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Abstract A holistic design and verification environment

to investigate driving assistance systems is presented, with

an emphasis on system-on-chip architectures for video

applications. Starting with an executable specification of a

driving assistance application, subsequent transformations

are performed across different levels of abstraction until

the final implementation is achieved. The hardware/soft-

ware partitioning is facilitated through the integration of

OpenCV and SystemC in the same design environment, as

well as OpenCV and Linux in the run-time system. We

built a rapid prototyping, FPGA-based camera system,

which allows designs to be explored and evaluated in

realistic conditions. Using lane departure and the corre-

sponding performance speedup, we show that our platform

reduces the design time, while improving the verification

efforts.

Keywords System on chip � Prototyping � Hardware/
software system � Image processing � Design flow � Driver
assistance � FPGA � Hardware acceleration

1 Introduction

Progress in automotive technology is leading to the use of

cameras for driving assistance systems, such as lane

departure warnings, autonomous cruise control, and occu-

pant pose analysis [14]. The use of cameras has become a

promising alternative to conventional range sensors due to

their advantages in size, cost, and accuracy. A couple of car

manufacturers have developed solutions for driving assis-

tance in the past, some of which have found their ways into

high-end production cars. Self-driving cars have recently

been approved for use in California. In the near future,

these self-driving cars will likely be approved for use in

every state in the US, and quite possibly in other countries

around the world. Despite these developments, there is still

a long way to go in developing this technology to reach a

high level of reliability, performance, and affordability.

Algorithms for vehicle or obstacle detection and

avoidance will mainly define the behavior of self-driving

cars. However, the development environment for such

systems should allow a reduction in the time-to-prototype

as well as time-to-market, as these are two major cost

factors in the development process.

Despite the huge amount of academic research potential

offered by driving assistance applications, the investigation

of these systems are taking part almost exclusively in

industry. Raising the interest of the machine learning and

image processing research communities in this field would

allow the investigation and deployment of high-qualitative

solutions for intelligent transportation. A possible path to
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reach this goal is to eliminate the need for those commu-

nities to build the low-level, cumbersome architectures

required for a real-time, low-cost, and power-efficient

processing of complex image processing algorithms. This

strategy would allow experts in the fields of artificial

intelligence and image processing to focus on the devel-

opment of intelligent applications that could seamlessly be

mapped to efficient computing platforms.

In this work, we present an integrated environment that

would help solve this problem and provide designers of

driving assistance systems the proper tools to implement,

verify, and evaluate their systems in a real environment.

Our focus is on building a generic embedded hardware/

software architecture and providing the symbolic repre-

sentation to allow programmability at a very high

abstraction level. We propose a four-level flow, starting

from a specification in C/C?? using OpenCV library.

Applications are then partitioned at a transaction level and

captured by a combination of OpenCV and SystemC rep-

resentation. Subsequent refinements with a hardware

design language will produce a hardware implementation

at the register transfer level, which will then be synthesized

and verified in a FPGA-based computing infrastructure.

Our main contribution in this work is to leverage

existing knowledge in computer vision (1) to provide a

holistic design flow for capturing computer vision appli-

cations at the highest abstraction level, with subsequent

refinements and verification down to the hardware/software

implementation, (2) to derive a generic computing path and

architecture for complex driving assistance applications,

and (3) to design a viable FPGA-embedded camera infra-

structure for rapid prototyping and emulation in the field.

The rest of this paper is organized as follows: in Sect. 2,

we provide an overview of object detection using visual

approaches. In Sect. 2, we present a review of camera

systems used in embedded areas. Section 3 presents our

design and verification environment, as well as the

underlying design flow. We first give a brief description of

the design environment, emulation platform, and our

motivation behind the design decisions. Thereafter, generic

hardware and software modules of our design environment

are presented; the system-on-chip design inside the main

FPGA is explained with the help of the lane departure

application. Finally, the evaluation of our solution is pre-

sented and discussed at the end of this section, followed by

a conclusion and some indications on future work.

