa also gives a first approach on how to integrate NBV

planning for exploration and 3D modeling. A very similar

mapping approach to 3D mapping has been proposed by

Wurm et al. [45] and advanced by Hornung et al. [10], who

also give a more detailed overview of the literature.

2.3 Surface quality measure

The goal of most volumetric NBV algorithms is to increase

the knowledge about the unseen portions of the viewing

volume, which is also how Banta et al. [2] define the term

NBV. Even if the volumetric space is completely known, it

is not ensured that the surface model, which is the desired

output of 3D modeling, has reached a certain quality.

However, it is very difficult to give a measure for the

quality of the reconstructed object for unknown objects

since no ground truth is given. So far, only few approaches

[1, 26, 41] also consider a quality measure while planning

the NBV. Massios et al. [26] were the first to use a quality

criterion in addition to a visibility criterion to improve the

quality of the surface. They suggest using the angle of

incidence (the angle between surface normal and viewing

direction) for each voxel as surface quality. Vasquez-Go-

mez et al. [41] also use this quality criterion, but addi-

tionally take into account the traveling distance and overlap

with previous range images. They sample 80 candidate
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views over a sphere, which represents a sphere search

space, starting at a low ray tracing solution and then

evaluating the best views with a higher resolution.

All these authors have not proven that their suggested

quality criterion leads to a better reconstructed model

quality of the surface model. Reaching a high quality in the

volumetric model does not implicate a high quality for the

required surface model.

Johnson et al. [12] and Mehdi-Souzani et al. [28] both

investigate the measurement error for different angles of

incidence. Both come to the conclusion that the noise is

almost constant up to a certain angle and increases enor-

mously at an incidence angle[60�. Therefore the angle of
incidence should be used as quality criterion, but only as a

binary. Furthermore, in [37] it is shown that the surface to

sensor distance plays a very important role for laser scan-

ners and should also be considered as quality criterion.

Similarly, the evaluation of Scheibe [33] shows that the 3D

point quality depends a lot more on the distance than on the

angle of incidence. If the search space is restricted to a

sphere like in the work above, then distance cannot be

considered since it is already predefined by the sphere.

2.4 Autonomous object modeling systems

Several NBV algorithms are only tested in simulation and

ignore robotic aspects. In contrast, Callieri et al. [6] and

Larsson et al. [21] both use an industrial robot in combi-

nation with a turntable to model the objects. The former

focus on 3D modeling, but do not consider path planning

aspects at all. For the latter, the user needs to manually

input object size and stand-off distance for each object

individually, which does not render the system autono-

mous. Also, no processing times are mentioned. Torabi

et al. [39] try to scan a set of points on the occlusion sur-

face which they call target points. However, this is similar

to other methods and they do not consider improvement of

the known surface. Furthermore, the viewpoint search

space is still discretized by four spheres with different

directions. Between two scans, the robot waiting time is

several minutes, which is far too much. Karaszewski et al.

[13] introduce a measurement system to model large cul-

tural heritage objects, where the human needs to initialize

the size of the object. Karaszewski suggests that a system

for 3D modeling should not depend on the robot type. In a

first step, areas in the boundary area and in a second step

areas with low point density are selected as viewpoint

candidates. All viewpoints are simply processed without

reasonable NBV selection and also no abort criterion is

introduced. 3D modeling of a few cultural heritage objects

is shown, but their quality is not evaluated. The system

does not seem to be optimized concerning time. For a small

object, the digitization time was over 19 h.

For high-quality 3D modeling, laser sensors, which

require to be moved, are used. Previous autonomous

modeling systems [24, 39] plan an NBV and then perform a

scan by simply rotating the last joint of the robot. This is

not an optimal sensor movement, since it does not consider

the contour of the object or the estimation of the unknown

environment.

2.5 Distinction

In our work, we present a complete and autonomous

robotic system for real-time 3D modeling of unknown

objects which aborts after a defined mesh quality is

reached. The objects can be arbitrary, except for their

expansion, which is limited by a bounding box depending

on the robot workspace. The scan path candidates are not

sampled over a sphere or cylinder model, but are directly

estimated based on the shape of the partial triangle mesh,

which is generated in a real-time stream during the laser

depth measurement. Simultaneously, the laser range data

are streamed to the probabilistic space update, which is

also performed in run time. Next-best-scan (NBS) plan-

ning, as introduced in [19], describes the planning of

continuous sensor paths such as linear robot movements.

Here, the trajectory is not a fixed movement. Thus, NBS

planning can be seen as an extension of the NBV problem

that also requires additional collision-free path planning

along the trajectory. Furthermore, NBS planning allows for

the usage of line range sensors, such as laser stripe pro-

filers. However, the method for the scan path estimation

can also be applied to aerial 3D sensors by using the

midpoint of a scan path as NBV, which however does not

ensure that the complete object is scanned. It has already

successfully been applied for single viewpoint planning in

object reconstruction [9] and object recognition [18].

Due to the real-time model update in this work, NBS

planning can be directly performed after each scan. The

time for the NBS planning is optimized by only using

newly acquired data for each iteration. Our approach is a

mixture of surface-based and volumetric planning and the

advantages of both models are exploited. The voxel space

is used for exploration and collision-free path planning.

The triangle mesh is used for the scan path estimation,

termination criteria and saving surface features to the voxel

space. During NBS selection, both aspects are considered.

To our knowledge, we are the first to consider the quality

of the surface model when planning the NBV or, in our

case, NBS. Also, the surface quality is used as termination

criteria and therefore the desired mesh quality can be

configured depending on the application for which the 3D

model will be used.

The main contributions in comparison to a previous

approach [19] are a real-time space update, pose error
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minimization, NBS selection considering both IG and

surface quality and a termination criteria depending on the

model completeness and point density.

3 Overview

The principal idea of autonomous modeling of unknown

objects is to incrementally build a complete surface model

by sweeping over the object surface with a 3D sensor. For

every sweep, the already existing 3D model is extended

and new scan paths that potentially can further complete

the model are calculated. However, calculated scan paths

can cause collisions with the object, especially at more

complex geometries. Therefore an additional probabilistic

volumetric model is built and used during path planning to

avoid trajectories through occupied or unexplored parts of

the workspace. Further, model-based scan path calculation

can fail, for example if there are sharp edges or multiple,

separate objects. Here, exploration of unknown areas is

used to iterate further.

The resulting autonomous modeling system is divided

into three functional blocks: Model Update, Scan Planning

and Process Control. Figure 1 gives an overview of the

interactions between these modules.

TheModel Update (yellow box) incrementally integrates

the new range measurements. In this work, two different 3D

models are used, a triangular mesh and a probabilistic voxel

space (PVS). Here, the mesh represents the application goal

and is used to find boundaries, to calculate a sampling quality

and for surface trend estimation. The PVS represents the

exploration aspect and is used for occlusion avoidance,

collision-free path planning and storage of the surface

quality of measured depth points.

In the Scan Planningmodule (blue box), NBS candidates

are calculated from either the mesh boundaries or detected

holes. Then, occlusions are avoided and the PVS is used to

rate the candidates and to select the collision-free NBS.

Finally, the Process Control (green box) monitors the

modeling process, switches the planning mode and termi-

nates the process, if themodel has a certain completeness and

quality level. The system is initialized by setting part of the

PVS to the state unknown. The volume of that part has known

size and position and covers at least the goal object.

As prerequisite, the modeling system is connected to a

6DOF industrial robot with attached laser striper. Further, it

is assumed that the robot-sensor system provides a real-time

stream of globally aligned range data, i.e., for each range

measurement a transformation is given that allows for the

calculation of 3D points in a global coordinate systems. For

the assumed eye-in-hand sensor configuration, the global

transformation is the robot pose atmeasurement timewith an

additional calibration transformation. In real systems, how-

ever, the robot pose has a limited precision that can result in a

misalignment of the range data. Thus, the pose error is

minimized by registration of the range data.

