
SPECIAL ISSUE PAPER

Low-power DSP system for real-time correction of fish-eye
cameras in automotive driver assistance applications

Mauro Turturici • Sergio Saponara •

Luca Fanucci • Emilio Franchi

Received: 29 June 2012 / Accepted: 8 February 2013 / Published online: 3 March 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract The development of an embedded system for

real-time correction of fish-eye effect is presented. The

fish-eye lens is applied to driver assistance video systems

because of its wide-angled view. A large field of view can

reduce the number of cameras needed for video system and

their cost, installation, maintenance and wiring issues. On

the other hand, this lens causes inherent radial distortion to

image that has to be corrected in real-time with a low-cost

and low-power processing platform. This paper proposes a

solution that can be easily adapted to different types of lens

and camera, and meets real-time constraints with a power

budget within 100 mW and a board size of few cm2.

Starting from mathematical equations, given by the geo-

metrical optics, a state-of-the-art correction method is

presented, then optimizations are introduced at different

levels: algorithmic level, where a real-time correction

parameter calculation avoids extra non-volatile off-chip

memory cards; data transfer level, where a new pixel pair

management reduces memory access and storage burden;

HW-SW implementation level, where a low-power board

has been developed and tested in real automotive scenarios.

Other applications of the developed system, such as multi-

camera and multi-dimensional video systems, are finally

presented.

Keywords Fish-eye � Video correction � Automotive �
Driver assistance � Real-time video processing

1 Introduction

In last years, the use of cameras for automotive driver

assistance has increased a lot [1–22]. Nowadays most of

the car manufacturers offer video systems on their vehicles

to give to the driver a better view of the so-called ‘‘blind

spots’’, areas that are normally impossible to look easily in

the driving position. Therefore, it is important to use an

array of cameras mounted towards every directions or, as

alternative, cameras equipped with wide-angled lens

(referred in this paper as ‘‘fish-eye cameras’’).

Fish-eye lenses have been commonly used for surveil-

lance applications [15, 17] due to their large field of view

(FoV), but nowadays they find new useful applications in

automotive driver assistance video systems [7–17]. In fact

a single camera with a fish-eye lens can substitute, in some

cases, up to four cameras with traditional lenses.

On the other hand, the fish-eye lens suffers of distortion

problems, mainly radial [11, 15]. Since it is very important

to give a correct view to the driver, with exact proportions

and without any distortions, the correction of images cap-

tured by a fish-eye camera is required. Correction of the

fish-eye effects has been treated in literature mainly for

photography applications. For example, there are several

software tools that led the photographer correct this dis-

tortion for a picture (e.g., PanoTools [23], Fisheye-Hemi

Plug-In [24] for Photoshop and others). However, these

solutions, like some other works for surveillance applica-

tions [16], refer to a software running on a personal com-

puter. On the contrary, automotive applications call for the

real-time correction of fish-eye cameras with hardware

platforms compliant with use on-board a car. To this aim

limited cost, size and power consumption are required;

therefore, the platforms are constrained in terms of com-

putational and memory capabilities.

M. Turturici (&) � S. Saponara � L. Fanucci

Department of Information Engineering, University of Pisa,

Via G. Caruso 16, 56122 Pisa, PI, Italy

e-mail: mauro.turturici@for.unipi.it

E. Franchi

R.I.Co. srl, Via Adriatica 17, 60022 Castelfidardo, AN, Italy

123

J Real-Time Image Proc (2014) 9:463–478

DOI 10.1007/s11554-013-0330-9

This paper presents a low-cost, flexible and real-time

solution for correcting video captured by fish-eye cameras.

With respect to state-of-the-art fish-eye correction systems,

the proposed platform provides a solution that can be easily

adapted to different types of lens or camera and meets real-

time constraints with a power budget within 100 mW and a

board size of few cm2. To reach the above targets, this

work introduces optimizations at algorithmic level, where a

real-time look-up table (LUT) correction technique is used,

avoiding extra non-volatile (NV) off-chip memory cards, at

data transfer level, where a new pixel pair management

method reduces memory accesses and storage burden, and

at HW-SW implementation level where a low-power board

has been developed and tested in real automotive scenario.