2 Related work

In this section, we focus on published works most close to our

contribution, namely embedded system architectures and

design flow for video processing. Recently Rinner et al. [12]

provided a review of embedded smart camera systems. From

their classification, a clear picture of the existing systems can

be drawn. Computation is performed inmost existing systems

in software on a general purpose processor, sometimes opti-

mized for multimedia computation. High-end PCs are used

[10] for prototyping purposes, but also to provide the required

computational power. The system in [5] uses several digital

signal processors on different PCI boards, while the CITRIC

[6] relies on the Intel XScale PXA270 processor. The Mesh-

Eye [8] uses an Atmel AT91SAM7S microcontroller and

computing unit, and the UCLA Cyclops [11] runs on the

Crossbow’s MICAz platform.

Considering the growing complexity of applications, the

computational requirements of embedded cameras can be

reached only through a combination of hardware and

software, which are integrated today on a single system-on-

chip. Usually, hardware and software are developed sepa-

rately and the integration is done very late. Bugs become

difficult to correct and hardware architectures are some-

times not optimal. Capturing the system behavior at a very

high abstraction level, and refining the specification along

the path to the hardware, will reduce the amount of bugs

and allow for more efficient exploration of better

architectures.

The camera in [2] uses an Intel PXA270-based devel-

opment board clocked at 520 MHz. The use of FPGA-

based platforms was investigated in [1, 2, 4, 7, 13]. How-

ever, the FPGAs were used as co-processors for a single

task fixed at compile time.

FPGAs provide the advantage of performance on one

hand, but also flexibility on the other. Designs can be

emulated and verified in real environments before a dedi-

cated IC device is even built. Using FPGAs in this project

is advantageous because of the possibility of changing the

design at any stage in the design process; thus speeding up

the verification process through a fast execution on the

FPGA as well as increased iteration in testing. A design

successfully prototyped and verified on an FPGA could

directly be used to build a dedicated device, with only

minor modifications to the original implementation.

Advanced architectures, in particular reconfigurable

architectures like the PACTXPP [3] and Matrix [9], have

been developed to provide higher performance and recon-

figurability. While the design time is shortened and the

efforts reduced with these processors, the resulting hard-

ware are essentially dataflow machines built from coarse-

grained computing elements whose scope is limited to the

instructions provided by the processing elements. With

more specialized computation, as in the case of image

processing where a kernel is required, dedicated vector

operations (as well as the corresponding buffers) are dif-

ficult to build. Their emulation also slows down the overall

performance of the system.
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In this work, we provide a design flow that will make

investigation of embedded imaging, particularly in driving

assistance applications, easier. Starting from a high-level

specification of an application, subsequent refinements are

applied until the generation of the hardware/software sys-

tem-on-chip structure is completed.

3 Design and verification environment

The high-speed requirements of embedded image pro-

cessing applications are best served with modern system-

on-chip systems. They provide a hardware/software struc-

ture in which low level, time consuming, data intensive,

and repetitive functions are moved into hardware, while the

high-level reasoning is done in software. The hardware

parts of the system are usually designed by experienced

hardware engineers, using hardware description languages

like VHDL. The integration of the hardware and software

is classically done at the end of the design process. This

approach is error prone, due to either incorrect specifica-

tions or misunderstanding during the translation from high-

level specifications to low-level implementation.

3.1 Design flow

We propose the design environment of Fig. 1, which

consists of four phases: system specification, high-level

hardware/software system, register transfer level, and

emulation.

System specification: The first step in system specifica-

tion is to describe the application, regardless of the target

architectures. Applications are defined in executable form

in C/C??; the OpenCV library is leveraged. At this level,

the verification environment consists of a set of synthetic

videos created to simulate driving on a road with obstacles.

Several versions of video footage exist, all representing the

view of the road and obstacle from a certain perspective

and angle. Videos used for verification at this level will be

used throughout the entire design process for verification.

High-level hardware/software system-definition: Having

now specified the application in OpenCV, the second step

consists of performing the first refinement which will pro-

duce the hardware/software partition. Here, the behavior of

the entire system is refined to a Transaction Level Modeling.

Transaction Level Modeling (TLM) is becoming increas-

ingly popular as the ultimate tool to capture and verify

systems consisting of several software processes and hard-

ware components. TLM is particularly appealing because of

the compatibility with environments that use native C/C??

enriched with abstract communication libraries for sending

and receiving messages. This level does not focus on com-

munication implementation details, though, which helps to

perform the simulation more quickly. As shown in Fig. 1,

we have integrated OpenCV with SystemC in the verifica-

tion environment to define the hardware/software parts.