4 Model update

In this work, two models are generated from the mea-

surement data, a triangle mesh and a PVS. Both models are

used in every planning step for the calculation and selec-

tion of scan paths. Further, the PVS is needed for collision-

free path planning. Therefore, new measurements have to

be integrated into the existing model at every iteration.

For the incremental generation and refinement of a tri-

angle mesh, the streaming surface reconstruction approach

is used. This algorithm has originally been presented by

Bodenmüller [5] for instant model generation and visuali-

zation with handheld scanner systems. For iterative gen-

eration and update of a PVS, an octree-based voxel space

with Bayes update is used. This approach was already

presented by Suppa [36] for work cell exploration with

industrial robots.

In the following, the used mesh generation and the PVS

update are summarized and important aspects are outlined.

Finally, the extraction of surface quality and the mapping

to the PVS are explained.

4.1 Mesh update

In this work, a triangle mesh is defined by a set of vertices

vi with corresponding surface normals ni and a set of

Fig. 1 Overview of autonomous 3D modeling process: 3D modeling

is performed in a real time stream during the laser scanning, and scan

planning is carried out after each scan
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directed edges ej, which represent the line segments con-

necting two adjacent vertices va and vb along the surface.

Each edge ej has a direction ej ¼ dirðva; vbÞ with

dirða; bÞ ¼ b� a

jb� aj ð1Þ

The triangle faces are not stored explicitly, but for each

edge ej two additional vertices vl and vr (see Fig. 2), which

close the adjacent triangle to the left and to the right with

respect to the direction, are assigned.

The reconstruction consists of three principal stages, the

density limitation, the normal estimation and the mesh-

generation step, as already presented in [5]. Each range

image is converted into a set of 3D points and incremen-

tally inserted into the model. At insertion of a new point, it

is tested if the point is not closer than a distance Rr to any

model point and rejected if the test fails. The test can be

performed by requiring an empty ball neighborhood with

radius Rr. The ball neighborhood is the subset of points that

are within a bounding sphere centered at the regarded point

and with radius Rr. This density limitation limits the overall

Euclidean point density of the model. In the normal esti-

mation step, the ball neighborhood with radius Rn is cal-

culated for each newly inserted point. The surface normal

is estimated using principal component analysis with a

weighted covariance matrix for all vertices within the

neighborhood. If the surface normal is a robust estimate,

the point is forwarded to the mesh-generation step. During

the mesh-generation stage, the new points are inserted as

vertices of the emerging mesh. For every newly inserted

vertex, a localized triangulation is performed by projecting

a local ball neighborhood with radius Rm to the tangent

plane of the new vertex and a re-triangulation of this 2D

subset. Finally, triangles are recalculated from the changed

edges. The result is a mesh with an edge length between Rr

and Rm. Figure 3 shows the example mesh updates after 1,

8 and 16 scans performed for a putto statue.

The reconstruction approach was originally designed for

out-of-stream1 data processing from arbitrary manual

scanner systems. Hence, the approach is not restricted to a

certain type of 3D sensor, but only requires that the sensor

data can be transformed into a point set with additional

line-of-sight for each point. Since out-of-stream processing

requires fast computations, the whole approach is based on

the usage of localized data. All calculations use only a local

subset of the data, namely the ball neighborhood, which

has an upper bound in size, due to the point density limi-

tation. The only global operation is the query of the

neighborhood for each inserted point, which is accelerated

by an octree data structure. The octree is used, because it is

the best trade-off concerning computational effort between

insertion of new data and neighborhood query. The point

set is stored in the containing leave voxel of the octree. A

query operation is performed by finding all voxels that

intersect with the neighborhood sphere and testing all

points in the voxels. Since the initial density limitation

results in an upper bound for the number of points per

voxel, the complexity of query depends only on the octree

Fig. 2 An edge of the triangle mesh consists of two vertices defining

the line segment (blue) and two additional vertices closing the

adjacent triangles (red) to the left and right

(a) (b) (c)

(d) (e) (f) (g)

Fig. 3 Model Updates. Upper row: the mesh is updated during each

laser scan. Lower row: the PVS is initialized with unknown voxels

and then updated during each scan. The probabilities are color coded

from black (almost free), through gray (unknown) to white (occu-

pied). Free space is transparent. The updates are shown after 1, 8 and

16 scans, respectively

1 Out-of-stream processing denotes the processing of data directly

from a real-time data stream, e.g., the live stream of a 3D sensor or

camera.
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search of the voxel. However, the latter increases only

logarithmically for unbounded volumes and is constant for

a bounded volume.

4.2 Probabilistic voxel space update

A voxel space is the partitioning of R3 space into discrete

elements, the so-called voxels. The size of the elements is

denoted as resolution of the space. In a PVS, each voxel

holds a state value, representing the likelihood that the cell

is free or there is an obstacle, usually starting with a

complete unknown space.

Here, the voxel space is built incrementally by updating

it with each measurement. Therefore, the measurement

beam for each pixel of a range image is calculated. Having

very similar tasks to accomplish as Suppa [36], we follow

his choice to use Bayes update. For mapping, forward

sensor models are calculated from inverse models in a

preprocessing step and stored in a hash table. Thus, each

measurement beam induces a state of occupancy and

freedom for the hit cells. These induced states are com-

bined with the cell’s current states and stored as their new

states. When using Bayes update, the states represent a

transformation of the likelihood quotient and can be

interpreted as a measure for the cell’s probability to be

occupied. As the Bayesian update requires statistically

independent measurements, not every sensor beam is used.

Therefore, all view positions and directions of each mea-

sured beam are saved to a list and similar measurements

during the update are rejected [36]. This is reasonable,

since due to usually high resolution of 3D sensors, neigh-

boring rays often intersect the same voxels. This has

clearly the effect of speeding up the update significantly,

compared to a naive update that uses all sensor beams.

The PVS is implemented using a dynamic octree, sim-

ilar to the one used for the mesh update. The octree pro-

vides fast operations for both insertion and query of data at

a low memory consumption. However, the data structure of

the PVS is kept independent of the one used for the mesh

generation, since it contains different data and the resolu-

tions of the two are adapted to different requirements.

Figure 3 shows an example of an initially unknown

space and the progress after 1, 8 and 16 scan sweeps with a

laser striper. The probabilities are color coded from black

(almost free), through gray (unknown) to white (occupied).

Free space is transparent.

Note that the resolution of the voxel space has various

effects on the algorithm and has to be chosen with caution.

The smaller the resolution, the more accurate the modeled

object or environment will be within the voxel space.

Disadvantages of such a small resolution are the con-

sumption of more memory, the increasing computation

time and less information per voxel (concerning quality,

see Sect. 4.3). On the contrary, a larger resolution results in

less localized information per voxel, causing a large

occupied area around the object. Thus, scan paths have to

be further away from the object.

4.3 Surface feature update

The desired output of the autonomous 3D modeling is a

complete, high-quality 3D triangle mesh. Therefore, local

features describing the completeness and quality are

derived from the mesh. In detail, two features describing

the quality are used here: a local sampling density and an

incidence angle between a measurement beam and the

surface model. Concerning the completeness, the percent-

age of border edges is calculated. The features are calcu-

lated for each voxel of the PVS and stored additionally to

the probability of occupancy, since the NBS selection

processing step (see Sect. 5) is based on the PVS. The

combination of the proposed features enables for the cal-

culation of an optimality criterion with respect to an

expected improvement of the surface quality of already

scanned areas, as outlined in the next section.

4.3.1 Sampling density

Let Nact be the number of points within the normal esti-

mation neighborhood with radius Rn and Nmax the maxi-

mum possible number of neighbors according to the

reduction radius Rr of the density limitation. Then we call

the quotient

dðviÞ ¼
Nact

Nmax

d 2 ½0; 1� ð2Þ

the local point density. It describes the sampling density

around a vertex vi and can therefore be used to measure

sampling sufficiency. The close packing of spheres

theorem yields (cf. [5])

Nmax ¼
ffiffiffi

2
p

p � R2
n

R2
r

: ð3Þ

Let in the following i denote (the index of) a voxel. Then,

the average density �di within voxel i is calculated by

averaging over each d of the vertices within that voxel.