The paper is organized as follows. Section 2 briefly

reviews state-of-the-art video correction systems for fish-

eye distortion effects. In Sect. 3, after discussing the basic

principles of a fish-eye lens, the main equations to be used

to perform the correction of the radial distortion are

described. In Sects. 4 and 5 the calculation method for LUT-

based correction and the new pixel management technique

is presented. The design flow is shown in Sect. 6, while the

porting on the low-power platform is discussed in Sect. 7.

The main achieved performances plus tests from real

automotive scenarios are discussed in Sect. 8. Furthermore,

in Sects. 7 and 8 it is shown that the current implementation

of the system can do a multi-dimensional correction (two

space dimensions and time) and can also be used for

substituting an array of standard cameras, since that a single

fish-eye camera can reach the same FoV of few cameras

with standard lenses. Conclusions are drawn in Sect. 9.

2 Review of state-of-the-art fish-eye correction systems

Fish-eye correction is a common feature of several profes-

sional photo retouching software. These programs, such as

Fisheye-Hemi Plug-In for Photoshop, PanoTools or DxO

Optics Pro, running on a personal computer, are mainly used

for off-line correction of still pictures. Due to their heavy-

duty tasks they are not suitable for the implementation of a

low-power real-time fish-eye correction system. Another

recent work [20] presented a fish-eye correction system for

video stream at VGA resolution, still based on a personal

computer (Intel Core 2 with 1 GB RAM). This system allows

a correction of fish-eye video stream with a 15–17 fps rate

and a rough power consumption of several tens of watts (e.g.,

the processor has power consumption up to 65 W [25]).

At the state-of-the-art few solutions have been already

proposed for power-effective real-time correction of fish-

eye images. Altera and Manipal Dot Net developed a

system based on the Cyclone III FPGA device and Nios II

processor [10]. This solution uses a pre-computed LUT and

performs a remap of every pixel using the information

stored in this table. Being pre-computed it needs an extra

off-chip NV memory card which is specific for a defined

camera and lens, so changing the camera resolution or the

color space the solution cannot be reused but new and

different external memories must be adopted.

A solution called logiVIEW is proposed by Xylon and

targets Xilinx FPGA devices (Spartan6 and Virtex6 fami-

lies) using Microblaze as soft processor [26]. Also in this

case a first step for customization of the solution is required

on the specific camera or lens type by the original equip-

ment manufacturer (OEM). Therefore, SRAM-based

FPGAs (like Altera and Xilinx) need an external NV

memory device, which contains information about how to

do the correction. These solutions implement just a fixed

correction algorithm while, in order to adapt the solution to

different types of lens, camera and display, a higher level

of flexibility is required.

A similar solution [18] was presented in 2009 at the 17th

IEEE Symposium on Field Programmable Custom Com-

puting. Also this solution, based on high performance

Virtex-6 has low flexibility towards different types of

input–output video devices. Furthermore, the last two

solutions use a logic unit whose cost is very high for

automotive applications.

In 2011, a solution has been announced by Techwell

(a part of Intersil) [27]. More information about the

announced Techwell solution is not available, but notori-

ously the system is based on proprietary and custom In-

tersil Image Signal Processor, specifically designed for

Techwell surveillance devices, and this reduces its flexi-

bility and reusability to other video devices with different

features and correction requirements.

The only cost-effective state-of-the-art solution has been

proposed in 2011 [17] by NXP and it is based on pro-

prietary PNX9530 media processor (basically PNX1005

for automotive market). Although this solution is proposed

for bird’s eye video system it can be used also for fish-eye

correction. Also this system cannot be adapted to different

input cameras without changing the software itself or use

an external memory. The cost of this platform is not

exactly known, but considering just some other similar

products by NXP itself, we can suppose that our platform,

being targeted only on fish-eye correction, can reach the

same results with 30 to 40 % less costs.