OpenCV provides all the functionality to provide images,

perform reasoning on extracted features, and display results,

while the SystemC describes the hardware part for compu-

tational speedup as a set of blocks with abstract communi-

cation among the blocks. Channels are used as an interface

between the software and the hardware, as well as between

components. At this level, entire images are transported

from one function to the next. Since all the processes and

hardware components access the same memory, it is not

necessary to actually copy pictures from one memory

location to another, we just pass pointers between channels.

Since we do not have a tool to automatically partition the

design, the designer is in charge of selecting functions to be

mapped onto the hardware. This can be done based on

profiling that shows the computational ‘‘hot spots’’ in an

application. Usually, we would map the object extraction

into the hardware, since this part uses only a small number

of kernel functions on a huge amount of data. The result is a

small amount of data containing information about objects

in the picture. Reasoning on this part is not computationally

demanding, but requires a complex control structure, which

makes implementation in software more viable.

Because the structure of low-level image processing is

largely known, we have implemented a set of templates

(convolution, thresholding, segmentation, etc.,) that the

user can select from in order to quickly build their

implementation.Fig. 1 Our design and design flow
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Register transfer level description: At this third step, the

abstract TLM description of step two is further refined into

a final structure that can be synthesized by hardware

compilers. The refinement includes the pin and cycle

accurate implementation of the communication interface

between software and hardware, a detailed description of

the bus model, and a detailed implementation of buffers

and memory. At the TLM level, images were transmitted as

pointers referring to an entire section of memory. In

hardware, however, pictures are transmitted pixel by pixel

on a bus. This constraint must be reflected in the Register

Transfer Level (RTL). Most image processing functions

operate on a certain size neighborhood, which requires

some form of sliding windows and additional buffers in

hardware to capture the neighborhood of a pixel currently

being considered. In our environment, we provide a

structure consisting of a buffer to hold each line of pixels

for the sliding window and a mask to capture the neigh-

borhood of a pixel. The buffers are configurable in length

and number to match the size of the picture and neigh-

borhood being used. With such a clear structure for the

image processing block, the function applied on the masks

is also a template, whose implementation can simply be set

by the user. The current available masks that can be set are:

convolutions, edge detection, segmentation, and thres-

holding. In order to translate the SystemC–TLM descrip-

tion into an RTL implementation that can be synthesized,

we implemented the templates in VHDL and automatically

mapped the description of level 2 into level 3, without

requiring intervention of the user. Transaction parts that

rely on object structures are mapped to software along with

the part running in OpenCV, while the remaining RTL part

of SystemC is mapped to our VHDL module implemen-

tation. Interfaces are then introduce in hardware an soft-

ware along with the drivers (Fig. 1).

Emulation: The last step in the design process is the

emulation of the system. For this step, we have designed a

versatile FPGA-based smart camera, the RazorCam to

allow for testing in a real-life environment. Our platform

implements image processing directly inside the camera,

instead of propagating the image to a workstation for

processing. Its compact size and performance facilitates the

integration in cars. The processing module consists of: one

Xilinx Spartan-6 FPGA, one flash drive, and one connector

each for an infrared camera, digital camera sensor, as well

as analog camera sensor, respectively. A TFT display can

be connected to the platform as well, this allows the user to

check the results of algorithms in real-time during an

experiment. The verification is done throughout the entire

design-flow using the videos available from our verification

environment or live video from one of the available image

sensor. RazorCam features an embedded version of Linux,

on top of which OpenCV was installed.

3.2 Prototyping applications

Emulation allows for testing designs in real conditions

before moving them on the target platform in the run-time

environment. In our case, a system-on-chip architecture can

be built inside the FPGA around a softcore processor (the

MicroBlaze in this case), running the Linux operating sys-

tem. In order to provide a familiar design environment to

the image processing community, and exploit a widely

available image processing library, Intel’s computer vision

library OpenCV was ported to our platform. This allows

applications developed and tested on desktop to be executed

on the target embedded system without modification. It is

this combination of FPGA, Linux, and OpenCV that makes

our platform perfectly suitable for system emulation, with

computational image processing mapped directly into the

hardware. The FPGA provides maximum performance

while still maintaining flexibility, while a fully featured

operating system like Linux allows compatible and stable

programming without having to worry about system inter-

nals and learning processor-specific commands.