4.3.2 Average surface normal

Also, we later use an angle of incidence for filtering voxels

in the surface quality determination. Since the exact cal-

culation of the incidence angle of a surface beam with the

triangle mesh proved to be too time consuming, we cal-

culate and store an average surface normal �ni for each
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voxel i. It is extracted directly from the mesh by averaging

over all vertex normals within voxel i. If the space reso-

lution is set properly, �ni can be used for incidence angle

estimation of a sensor beam with the surface. Note that a

similar approach has been proposed by Vasquez-Gomez

[41], which lacks the more precise information of a mesh,

but simply estimates an average normal from neighboring

voxels.

4.3.3 Amount of border edges

To account for the completeness, the percentage of mesh

border edges bi is calculated for each voxel. A border edge

is an edge to which a triangle is only assigned on one side

and on the other side there is nothing (see Fig. 2). For a

complete mesh of an object, no border edges should exist.

Therefore, the border edge percentage is an indication

whether this voxel requires rescanning. It is defined by the

number of border edges within a voxel divided by the total

number of edges:

bi ¼
Ni
border

Ni
total

bi 2 ½0; 1�: ð4Þ

5 Scan planning

Based on the triangle mesh and PVS from the current scan,

further scans need to be planned for a robot-in-the-loop.

First, a Boundary Search is performed resulting in scan

path candidates. Second, an NBS is selected and a colli-

sion-free path is planned for a laser striper. Additionally, a

hole rescan is performed after the surface model is fairly

complete.

5.1 Boundary search

In this section, the Boundary Search, which is introduced

by Kriegel et al. [17], is described in more detail. It is

similar to the approaches which find the NBV by an

occlusion edge [27, 29], with the difference that not only

occlusion edges are detected, but also the known object

shape is applied to the estimated surface trend. A boundary

is defined as a set of connected edges that satisfy two

requirements: the edges all have a similar orientation and

each edge lacks an assigned triangle, either on the left or on

the right side. The boundary search only considers newly

acquired triangle mesh data.

The Boundary Search consists of two stages, which are

described in detail in the following. During the first stage,

the Boundary Detection, the different boundaries of the

object are detected. Then, the Surface Trend Estimation

searches for a boundary region of vertices for each

boundary to fit these to a quadratic patch. Finally, scan

paths can be determined (see Sect. 5.2) using the surface

trend with the constraint that the sensor looks perpendic-

ular to the estimated surface and there is an overlap with

the previous scan.

5.1.1 Boundary detection

Depending on the edge orientation, four boundary types are

defined in the following: left, right, top and bottom.

Therefore, the given triangle mesh, assumed to be part of a

complete object, is transformed into the coordinate system

of the sensor. Then, the side on which the boundary is

located will be referred to as boundary type. Here, the

sensor coordinate system is defined so that the z-coordinate

represents the viewing direction, the x-coordinate is to the

left and the y-coordinate is in the up direction. Thus, the

left and right boundaries are approximately in the direction

of the y-axis and top and bottom in the direction of the x-

axis. The difference of the two boundary pairs is the side

on which no mesh exists. Some example edges in partial

meshes of a putto statue and a pneumatic filter are depicted

in Fig. 4.

For each newly acquired edge e we try to find a con-

tinuous boundary by locally walking over the mesh border.

The approach is described in Algorithm. 1 exemplary for

left boundaries. On success, the function returns a set of

edges B ¼ fe1; . . .; emg describing the boundary. However,

only boundaries with at least bmin edges are considered.

An edge e is a border edge, if there is only one triangle

assigned, as described in Algorithm. 2. Otherwise, e is

added to the boundary list B and all incoming and outgoing

edges ~e connected with e are inspected. These are all edges

Fig. 4 Boundaries (thick red lines) detected in partial meshes of

putto statue (left) and pneumatic filter (right)
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ej-1 or ej?1 as in Fig. 5, which provide a common vertex

with e, either va or vb: Among these, for all border edges

the angle a between a sensor coordinate axis s (for left

boundary: y-axis) and the directed vector ~e of the current

edge candidate ~e (see Fig. 5) is determined as follows:

a ¼ arccos
s � ~e
jsjj~ej

� �

: ð5Þ

The angle a is utilized to detect the boundary type and

abort if the end of the boundary type is reached. The sensor

axis s is defined by the y-axis for the left and right

boundaries and the x-axis for the top and bottom. Figure 5

shows a possible left boundary represented by blue vectors.

The angle a is determined for the current edge ej. This will

be continued for the outgoing boundary edge ej?1 and

incoming boundary edge ej-1. If the angle a is larger than a

threshold at then a penalty value p, which is initialized

with zero, is increased for the currently observed boundary.

The penalty allows for slight deviations of the orientation

of the sensor axis, as can be seen in Fig. 5. Thereafter, the

angle will be calculated accordingly for the edge ~e (pre-

viously ej?1), which is next in the edge chain. The penalty

is reset to zero once an edge with a good angle is found.

The algorithm aborts the boundary detection once the

penalty exceeds a threshold pt and then the procedure is

repeated in the other direction with the previous edge ej-1

of the edge chain.

Finally, a boundary is considered as left boundary if it

comprises a certain number of edges bmin. If the number of

edges is too low, then a reasonable surface trend estimation

is difficult. The procedure for determining the right, top

and bottom boundaries is performed accordingly during the

same iteration. Furthermore, the direction of the normals

along the boundary are compared with the sensor viewing

direction and discarded if they are from the opposing side.

5.1.2 Surface trend estimation

After the boundaries are detected, boundary regions need to

be found, to be able to estimate the surface trend. A

boundary region consists of several vertices in the area of

the boundary. The surface trend or also trend surface

describes the general shape of a surface. It is often applied

for fitting and interpolating regression surfaces to a

smoothed representation of area data. It is based on the

assumption that a spatial arrangement of a surface can be

represented by a defined geometric function (for details see

[44]). The surface trend can be applied for prediction of the

unknown surface of an object or environment. Thus, it will

be used in our work to estimate the object shape. The

surface trend is estimated for each boundary individually,

since complex objects cover several different geometrical

shapes and cannot be approximated by one surface trend.

Chen et al. [8] also use the surface trend for reconstruction

of unknown objects. However the surface trend is simply

estimated for the complete object. This method mostly

Fig. 5 The detection of a left boundary in the mesh is shown: for

each edge along the boundary the angle a between the sensor axis s
(red, in this case y-axis) and the vector of the current edge ej is

computed and compared with threshold at
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works for simple objects, e.g., cylindrical objects, but has

problems with more complex shapes.

First, a boundary region needs to be found which can

be used to estimate the surface trend. Thus, for each

boundary a region growing, which is limited by a

bounding box, is performed. The region growing starts

with the center vertex of the boundary and iteratively

adds all neighbor vertices which are within the bounding

box. The bounding box, e.g., for the left boundary, is

defined by a bottom and top margin, the y-values of the

first and last vertex of the boundary edge chain and a

right margin (x-value), a fraction of the total horizontal

expansion of the mesh. Figure 6 shows an example of two

left boundaries, which are detected for a partial mesh of a

camel statue, and the corresponding boundary regions.

The region growing is performed inward to the known

part of the mesh. It is important that the boundary region

is not selected too large, otherwise the surface trend does

not estimate the curvature well, since a more general

shape is estimated. Second, the surface trend of the

unknown area beside the boundary is estimated using the

boundary region. We choose a simple approach to fit all

the vertices vi ¼ ½xvi ; yvi ; zvi �
t
of the boundary region to a

quadratic patch:

z ¼ f ðxvi ; yviÞ
¼ a1x

2
vi
þ a2xvi yvi þ a3y

2
vi
þ a4xvi þ a5yvi þ a6: ð6Þ

A quadric is chosen since it is of low order and gives a

good estimate of whether a boundary mesh area, which is

not subject to too much change, is curved outward or

inward in the direction of the unknown area. Therefore, the

approximate curve (quadratic patch) in the unknown area

can be estimated quickly, which suffices to determine

viewpoints according to the trend of the surface.

5.2 Scan candidate calculation

The surface trend estimation enables the calculation of

continuous scan path candidates. A scan path is defined by a

start and an end position and a fixed orientation. The

number of views can later be adjusted by the speed the robot

moves along the shortest path between start and end point. It

is usually selected slow enough to ensure a high point

density for qualitative mesh generation. Figure 7 shows a

possible scan path from the top viewing the center of the

estimated surface, which is beside the scanned region, at a

perpendicular angle. The sensor coordinate system (SCS) is

also shown for the initial scanner pose (bottom right).

Furthermore, the required overlap owith previous scan data

and the distance ds are adjustable. ds is selected according to

the sensor depth of field to obtain optimal measurements, in

contrast to a sphere search space, which is fixed based on the

sphere center. For laser stripers, which usually have a very

narrow depth of field, the distance is very important. If the

sensor is too close or too far away, nothing can bemeasured.

Furthermore, an overlap with the previously scanned mesh

is required to obtain a complete model and for registration

of the different scans. The overlap o represents the per-

centage of the part of the FOVwhich views the partial mesh

of previous scan data. First a viewpoint is determined,

which could be used for aerial 3D sensors. Second, based on

the viewpoint a scan path is determined, which consists of

several viewpoints. The length of the scan path depends on

the expansion of the partial triangle mesh of the object (for

explanation see below).

5.2.1 Viewpoint calculation

Starting at the detected boundary, candidates for a viewpoint

are determined by calculating points and normals along the

Fig. 6 Example of two left boundaries obtained from a partial camel

mesh. A region growing is performed for both regions to fit a

quadratic patch

Fig. 7 Scan path calculation: the FOV overlaps with the mesh from

previous scans by factor o. The scan path looks perpendicular onto the

estimated quadratic patch at the optimal sensor distance ds. The axes

of the SCS only refer to the initial scanner pose (black sensor head)
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estimated quadratic patch. For simplification, we start at a

point along the boundary, which is the midpoint of the first

and last vertex of the boundary. Possible surface points si ¼
½xsi ; ysi ; zsi �

t
are calculated in the direction of the unknown

area by inserting xsi and ysi into Eq. 6. When performing this

for the left boundary we keep ysi constant and increase xsi by

a step size. Then the surface normal ni ¼ ½xni ; yni ; zni �
t
is

calculated from the derivatives of Eq. 6:

ni ¼

of
oxsi
of
oysi
�1

0

B

@

1

C

A

¼
2a1xsi þ a2ysi þ a4
a2xsi þ 2a3ysi þ a5

�1

0

@

1

A: ð7Þ

The zni is set to -1 since the viewing direction of the

scanner is described by the positive z-axis and surface

points are in the opposite direction. For this surface point, a

candidate viewpoint is calculated at the optimal sensor

distance ds from the curve and in the direction of the

normal. The candidate viewpoint is required to have an

overlap of o with the previous mesh, with the constraint

that the angle between two consecutive viewpoints does

not exceed a limit. If the candidate viewpoint does not

comply with the constraints, then for the left boundary the

value of the step size is decreased and a new candidate is

determined or the algorithm aborts. For the left boundary,

xsi is increased and a new surface point is calculated until

the desired overlap o is reached. Finally, the mesh and the

scan candidates are transformed back into the world

coordinate system. When using a sensor, which measures

3D range data without moving the sensor, these viewpoints

can be utilized directly and one could proceed with the

NBS selection of Sect. 5.4.

5.2.2 Scan path calculation

If we apply a laser scanner, which only measures a stripe

with depth values, then not only a single viewpoint but a

real scan path is required. Therefore, we calculate a con-

tinuous scan path along the boundary using the fixed ori-

entation of the calculated viewpoint. The fixed orientation

of the laser striper is defined by an SCS as in Fig. 7. The z-

axis is in the viewing direction. The y-axis is along the

boundary, but not necessarily parallel. Here, a scan path is

represented by a linear movement (shortest path between

two points) of which the length is adapted to the current

known object surface. The inverse of the quadric patch

surface normal ni (see Eq. 7) represents the viewing

direction (z-axis). For the y-axis of the SCS, we use the

boundary direction db ¼ dirðv1; vmÞ; which is the normal-

ized vector connecting the first v1 and last vertex vm of a

boundary. As the boundary direction is independent of the

estimated quadratic patch normal, db is not necessarily

perpendicular to ni: Therefore, the x-axis is defined as

vector product between the two and then the y-axis by:

ðdb ��niÞ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

x�axis

� �ni
|{z}

z�axis

: ð8Þ

The scan path is in direction of db at distance ds. To also

scan as much as possible the rest of the mesh, the length of

the scan path is chosen larger than just the boundary

direction. Therefore, we define a plane, having the

boundary direction db as normal, and intersecting the

midpoint of the boundary. Now, the length of the scan path

is defined by the minimum and maximum distance of all

mesh vertices to the plane. This proved to be more effi-

cient, since by scanning along the complete mesh and not

just the boundary, other unknown parts of the object were

also scanned. Otherwise more scans, which require time for

planning and moving to, were required.

The benefits of using the Boundary Search for NBS

selection in comparison to a sphere search space are that

overlap is already considered and therefore NBVs or NBSs

will be beside the known region. This leads to a short robot

movement from the current NBS to a subsequent NBS. The

major advantage though is that the scan path candidates are

not predefined, but estimated from the current sensor

information and therefore are adapted to the actual object

shape. The search space is not restricted, which allows for

better modeling results, since the distance and grazing

angle of the sensor to object are not restricted and regions

which cannot be seen from a sphere can also be viewed.

5.3 Hole rescan

When the surface model is fairly complete, typically some

small holes may remain in the model due to occlusions or

objects with difficult surface properties such as blackness

or reflectivity. In that situation, the scan path candidate

calculation according to previous sections is not optimal,

since usually the calculated paths view larger regions than

necessary and might not be able to view a complete hole

with optimal viewing angle. Therefore, when the coverage

of two subsequent scans is similar (see Sect. 7), the

remaining scan paths from the boundary search are dis-

carded and for each hole an adequate linear scan path is

calculated.

Holes are detected by iterating over all edges of the

triangle mesh and finding a closed loop of border edges.

For each border edge, neighboring border edges are suc-

cessively searched, which together form a path of edges.

This path is considered to be a hole if the path is closed.

Then, for each hole, the center ch and normal nh are

determined, as suggested by Loriot et al. [24], by aver-

aging over all vertices and normals of the hole boundary.
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A scan path is determined along the largest hole direction

dh ¼ dirðch; vmaxÞ; which we define by the direction

between ch and the boundary vertex vmax that is furthest

away from the center (see Fig. 8). Finally, start and end

point of the scan path are calculated by adding a relative

threshold of 10 % on each side and multiplying the normal

with the sensor distance ds:

sstart ¼ ch � 1:1 � dh þ ds � nh ð9Þ
send ¼ ch þ 1:1 � dh þ ds � nh: ð10Þ

The scan direction is the inverse of the hole normal nh:

Additionally, for holes with similar center position and

orientation, a combined scan path is determined. Of course,

one could close the holes in a postprocessing step. How-

ever, this would distort the real object contour and is not

acceptable for accurate 3D modeling. After the mesh is

fairly complete, we only perform the hole detection once

and scan holes until the desired coverage is reached.

Thereby, real holes are only scanned once.

5.4 Next-best-scan selection

Based on the list of scan path candidates, which are either

generated during the Boundary Search or the Hole Rescan,

an NBS needs to be selected.

To cope with objects with complex geometry, which are

not mostly convex and contain several self-occlusions, first

the scan path candidates are re-planned avoiding occlu-

sions and collisions based on the PVS. Thereby, similar to

Prieto et al. [31], all scan paths, which are occluded by

other parts, are iteratively rotated around the part of the

object, which is supposed to be scanned, until it is not

occluded anymore. Figure 9 shows an example during

autonomous modeling of a camel. The purple scan path,

which is in collision, is re-planned resulting in the blue

path which is occlusion and collision free. All other paths

in the figure are in collision with the platform on which the

object is positioned or not reachable by the robot work-

space. Note that the scan paths in Fig. 9 represent the

center of the sensor system, of which the dimensions need

to be considered during collision-free path planning. If the

incidence angle is too high for reasonable scan quality, this

scan path candidate is removed from the storage.