To access hardware functions from the software envi-

ronment, we use the SDI controller, which offers a generic

connection between hardware and software through shared

memory regions. The SDI uses DMA to service memory

regions accessible from the software through OS-drivers.

The controller’s reading and writing regions are defined

separately. The reader entity reads data from a defined

memory region and pushes it into a connected FIFO. This

FIFO is accessible via SDI from the outside, thus the

contained data can be propagated to any module imple-

menting the SDI. In contrast, the writer entity takes data

from a connected FIFO (which can be filled by the SDI)

and writes them to a predefined memory region. Both

entities can be started and stopped independently or

simultaneously. The structural decision of separating the

reader and writer allows for interesting setups. On the one

hand, it can be used for intermediate software processing in

a hardware chain (for example, by connecting a camera to

the writer and a VGA output to the reader) to debug and

refine hardware results (Fig. 2). On the other hand, it can

also be used for intermediate hardware processing by

placing a processing chain of modules between reader and

writer (Fig. 2). The camera image is simply placed in the

reader’s memory region, then propagated to the processing

chain, and ultimately written to the writer’s memory, where

the image is further processed in software.

3.3 Hardware modules

One of the main goals of our design environment is to

reduce the design time of system-on-chip for video appli-

cations, particularly in driving assistance systems. Those
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applications usually rely on a computing structure which is

well known, with data intensive low-level processing in

hardware, while reasoning is done in software. Providing a

generic structure and components that can be used for

many applications (lane departure, obstacle detection, pose

analysis, car-to-car communication, etc.,) in driving assis-

tance systems would allow many applications to be as

simple as composed from those structures instead of being

designed from scratch, thus reducing design time while

improving verification.

We have populated our design environment with func-

tions frequently used in those applications. These functions

can then be used at the TLM-level to specify the system

structure following system specification. The functions are

fully parameterizable, the value of the parameters being

defined by: picture size, lighting conditions, applied

threshold, etc. The library can also be extended to new or

complex functions. For each module in TLM, an equivalent

RTL version is available to allow a seamless mapping from

TLM descriptions into RTL ones. This step is currently

conducted by hand, but our future work will seek to

automate this process, with efficient design space explo-

ration strategies. In the next section, we provide a brief

explanation of the modules currently available in our

library.

3.3.1 Convolution filters

Many low-level morphological operations in image pro-

cessing rely on convolution operators. Noise reduction,

smoothing, edge detection, median, and averaging all

operate with convolution filters. Our implementation uses a

certain number of lines and a sliding window (which

consists of previously read pixels) to build the neighbor-

hood of a sufficient distant pixel. The size of the windows

can be configured, along with the depth and number of

buffers, depending on the degree of accuracy desired.

3.3.2 Threat estimation

During the calibration process, the user can also specify a

certain danger zone; all objects found are checked whether

or not they are within this zone. For example, for the

proposed system (lane departure), the zone is by default

placed to comprise of the adjacent lane, extending from the

camera to one car length behind the car. When the driver

shows the intention of changing lanes, any other vehicle in

this zone poses an immediate threat to the host vehicle,

thus being considered a dangerous maneuver. As the cur-

rent speed of other vehicles is taken into account, vehicles

at a greater distance (but higher speed) can become a

potential risk.

3.3.3 Minimum brightness

To calculate the image’s minimum brightness, a generic

module providing the lowest in a series of values is

implemented. So, mathematically speaking, this means

calculating

brightnessmin ¼ minðPÞ ð1Þ

where P is the set of all pixels generated by

P :¼ fpx;y j 8x 2 0; imagewidth� 1½ �;
8y 2 0; imageheight� 1½ �g:

ð2Þ

The expected number of values (pixels in the image) has

to be known. The module starts by buffering the highest

possible value (taking data width into consideration). For

every value (pixel) passing through the module, it checks

whether the current value is smaller than the buffered one.

If true, the current value is buffered, replacing the original

value. When the expected number of values passing

through is reached, the buffer contains the minimal value.

This value is made available to the outside for the next

frame, and the rest of the module is reset.

Fig. 2 a Usage of the SDI

controller for intermediate

software processing. b Usage of

the SDI controller for

intermediate hardware

processing
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3.3.4 Average brightness

A configurable module was implemented, which accepts a

pre-defined number of values and calculates their mean

average. The general approach is to sum the values and

then divide the overall sum by the number of values. For

the set of all pixels P, this means calculating

brightnessaverage ¼

X
p2P p

Pj j : ð3Þ

Due to its complexity, division is an operation best to be

avoided in hardware. To circumvent the final division, it is

replaced by subtracting the number of values from the

overall sum whenever possible. If subtracted, a separate

counter is incremented to keep track of the number of

performed subtractions. When the process is finished (the

number of values is reached), the counter holds the result

of the division.

3.3.5 Thresholding

Taking both minimal and average brightness from the last

frame as input, this module calculates and applies the

current threshold. The result is an inverted binary image

corresponding to the original image and the thres-hold. The

set B of all binarized pixels is calculated by

B :¼ p0x;y

����
p0x;y ¼ 0 8px;y\threshold

p0x;y ¼ 1 8px;y � threshold
; px;y 2 P

� �
:

ð4Þ

For any value passing through the module, the

calculated threshold based on minimum and average

brightness is applied. Any value below the threshold is

converted to 1, any value above is converted to 0.

3.3.6 Integral image

This module is responsible for converting the pixel str-eam

from binary pixels to the corresponding integral image. It

calculates the set I using the equation:

I :¼ p0x;y

����p
0
x;y ¼

X
pm;n; m 2 0; x½ �; n 2 0; y½ �; p 2 B

� �
:

ð5Þ

It buffers one line of the image, which is initialized with

zeros. In addition, the sum of original pixels left of the

pixel under consideration is calculated. With these two

sources, the module calculates the integral image pixel by

adding the processed pixel directly above it to the sum of

original pixels left of it (including its own value in the

original image). The result is buffered to form the basis of

the subsequent line and then sent to the output stream.

3.3.7 Sum of environment

Although usually in fixed positions from the center of the

rectangular environment, the position of the coefficients

might change due to the environment overlapping the

image borders. In some cases, coefficients have different

positions from the center (for example, C and D when the

mask overlaps the bottom image border), while in some

cases they are not needed at all (for example, A and B

when the environment overlaps the top image border). This

module calculates the set S using

S :¼ p0x;y

����p
0
x;y ¼

X
pm;n;

m 2 ½maxð0; x� envwidthÞ; minðxþ envwidth; envwidthÞ�
n 2 ½maxð0; y� envheightÞ; minðyþ envheight; envheight�
p 2 B

8
><

>:

ð6Þ

The process is divided into several stages. In general, a

number of lines are buffered as required by the size of the

mask. As a first step, the relative position of the coefficients

is calculated by checking for overlaps. Afterwards, the

resulting positions are retrieved from the buffer using

Result = A - B - C ? D

3.4 Software modules

Like in the case of hardware, a number of software func-

tions interacting with hardware are utilized to implement

commonly used processes. The software of the system

consists of a small main program, which passes the image

coming from the hardware onto and between software

modules which are implemented as functions working on

the same data structures.

3.4.1 Extract data

The aim of this function is to extract the highlighted sha-

dow areas from the image, thereby switching from com-

plete data represented by the image to only the relevant

data represented by tuples.

The algorithm moves through the image line by line,

creating a tuple with start and endpoints for each segment

of consecutive shadow pixels on the line under investiga-

tion. These tuples are saved to a storage data structure and

returned to the main program.

3.4.2 Merge data

So far, only horizontal proximity was taken into account

for highlighted pixels. The purpose of this function is to

check for vertically adjacent tuples and merge them if
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appropriate. As a result, each highlighted blob should be

represented by a single tuple, storing the coordinates of the

bounding box of the blob.