Second, an NBS is selected based on a novel utility

function, which considers both surface quality and IG. To

get a measure of the IG of a single viewpoint candidate,

usually ray tracing in the voxel space is performed. Some

NBV methods simply count the number of the viewed

unknown voxels [4, 43]. Thereby, sensor uncertainty is not

considered and only the first intersected unknown voxel of

the beam is observed. In [19], the entropy reduction is

added up for each intersected voxel and the scan path with

the highest expected IG is selected as NBS. This works

very good for the first scans. However, once the voxel

space is sufficiently explored but the required quality is not

yet reached, this measure is not applicable since most

voxels are almost free or almost occupied. Therefore, as

measure to select an NBS, we use the entropy of the vol-

umetric model ev but add a surface quality value qs to a

utility function futility; which is determined for each scan

Fig. 8 For each hole (white area) within the measured surface (gray),

a scan path is determined in the direction of the largest expansion of

the hole dh in inverse hole normal nh direction and at optimal sensor

distance ds

Fig. 9 A scan path candidate (purple, center) in collision is re-

planned by rotating the paths around the object part of interest. The

purple and all red scan paths are in collision with the platform or not

reachable by the robot workspace. The blue scan path represents an

occlusion and collision-free path viewing the same area at the cost of

a worse angle. Here, the PVS is partly explored for a camel
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path candidate. The weighting between the two can be

adjusted depending on the task:

futility ¼ ð1� xÞ � ev
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Exploration

þx � ð1� qsÞ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

3DModeling

: ð11Þ

The function consists of an exploration and 3D

modeling part. The exploration part selects an NBS

which views the sum of voxels with the highest expected

IG. The 3D modeling part chooses an NBS which views

previously scanned voxels with poor mesh quality. For the

first scans, the exploration part needs to be weighted higher

to get a rough model of the unknown object. Once a rough

triangle mesh is obtained, the 3D modeling part needs to be

considered more, since now the mesh quality should be

addressed. Therefore the weight x is selected such that it

depends on the scan number ns:

wðnsÞ ¼
ns
nq

ns
nq
þ 1

: ð12Þ

For nq a value of five is selected, which means that after

five scans, the exploration and the 3D modeling part are

weighted equally. For all further scans, 3D modeling is

considered more. Without the weight x, the algorithm

needed a lot of scans to get a rough model of the object all

around, which is not very efficient.

For each scan path candidate, rays are cast onto the PVS

based on the sensor model of the applied sensor. An

important information that can be derived from a PVS is

the IG. Information or entropy of a sensor view is the sum

of weighted probabilities of all voxels in that view. The

total entropy ev for a candidate view is defined by the mean

entropy over all voxels i, which are intersected by a beam

until an occupied voxel is reached:

ev ¼ � 1

k

X

k

i¼1

pi logðpiÞ
|fflfflfflfflffl{zfflfflfflfflffl}

occupied

þð1� piÞ logð1� piÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

free

; ð13Þ

where k is the total number of intersected voxels.

The probability pi represents the probability of voxel i to

be occupied. If a voxel is free (pi = 0) or occupied

(pi = 1), then the entropy reduction is zero.

Additionally to the entropy, for each voxel i, which is

intersected and contains surface features (see Sect. 4.3), a

surface quality qi is determined:

qi ¼ k � bi þ ð1� kÞ � �di if h\70�

0 otherwise:

�

ð14Þ

The incidence angle h is calculated by forming the dot

product between the simulated beam and the average voxel

surface normal �ni: If h C 70� then qi = 0, since we assume

that a re-scan of this surface area will not increase the

quality of the surface model due to the large angle of

incidence (see Sect. 2.3). If h is below 70�, the surface

quality qi is determined by weighting the border edge

percentage bi and the average relative point density �di: For

k a value of 0.7 proved to be good, which means that

completeness is weighted higher than point density. The

quality of the complete surface model qs is calculated by

getting the average of qi:

qs ¼
1

k

X

k

i¼1

qi: ð15Þ

After determining a rating for each scan path candidate

according to Eq. 11, the scan path with the highest value

represents the NBS. Figure 10 gives an example for the

NBS selection during the autonomous modeling of a

Mozart bust. The utility rating of each scan path is

represented by color coding from low (red) to high (green).

In this case, the rightmost scan candidate is selected as

NBS and the process will continue until the desired model

quality is reached.

5.5 Path planning

To be able to safely move the robot to and along the NBS,

collision-free path planning is performed based on rapidly

Fig. 10 A Mozart bust is initially scanned from the front (light green

mesh). After calculating scan path candidates based on the Boundary

Search, the scan with the highest rating is selected as NBS. Here, the

scan candidates are color coded from low (red) to high (green) utility

rating. Based on the NBS, in this case the rightmost scan path, the

mesh is extended (dark green) and the NBS planning continues until

the required model quality is reached
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exploring random trees [20] and probabilistic roadmaps

[15]. The paths are planned using the PVS, which describes

the unknown area, and a robot model containing CAD data

of the sensor setup and constant models of the environ-

ment. This allows for avoiding any type of collision.

Some scan paths may not be reachable by the robot or

the space may not be free yet. Since our approach does not

restrict the search space and thus scan paths are generated

which can be very close to the object, collision avoidance

and robot reachability are very relevant. Therefore, based

on the PVS, which is updated during each laser scan, we

plan a collision-free path to the start position of the NBS

and along the complete continuous scan path. It is man-

datory that the PVS update (see Sect. 4.2) frees as much

unknown space as possible to allow for collision-free path

planning for as many scan paths as possible. If the NBS is

not reachable by the robot, it is either discarded, if it goes

through an obstacle, or marked as currently in collision and

kept for later iterations, if it intersects with unknown space.

Then the scan path from the stack with the second highest

rating is selected as NBS. However, if at least 80 % of the

NBS is reachable, then an NBS for this part is performed.

6 Pose error minimization

The absolute positioning errors of most robots are far too

high for a precise 3D modeling. Especially orientation

errors easily lead to a misalignment of the range images in

global space. This results in a noisy or corrupted mesh at

the model update. The pose error can be minimized by

using the range image data, since the 3D sensor usually has

much higher accuracy.

In this work, a variant of the well-known Iterative Closest

Point (ICP) algorithm [3] is used to correct the robot pose of

each new scan, also denoted as 3D registration. For aerial 3D

sensors the ICP can be used directly on each range image.

With line sensors, however, this is not possible. Therefore, in

this work, the data of a complete scan path is merged, and a

local mesh is generated and registered to the global mesh

with ICP. In every iteration of the ICP, correspondences

between the local and global mesh are searched by assigning

all points in a certain radius as corresponding points. Here,

we use a radius of 3 mm. From the correspondences a least-

square estimation of the transformation is calculated. The

estimated transformation is applied to the range images and

finally the corrected range images are integrated into the

global model (as described in Sect. 4.1).

The ICP requires a sufficiently structured surface and an

overlap of at least 50 % between the new data and the

global model. The latter can be considered during the

calculation of NBS, as described in Sect. 5.1. The surface

structure, however, depends of course on the object.

Technical objects especially often contain poorly struc-

tured or symmetric parts that cause the ICP to overfit the

local mesh. Since it can be assumed that the pose error is

small, the ICP can be aborted after two or three iterations,

minimizing possible overfitting.

Figure 11 shows the difference between modeling

without ICP (left) and its application with two iterations

(center). The application of ICP leads to a smooth surface,

as shown in the zoomed area. However, as can be seen in

Fig. 11 right, the overall model tends to be contracted if too

many iterations of the ICP are carried out. For the sensor

head of Fig. 11 the distortion was approximately 4 mm.