All extracted tuples are processed from the bottom to the

top of the image, ordered from left to right. All tuples in the

storage have a valid flag, which is set to true for all entries

at the start. For each valid tuple in the storage, check all

following valid tuples (thereby situated above the current

tuple) for vertical proximity and horizontal overlapping. If

possible, the two tuples are merged by updating the lower

tuple to comprise the upper tuple and invalidating the

previous upper tuple.

4 Case study: embedded lane departure in FPGA

The hardware and software modules previously explained

and present in our library may be configured and put

together. The designer can therefore build a complete

system-on-chip from the highlevel description in Open-CV

and select the functions to be mapped into hardware. The

mapping process will automatically insert the correspond-

ing blocks at different levels in the design flow. Figure 3

illustrates the structure of a system-on-chip for driving

assistance at the RTL, consisting of a hardware processing

chain for efficient low-level processing of incoming ima-

ges. Extracted features are passed to the software for high-

level reasoning. The SDI interface between the hardware

and software is automatically added. The configuration

parameters are derived from the designer input (i.e., image

size, processing speed, etc…). The emulation is done on

the RazorCam, which can get the input images from either

a server (through the Ethernet port) or from one of the three

camera inputs on-board. Results of the processing can

either be saved back on the server or displayed on the on-

board TFT monitor.

In the previous example, the goal was to build a system-

on-chip application that can detect vehicles on the lanes

next to the host vehicle at a distance as large as possible.

This information could then be used to estimate whether an

approaching vehicle is posing a threat to the host vehicle if

the driver’s intention is to change lanes towards the detected

vehicle. For threat estimation, we use a critical area around

the host vehicle to provide an understanding of the level of

danger a vehicle implicates. We utilize rear cameras

(located in the rear window mirror of the host vehicle) with

a field of view wide enough to provide information on

objects around the host vehicle. The vehicle detection can

also be extended by speed estimation of all detected vehi-

cles to make predictions on the future situations.

The system should react in real time with a speed of at

least 15 frames per second. This fast image processing goal

can be reached in an embedded environment only with the

help of customized hardware. The system-on-chip was

built using modules of our library, from the TLM level to

the RTL implementation. The detailed description of the

processing chain within the hardware, as well as the

hardware/software interface, is illustrated in Fig. 4.

We tested the system with a set of videos taken from our

verification environment, which was provided to the run-

time system through the Ethernet port. Even though the

platform can handle higher resolutions, 8-bit greyscale

images of 320 9 240 pixels were used in this case, since

this resolution is completely sufficient to detect nearby

objects (up to a distance of about 20 m).

5 Performance evaluation

The goal of performance evaluation is to measure the

effectiveness of our platform, as compared to a traditional

design environment. This comparison is difficult to quan-

tify with numbers because of the various programmer

skills, the type of machine used and additional tasks per-

formed in parallel. Nevertheless, the buildup of our envi-

ronment allows the user to rely on available basic building

Fig. 3 A complete overview of

the implemented system. The

extraction and merging phases

were combined in a single

extraction phase, as well as the

threat estimation and reaction

phases that form a joint warning

phase
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blocks and generic structures tailored for imaging appli-

cations. Also the entire flow from the high-level specifi-

cation to the implementation is integrated, with the

possibility of speeding-up some tasks during the design

process into hardware, thus increasing the number of iter-

ation steps. For many applications that would have taken

months to develop in traditional design environments, it

was just a matter of days to have a workable and well-

tested version on our platform. For illustration purpose we

have compiled basic pixel-neighborhood functions with

various window sizes in hardware and in software on a

desktop development PC. The comparison of execution

time in Table 1 shows that, using our design environment

and emulating low-level computations on the RazorCam

will increase the number of iterations, thus speeding-up the

design and verification process by at least two orders of

magnitude, compared to the PC version. This does not

include the time needed to develop, simulate, synthesizes

and validate the same hardware modules.

The performance comparison provided below gives an

indication on the achievable speedup of the basic block

implementations on our platform.

5.1 Threshold

The examined thresholds range from minimum bright-ness

(0 %) to 20 % of the difference between minimum and

average brightness added to the average brightness (120

%), thus 100 % represents average brightness. The range

between minimum and average brightness was chosen, as

the perfect threshold is assumed in that region; the values

above average brightness were evaluated to support this

hypothesis.