The proposed ICP-based pose correction helps to improve

the automatedmeshing, since it reduces the influence of pose

errors on the model generation. However, it is based on the

assumption that the relative pose error during a single scan is

low. This holds for most industrial robots with serial kine-

matics, since here a local small movement is more accurate

than a global movement, which requires large movements in

the base axes. For other systems, such as mobile platforms,

the assumption does not hold and thus the ICP correction is

either limited to aerial 3D sensors or additional pose sensing

is required. Here, a possible extension is to estimate local

movement with a feature tracking [35] and register this data

via ICP [11]. Nevertheless, the model-based correction

always can result in a slight overfitting and thus distort the

final 3Dmodel. Hence, for an optimizedmodel it is proposed

that all scan data are optimized in a post-processing with a

bundle adjustment.

7 Process control

The control terminates the process, if the desired quality is

reached, and switches the scan planning mode, when the

quality of subsequent scans is similar.

It is difficult to find a reasonable termination criterion if

the object is unknown and no ground truth is given. Torabi

Fig. 11 The difference in modeling of a sensor head. From left to

right: 3D model without ICP, with ICP (two iterations) and

comparison between two iterations (blue) and converged ICP

(yellow). Note the considerable gap between the surfaces marked

with the red ellipse
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et al. [39] point out that most previous NBV methods lack

a termination criterion, which considers the actual object

shape coverage. They abort if a maximum number of views

are reached [40], if the model does not change significantly

anymore after a scan [43] or if all air points [21] or

boundaries [17] have been scanned once. Torabi also

suggests that the model is complete if no boundaries in the

point cloud remain. However, even if the object is com-

plete within the point cloud or voxel space, the surface

model can still contain several holes. A triangle for the

mesh cannot be generated if no neighborhood point can be

found within a certain radius. In [19], the percentage of

border edges in the mesh is used as a factor to estimate the

mesh completeness. However, this measure does not give a

good estimate on the actual completeness percentage of a

partial mesh, as here the area, which is not filled, is rele-

vant. The size of the holes cannot be estimated based on the

border edges, since a certain number of border edges can

describe several holes with very small area or also one hole

with a very large area.

In this work, we determine the surface area Afilled of all

triangles in the mesh and estimate the surface area for each

hole individually, which is summed up to the total area

Aempty of all holes. The mesh coverage is estimated by:

ĉm ¼ Afilled

Afilled þ Aempty

ĉm 2 ½0; 1� ð16Þ

The filled mesh area is the sum of the area of all n triangles,

which is half the cross product of the two spanning vectors

of a triangle:

Afilled ¼
1

2
�
X

n

i¼1

kdirðva; vbÞ � dirðva; vcÞk ð17Þ

To determine Aempty, the surface area Ahole for each hole

area is approximated. Thereby, the hole center ch is

determined by averaging over all m vertices along the edge

of the hole

ch ¼
1

m

X

m

i¼1

vi ð18Þ

and the hole area Ahole is estimated by forming a triangle

for each edge with the hole center ch: The sum of the hole

area Ahole of all k holes describes the estimated empty mesh

area

Aempty ¼
1

2

X

k

i¼1

kdirðch; vi�1Þ � dirðch; viÞk ð19Þ

Figure 12 shows how for each edge along an example hole

triangles are formed by creating edges toward the center.

Certainly, we could also fill the holes with a standard

bicubic method [23] and determine the area of the filled

hole. However, bicubic hole filling is complex and com-

putationally expensive. Since we estimate the mesh cov-

erage ĉm after each scan, the suggested method seems

sufficient concerning time and result.

With a high neighborhood radius during the mesh gen-

eration, a mesh with 100 % completeness can easily be

achieved, at the cost of losing the details. Therefore, simply

evaluating the mesh coverage such as in [16, 19, 39] is not

always reasonable. As our mesh generation inserts new

vertices even in areas where the mesh is complete, a

combination of measuring mesh coverage and point density

is important. In this work, the algorithm aborts if a certain

mesh coverage ĉm and average relative point density �dmesh

over the complete mesh are reached. If both are never

reached due to object geometry and sensor restrictions,

then the algorithm aborts after a predefined number of

scans. For the objects in our experiments, 30 scans seemed

to be a good number.

Further, the process control switches from the scan path

candidate generation based on Boundary Search to Hole

Rescan, when the estimated coverage ĉm stagnates.

Therefore, the mesh coverage for the previous scan ĉi�1
m

and the current scan ĉim are compared. If the estimated

coverage increases\1 %, i.e.

ĉim � ĉi�1
m \0:01 ð20Þ

then Hole Rescan is performed.

8 Experiments and evaluation

In this section, our new method is compared with the pre-

ceding NBS approach [19] by applying it to nine different

objects from three different fields of application. The com-

parison is with respect to the number of scans, total execution

time, average point density, object coverage and modeling

error. For the experiments, an industrial laser striper, the

ScanControl 2700-100 from Micro-Epsilon, attached to the

flange of a Kuka KR16 industrial robot, is used (see Fig. 13).

The robot allows for exploration of objects of a maximum

size of about 300 9 300 9 500 mm, which are placed on a

fixed platform. However, most but not all scan paths during

the experiments could be reached. In the following, first the

Fig. 12 The area of an example hole is estimated by forming

triangles to the hole center for each edge along the hole. The method

does not describe the actual hole area accurately, but gives a quick

and good estimate on it
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hardware and experimental setup are explained. Second, the

performance of the system is discussed, using exemplary

results on nine different objects.

8.1 System setup

The KR16, with an absolute positioning error of 1 mm, is

used to move the sensor in between and during scans and to

get the sensor pose during the scan. The pose of the robot is

sent from the robot controller (KRC4) to an external

computer at 250 Hz, where it is synchronized with the laser

stripe profiler, which measures 640 depth points at a fre-

quency of 50 Hz. The PC used for processing has Quad

Xeon W3520 2.67 GHz CPUs and 6 GB RAM. The

working area of the laser striper is very limited with a depth

of field of 300 to 600 mm and a relatively narrow FOV

angle of 14.25�, which requires accurate view planning.

Therefore, a sensor distance ds of 450 mm, which is the

center of the depth of field, is selected for the scan path

calculation (see Sect. 5.2). The maximum measuring error

is approximately 0.5 mm for the laser striper and 2.5 mm

for the complete system. The complete system error was

determined by obtaining a depth image from both sides of a

very thin board with triangle patterns and calculating the

distance between the patterns in the range data. Due to the

sensor base distance, some object parts such as cavities

simply cannot be scanned. Today, good postprocessing

techniques are available for filling holes considering the

object shape. These will not be used here, since then the

scan data are manipulated. Often, autonomous 3D model-

ing systems are evaluated on objects with complex shapes,

but reasonable surface properties such as for cultural

heritage objects. However, especially industrial parts pose

a challenge concerning surface properties due to dark and

reflective parts. Therefore, the presented autonomous 3D

modeling system will be tested on different industrial,

household and cultural heritage objects (see Fig. 14). Due

to the different surface properties of the objects areas, for

each area an individual termination criterion is defined.

8.2 Parameter settings

For all experiments, the mesh generation is configured with

a limitation radius Rr = 1 mm, a normal neighborhood

radius Rn = 3 mm and a mesh neighborhood radius

Rm = 3 mm, resulting in an edge length between 1 and

3 mm. The parameters are bound to the accuracy and

resolution of the scanner system. Hence, a lower resolution

is not feasible due to the described robot and sensor

accuracy. A full overview of the mesh-generation param-

eters and an extensive analysis on parameter variation and

coupling are presented in [5].

A too small PVS resolution increases the computation

time and decreases the number of mesh vertices that are

used for per-voxel feature calculation. A PVS resolution of

at least Rm guarantees that the upper bound for the per-

voxel point density, controlled by Rr, is sufficient. Here, a

PVS resolution of 10 mm is chosen for the current system,

which is a suitable trade-off between performance, detail

and robustness.