Figure 5 shows the results of the thresholding regarding

the percentage of present objects that were successfully

detected, false positives, merged objects, highlighted image

area, and pixels per tuple.

The difference between the hit rate and the sum of

merged objects and overexposed images was chosen to find

the threshold with the best properties regarding hit rate and

errors. The resulting curve was normalized to the range [0;

100] and added to the results (6) to show the best threshold

amount. The maximum of the curve (and thus the best

threshold) was marked by a dotted gray line to highlight

this result.

5.2 Noise reduction

For intelligent noise reduction, the size and ratio between

height and width of the mask are the key features. In the

following, the best width and height will be determined

experimentally.

Fig. 4 The final hardware

architecture. The image is

passed to a processing chain

based on the tasks discussed in

the concept

Table 1 Execution time of basic modules on pure software on

development workstation compared to emulation speedup using the

RazorCam environment

Hardware

RazorCam

Software dual

core@1.2 Ghz

Window size 3 9 3 5 9 5 3 9 3 5 9 5

Convolutions Speed (fps) Speed (fps) Speed (fps) Speed (fps)

Image size 320 9 240 320 9 240 320 9 240 320 9 240

Sobel 268 262 0.2 0.08

Gauss (r = 1) 274 253 026 0.12

Mean 253 157 027 0.12

Fig. 5 The complete results of the thresholding experiment. The

threshold criterion was added to show that a threshold placed at 50 %

of the difference between minimum and average brightness performs

best (shown by the dotted grey line)
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For the experiment, the same image series as in the

threshold experiment is used, while a constant threshold of

50 % is applied. To evaluate the general behavior of dif-

ferent ratios between width and height, a series of square,

horizontal, and vertical masks are examined and compared

regarding the mask’s area.

In the first diagram (Fig. 6), the behavior of differently

sized masks is examined concerning their performance in

correctly detecting objects. Although a small, square 3x3

mask yields the best detection rate, with an increasing area

horizontal masks become the best choice, while vertical

masks show the worst performance overall.

In the second diagram (Fig. 7), the effectiveness of each

mask size is examined by comparing the amount of pixels

per generated tuple. As the amount of highlighted pixels

stays the same due to the constant threshold, this value now

directly stands for the resulting performance in the merging

phase, a higher value being desirable.

As a result of the demand to minimize processing effort

(with regard to the targeted high frame rate), the opportu-

nity to select a mask with a larger, horizontal area should

be taken. Considering the detection graph (Fig. 6), the

mask with the area of 55 pixels (11 9 5) is a good choice,

as it is the best choice at this size and the detection per-

formance decreases significantly towards the next exam-

ined mask (15 9 7).

Although the choice is not as straightforward as with the

threshold, after considering all aspects, a mask size of 11 9

5 pixels is selected to be the best and, therefore, used for

the implementation.

5.3 Lighting conditions

While it is obvious that a shadow-based system has diffi-

culties with the lighting conditions at night, the following

experiment aims to determine how and why the system

fails when faced with increasing difficulty.

For this experiment, 60 time-stamped pictures of the

same intersection were taken over a period of 92 min in the

evening (18:25–19:57, sunset at 19:43) with increasingly

difficult lighting conditions due to the fading sunlight. The

pictures were taken with a camera using integrated

brightness correction based on the histogram analysis to

make the images comparable with regard to the thres-

holding issue. This setup rules out the possibility of general

brightness a effecting the results, making it possible to

trace any results back to the way the scene is lit, not how

much.

To support this assumption, the first diagram (9) shows

the development of the contrast (the difference between

minimum and average brightness) over the whole image

series. The linear regression function was added to the

diagram to show the basic constant behaviour, although

decreasing slightly.

The more complex second diagram (10) shows the

development of the detection rate and the percentage of

scene participants having their front lights turned on. The

results of the experiment can be seen by applying linear

regression functions to both sets of points. With increasing

number of light sources (and therefore lighted objects), the

detection rate decreases significantly.

5.4 Overall system performance

The aim regarding performance was to implement a pro-

totype running with at least 15 frames per second. As a

prototype has completely different aims for different situ-

ations (for example, extensive visualization output for

demonstration purposes or minimum output for perfor-

mance tests), the implementation therefore offers different

modes of operation (Figs. 8, 9).