For the Boundary Search, the angle threshold at = 45�,
which allows for a variation of the boundary and no mis-

match with different boundary types. The parameters pt and

Fig. 13 Overview of experimental setup: laser striper is attached to

an industrial robot to autonomously generate a 3D model of an

unknown object placed on a platform

Fig. 14 The objects used during experiments. Top: camel, Mozart

and Zeus (cultural heritage). Middle: cookies, dog spray and Santa

Claus (household). Bottom: control valve and filter, pressure valve

(industrial). The largest object is the camel with 340 mm height, and

the smallest the control valve of 95 mm
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bmin need to be adjusted depending on the object size, the

resolution of the triangle mesh and the desired number of

boundaries. If these values are selected to be too high, then

only very few boundaries are detected and vice versa. This

is relevant since many boundaries result in many scan

paths. These require a longer computation time if each scan

is simulated to select the best one. We used values of

pt = 5 and bmin = 12. For our nine test objects, for which

the maximum size is limited by the hardware, the selected

parameters performed well and were robust. However, for

very large objects, the parameters would need to be

adjusted, which has not been examined in this work.

8.3 Evaluation criteria

The evaluation criteria used for comparison are listed in

Table 1. The point density �di and estimated coverage ĉm are

determined for the final model as suggested in Sects. 4.3

and 7. For comparison, a ground truth mesh model is

obtained with an expensive hand-guided scanning system,

which comprises a maximum sensor error of 0.05 mm and

a system accuracy of 0.1mm. The manual ground truth

model generation took approximately 40–70 min per

object including scanning, repositioning, manual registra-

tion and postprocessing. Due to manual postprocessing, the

ground truth models could be completed. The ground truth

allows for evaluation of the actual object completeness ca

and the coordinate root mean square error �e; which seems

feasible since the hand-guided system has an accuracy,

which is higher by approximately factor 25. The actual

completeness cb (with bottom) is also measured by com-

paring the generated mesh with the ground truth model,

where a mesh exists for the bottom area. This is not fea-

sible for actual completeness evaluation, since the objects

for the autonomous 3D modeling are placed on a platform

and therefore the bottom of the objects cannot be scanned.

But it seems fair to use cb for evaluating the performance of

our termination criteria, the estimated coverage ĉm; which

also considers the hole at the bottom.

8.4 Comparison with previous method

In [19], we have already shown that when using the

Boundary Search (see Sect. 5.1) for view planning, more

complete 3D models can be generated in shorter time than

with a standard sphere search space. Here, we compare our

previously presentedmethod IG, which considers IG as NBS

selection criterion [19], with our new method IG/Quality,

which considers both IG and quality as suggested by the

utility function in Eq. 11. For theNBS selection simply based

on IG,x is set to zero in the utility function. The newmethod

IG/Quality also features space update in a real-time stream

and poses error minimization by scan matching. For better

comparison, the process control including termination cri-

teria of the novelmethod is used for both. The results for both

methods applied to the test objects are compared in Table 2

(left value: IG, right: IG/Quality).

8.4.1 Run time

To acquire dense sampled surface data, the laser striper is

moved along a commanded linear trajectory at a low speed.

Here, the fusion between robot pose and range measure-

ment or at least the temporal labeling and logging must be

performed in real time. All other processing steps could

Table 1 Evaluation parameters used for comparison

Variable Description

ns Number of scans

t Total execution time in min

�di Average relative point density over all vertices

ĉm Estimated object coverage rate in %

cb Actual completeness rate (with bottom) in %

ca Actual completeness rate in %

�e Coordinate root mean square error in mm

Table 2 Comparison of our autonomous 3D modeling method simply based on IG and based on a combination of IG and quality with streaming

space update and ICP registration for different objects (for parameter description see Table 1)

Camel Mozart Zeus Cookies Spray Santa Control Filter Pressure

ns 30/16 15/14 14/15 6/5 30/14 6/6 9/11 17/15 30/14

t 27.5/9.3 10.8/5.5 10.7/6.5 3.0/1.5 21.7/5.8 3.1/1.9 5.5/3.8 11.7/6.1 19.6/5.4

�di 0.51/0.64 0.52/0.60 0.54/0.52 0.42/0.42 0.58/0.62 0.37/0.37 0.50/0.58 0.46/0.46 0.42/0.46

ĉm 81.1/84.4 85.8/88.7 83.4/86.4 78.6/86.6 74.5/82.5 90.7/91.3 69.5/77.2 75.8/81.9 64.9/77.2

cb 80.7/84.2 90.5/93.0 88.4/90.5 82.3/88.6 90.7/89.8 93.0/91.6 74.7/78.1 88.1/88.6 81.9/83.0

ca 93.6/95.2 98.5/99.9 97.8/99.2 90.0/99.5 97.7/97.2 99.5/99.1 94.6/97.9 92.7/93.2 85.4/86.2

�e 0.76/0.80 0.80/0.76 0.70/0.64 0.81/0.70 0.95/0.98 1.10/0.73 0.91/0.96 0.79/0.77 1.58/1.50

The results are given for both methods: IG (left), IG/Quality (right)

The bold value represents the better result from the two parameter values for this object
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basically be executed between the movements, as a quasi-

off-line processing. This would, however, result in a bad

performance for the overall system. Therefore, in this

work, the updates of the triangle mesh and the PVS are

performed out-of-stream during the scan movement. The

other steps, namely the scan registration, the NBS planning

and the path planning are performed after the scan move-

ment, since they require a complete set of new data from

the scan. Although all these steps have to perform opera-

tions quickly on a steadily growing data set, the compu-

tation time did not increase with the mesh or PVS data size.

However, the time for the NBS selection increased with a

larger number of scan path candidates.

As described in the previous sections, modeling and

planning are tackled in a soft real-time way. Instead of

analyzing the complete data set, only local areas with

bounded data size are concerned for modeling and current

changes are regarded for planning. The few necessary

global operations on the data set are accelerated by an

octree data structure.

In Table 3, the iteration times for the individual modules

are listed. During our experiments one complete iteration

of the IG/Quality method took 17 s on average. The time

for moving the robot according to the path planner to the

start position of the NBS trajectory took 6 s. The modeling

is performed during an average of 7 s while moving the

robot and acquiring an average of 224,000 depth points per

scan. The scan registration, NBS planning and path plan-

ning took only 4s, which represents only 23.5 % of the total

iteration time. Hence, the robot had to wait 4 s after each

scan, 60 times less than for the autonomous 3D modeling

system of Torabi et al. [39], which does not consider real-

time constraints. Their system requires 4 min for process-

ing the data and NBV planning between two scans on a

similar PC with Quad i5-760 2.8 GHz CPUs and 8 GB

RAM. For our previous approach [19], the space update

was not performed during, but after each scan. Further,

independence of measurements as outlined in Sect. 4.2

were not considered, which led to a multiple of space

updates. Therefore, the waiting time was 20 s. This is an

average speedup of approximately 16 s per iteration to the

previously presented method [19]. For the nine objects, the

total execution time t for IG/Quality is significantly less by

an average factor of 2.3. This is also due to the fact that on

average less scans are required.

8.4.2 Model quality

As can be seen in Table 2, for the camel, dog spray and

pressure valve, the desired quality (coverage and point

density) is never reached for the IG method and the algo-

rithm aborts after the fixed number of 30 scans. This also

shows that the IG approach does not really aim at

increasing the quality. The relative point density �di is only

better for the previous approach for the Zeus object. The

model error �e is mostly below 1 mm and only less for the

IG method for the camel, dog spray and control valve. For

the pressure valve, the error is a lot higher than 1 mm,

which is probably due to the many reflections during the

scanning of the object. As �e is always significantly lower

than the complete system error of 2.5 mm, this shows that

the ICP algorithm aided to reduce the model error. The

estimated coverage ĉm and actual completeness cb
(including bottom part) are mostly similar. ĉm underesti-

mates cb by an average of 5.4 %. This shows that the

suggested estimated coverage (see Sect. 7) is a good ter-

mination criterion.

Furthermore, the actual completeness ca is better with

the new approach for all objects except for the spray and

Santa Claus. However, for the spray more than twice as

many scans were performed with IG and still the desired

point density was never reached. Figure 15 shows the

development of the completeness ca of the triangle mesh

exemplary for the camel and filter object after each scan.