Most importantly, hardware acceleration can be swit-

ched on and off. The original prototype was done com-

pletely in software, and is still used in software only mode,

using the exact same algorithms that were moved to

Fig. 6 The performance of differently sized masks regarding the

percentage of hits. With increasing size, horizontally shaped masks

perform best compared to other shapes with a comparable size

Fig. 7 The performance of differently sized masks regarding the

amount of used pixels per tuple. Again, with increasing size,

horizontally shaped masks perform best compared to other shapes

with a comparable size
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hardware later. In hardware accelerated mode, the hard-

ware processing chain is enabled and used by the main

program to increase the performance.

In full output mode, the system shows various process-

ing substeps as images and draws a map of the perceived

environment. Although this mode is good for de-monstra-

tion and visualization, it is not suitable for performance

tests. As there will be no such output necessary in a real

application, minimal output mode offers a more realistic

setup for performance estimation by showing no pictures

and printing only what is absolutely necessary.

Table 2 shows the results of a performance test with an

image sequence of 200 frames. The frames per second were

calculated by measuring the time taken for all 200 frames,

then dividing 200 by that measurement.

We have shown that the image processing in software

took so much time that even minimizing the output and

considering transmission time had hardly any effect. The

presented hardware acceleration gave the system an

impressive speedup of 15.5. The resulting overall frame

rate of an average of 22 frames per second successfully

exceeds the targeted 15 frames per second for real time.

Table 3 shows detailed synthesis results of all implemented

modules for the interested reader.

6 Conclusion

We presented a hardware/software environment for proto-

typing driver assistance applications. Our goal was to

deploy a generic embedded hardware/software architecture

and providing the symbolic representation to allow pro-

grammability at a very high abstraction level. We proposed

a four-level flow, starting from a specification in C/C?? or

OpenCV. Applications are then partitioned at a transaction

level and captured by a combination of OpenCV and Sy-

stemC representation. Subsequent refinements with a

hardware design language produce a hardware implemen-

tation at the RTL, which is then synthesized and verified in

a FPGA-based computing infrastructure.

The viability of the platform was demonstrated using an

exemplary lane departure warning system. Given suitable

lighting conditions (daytime, no difficult weather condi-

tions like rain or snow), the system is capable of detecting

vehicles in dynamic traffic scenes by finding the shadow

area beneath each vehicle. A dynamic threshold based on

Table 2 Performance in frames per second of the final prototype

Full output Minimal output

Incl.

ethernet

Excl.

ethernet

Incl.

ethernet

Excl.

ethernet

Software only (fps) 1.29 1.33 1.37 1.42

Speed-up 97.05 98.81 910.43 915.50

Hardware

accelerated (fps)

9.10 11.72 14.29 22.02

Removing the time for transmitting the image via Ethernet, the

hardware acceleration achieves a frame rate of 22 frames per second

and an impressive speedup of 15.5 compared to the software version

Fig. 8 The development of the contrast (average minus minimum

brightness) over time, staying basically the same due to histogram

analysis performed by the camera used

Fig. 9 Detection performance over time in relation to the number of

active lights in the scene. The linear regressions are added to the

graph to make the development more obvious, while the contrast stays

the same (see Fig. 8), the detection performance decreases with the

growing amount of light sources in the scene

Table 3 Synthesis results for each implemented module. All mod-

ules are capable of running well over 100 MHz

Module Slices Flip flops RAMB16s Max freq. (MHz)

Serializer 96 104 0 234.71

Minimum 37 49 0 245.27

Average 110 81 0 144.97

Threshold 44 59 0 221.02

Integral 210 244 2 177.97

Integral sum 521 458 16 133.79

Deserializer 87 97 0 202.36

The Serializer and Deserializer modules are modules that extract

single pixels from the 64-bit-wide SDI bus (and put them back

together). This way, each intermediate module deals with single

pixels on the bus, rather than having to redundantly deal with the

extraction/combination individually
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the overall brightness of the image was used to find these

shadows. A concept was presented where the necessary

image processing time was minimized. The complete

image processing part of the system was then moved to the

customized hardware to further accelerate the system to a

real-time frame rate of 22 frames per second.
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