The suggested termination criterion was not used for better

comparison, but the system simply aborted after the pre-

defined 30 scans. Here, the IG/Quality method reaches a

significantly higher completeness than IG after a few scans.

For both objects, the completeness is more than 20 %

higher after seven scans. The completeness starts to stag-

nate between 12 and 17 scans. After that, for IG/Quality the

completeness is only between 0 and 2 percent higher.

However, the last few percents contain the object details

and cost the major amount of time to address. For objects

with complex geometry, it takes a human operator less time

to scan the first 90 % than the last 10 % using a hand-

guided scanning system.

The final 3D surface models for the new method are

shown in Fig. 16. As can be seen from Table 2, the range of

the actual mesh completeness considering bottom part cb
varies depending on the size of the bottom area of the

object, which cannot be scanned. For Santa Claus, the

completeness is very high since the bottom area is small.

The control valve has a large floor space. The actual

Table 3 Average processing time for each module per iteration in

seconds and percentage of total iteration time

Moving robot in between scans 6 s 35.3 %

Streaming modeling and scanning 7 s 41.2 %

Scan registration 1 s 5.9 %

NBS planning 2 s 11.8 %

Path planning 1 s 5.9 %

Complete iteration 17 s
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completeness ca of the models generated with the new

approach is over 99 % for the Mozart, Zeus, cookies and

Santa Claus objects. This indicates that these objects are

basically complete. However, the other objects were more

difficult to scan, which is indicated by the visible holes in

the final surface models (see Fig. 16), and did not reach

such a high completeness. The camel contains areas at the

bottom that the sensor cannot reach. Furthermore, the

industrial objects and the dog spray (middle row, center)

are very reflective and contain dark areas, which are dif-

ficult even for the laser to handle. For the pressure valve

(bottom right in Fig. 16), the back part of the clock could

not be scanned due to sensor characteristics, which is the

reason for the lowest ca of all objects. Also, the industrial

objects contain actual holes, e.g., for screws. These are not

considered by a completeness criterion, as it assumes that

the object can be 100 % scanned. Nevertheless, the

obtained models contain most of the details of the object

and proved to be good enough to be used for reliable object

recognition [18], even when the termination criterion is

decreased and therefore less scans are required. Also, if

objects cannot be scanned perfectly due to object shape or

sensor limitations, it is unlikely that other vision systems

could measure the corresponding part of the object. In

contrast, some remaining holes in the models might also be

avoided if the values for the termination criteria are

increased, which, however, would lead to more scans and a

longer execution time. The models are of significantly

higher quality than with RGB-D or ToF sensors. However,

they are not as good as with the expensive hand-guided

scanning system. But the acquisition time is a lot lower.

We also tried to acquire a 3D model of an IKEA coffee

cup, which represents a more complex challenge as the side

walls are very thin and the inside embodies a deep concave

area. At first, the mesh generation and ICP algorithm both

had difficulties with the thin walls. Therefore, the ICP

algorithm was extended by comparing the surface normals

of the corresponding points and discarding correspon-

dences with an angle difference of more than 60�. This
allowed for avoiding registration of scans obtained from

the inside and outside of the cup. During the mesh-

generations stage, the same criterion was applied to avoid

meshing of the inside and outside parts. Figure 17 shows

the final 3D surface model of the coffee cup with standard

ICP registration (left) and the suggested extension which

considers surface normals (right). For standard ICP, the

inside of the cup is fitted to the outside in the upper area.

Therefore outside and inside overlap, which can be seen by

the dark area (backside of outside mesh). With the exten-

sion, this problem does not occur and also the walls are not

as thin in the upper area as can be seen in the left figure.

Without ICP, the pose error caused a noisy mesh with

double walls. A 3D model of the coffee cup was obtained

with 14 scans within 4 min. Most of the scans were per-

formed for the inside and handle of the cup, which were

difficult to completely acquire due to the triangulation

principle of the sensor. A completeness of 98.3 % (without

bottom) was reached and most importantly the complete

inside of the cup was scanned.

Fig. 15 Development of the actual mesh completeness ca during the

acquisition process of the camel and filter object

Fig. 16 3D surface models of objects of different areas: cultural

heritage (top), household (middle) and industrial (bottom)
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Overall, our results represent a good trade-off between

surface quality and duration time. We have shown that with

our new approach, 3D models are obtained a lot faster and

also the quality (completeness rate and point density) of the

surface model is higher. The complexity of the autono-

mously scanned objects by our system is an advancement

to objects that can be automatically scanned by state-of-

the-art systems.

9 Conclusions and future work

In this work, an autonomous 3Dmodeling system, consisting

of an industrial robot and a laser striper, for efficient surface

reconstruction of unknown objects is presented. Both 3D

models, a probabilistic voxel space and a triangle mesh, are

updated in real time during the laser scan and are then iter-

atively used for scan planning. Thereby, only local changes

in themodels are considered for computational optimization.

Iteratively, from a set of possible scan paths, which are

estimated based on the surface shape, an NBS is selected,

considering both surface quality and space information gain,

and a collision-free path is planned. Errors in the robot pose

are minimized by applying a version of the ICP algorithm.

The system terminates if a desired model quality is reached.

No human interaction is required and the final 3D mesh can

be used directly, e.g., for object recognition or grasping. The

proposed method proved to outperform existing methods in

the depicted scenarios. The new selection criteria led to a

faster acquisition of a completemodel and the on-the-fly data

integration improved the performance compared to a former

approach. Also, our autonomous system was on average

approximately 11 times faster than a human using a hand-

guided, but more accurate scanning system. It has been

shown that complete and high-quality models of different

cultural heritage, household and industrial objects could be

acquired autonomously by the system within a few minutes.

The time varied between just above 1 min for Santa Claus

object, which is small and has a simple shape, to almost 10

min for the camel, which is a lot larger and contains several

cavities. More importantly, the robot waiting time between

two scans was on average only 4 s, which aided the real-time

3D model acquisition.

Future work will comprise model generation of objects

with a more complex geometry, texture mapping and a final

bundle adjustment of the collected scan patches. Also, to get

the completemodel, e.g., the bottomareas, the objects should

be repositioned and further scanned for modeling of previ-

ously unmodeled parts. Furthermore, some modules such as

NBS selection or occlusion avoidance could be further

accelerated by exploiting graphics hardware.
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with the path planner, Klaus Strobl for helping with the sensor cali-

bration and Zoltan-Csaba Marton for good ideas and feedback.

References

1. Albalate, M.T.L., Devy, M., Martı́, J.M.S.: Perception Planning

for An Exploration Task of a 3d Environment. In: IEEE ICPR,

pp. 704–707. Washington, DC (2002)

2. Banta, J.E., Wong, L.R., Dumont, C., Abidi, M.A.: A next-best-

view system for autonomous 3-D object reconstruction. IEEE

TSMC. 30(5):589–598 (2000)

3. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes.

IEEE PAMI. 14(2):239–256 (1992)

4. Blaer, P., Allen, P.K.: Data Acquisition and View Planning for

3-d Modeling Tasks. In: IEEE/RSJ IROS, pp. 417–422. San

Diego, (2007)

5. Bodenmüller, T.: Streaming Surface Reconstruction from Real

Time 3D Measurements. Ph.D. thesis, Technische Universität

München (TUM) (2009)

6. Callieri, M., Fasano, A., Impoco, G., Cignoni, P., Scopigno, R.,

Parrini, G., Biagini, G.: RoboScan: An Automatic System for

Accurate and Unattended 3D Scanning. In: IEEE 3DPVT,

pp. 805–812. Thessaloniki, Greece (2004)

7. Chen, S., Li, Y., Kwok, N.M.: Active vision in robotic systems: a

survey of recent developments. IJRR. 30(11):1343–1377 (2011)

8. Chen, S.Y., Li, Y.: Vision sensor planning for 3-D model

acquisition. IEEE TSMC. 35(5):894–904 (2005)

9. Foix, S., Kriegel, S., Fuchs, S., Alenyà, G., Torras, C.: Infor-
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