3 Fish-eye distortion correction

3.1 Camera and lens: basic principles

The basic principle of a camera is well explained by the

‘‘pin-hole’’ camera model [28]. A scene, see Fig. 1, can be

464 J Real-Time Image Proc (2014) 9:463–478

123

reproduced on a film by means of a camera obscura with a

tiny hole on one side. When a point of the scene is

enlightened, rectilinear light beams are projected in many

directions. Only a part of these light rays can enter through

the pin-hole and so only a particular region of the film will

be impressed. Most of the beams coming from the same

point cannot impress the film because they are stopped by

the camera obscura. So the result is a bi-dimensional pic-

ture, vertically and horizontally reversed towards the ori-

ginal tri-dimensional scene.

Referring to Fig. 2, let h be the optical axis (i.e., the

horizontal straight line that ideally goes perpendicular to

the film, across the pin-hole) and consider a generic point

P of the scene with a given distance from h. We call h the

angle between the incoming light beam from P and

h. Other important variables are:

• Rp the distance between the projection of P and h

• f the distance between the film and the pin-hole

The distance Rp on the film of the projected point from

the optical axis h, referred to the angle h, can be computed

with Eq. (1) for K = 1.

Cameras are usually used in conjunction with optical

lenses that divert light rays and project on the image sensor

(or on the film), an image that is different from the original.

Mostly used lenses only change the FoV of the camera

(basically, the area of the scene that is reported on the

picture), but they do not change proportions between points

of the picture. For those lenses, the formula that links the

scene to the image sensor, also known as ‘‘mapping func-

tion’’, is still Eq. (1), but with a generic K [0.

Rp ¼ K � f tan hð Þ ð1Þ

3.2 Fish-eye optics introduction

A lens or an optics (i.e., a combination of more lenses) may

also have a non-linear mapping function, so the represen-

tation of the scene on the image sensor can be very dif-

ferent from the normal view.

One of the most used types of non-linear optics is the so-

called ‘‘fish-eye’’. A camera equipped with a fish-eye lens

can easily capture points on the same plane of the lens and

even behind, so it has an angular FoV wider than 180�. Due

to its extremely wide angular FoV these optics find useful

usage in photography (see Fig. 3a), surveillance (see

Fig. 3b) and automotive applications. In photography fish-

eye lenses are mainly used to give a particular effect to the

picture, but currently their most emerging applications are

in surveillance systems and automotive rear-view cameras.

Indeed, thanks to their wide angular FoV, it is possible to

look a large part of the scene with a single camera instead

of using several cameras. This helps to reduce costs and

also installation, maintenance and wiring issues which are

key elements for the success of many electronic systems, in

particular for the automotive market.

Moreover, using two or more cameras it can be neces-

sary to combine images with mosaic techniques [11, 17] in

order to make a ‘‘fit to be seen’’ image. Instead using a fish-

eye lens, it is possible to develop a large FoV 3D image

system (two space directions and time) with a single

camera, replacing up to three cameras without the need of

any combination of images.

On the other hand, the quality of images captured with a

fish-eye lens cannot be as good as the one obtained with a

standard lens; in fact a fish-eye lens creates distortion

effects for the image, especially at the border. Images

appear good in the middle part of the picture, but ‘‘com-

pressed’’ at the borders (see Fig. 3b and c).

A very first explanation of the most evident effect given

by the fish-eye lens can be the following: light beams

arriving at the border of the lens are deflected more than

those arriving at the center; therefore, the scene is much

wider compared to a normal lens while objects in the center

of the image look better than those at the borders (see

Fig. 3b). This effect is known as radial distortion (see

Fig. 3c). A fish-eye lens may also suffer from tangential

distortion, due to fabrication defects, but this is usually

negligible with respect to the radial one.

The mathematical formalization of this effect is given

by the mapping function of the lens. The relation between

the incoming angle h of a light beam and its projection Rp

(named Rfish for fish-eye cameras) on the image sensor can

be quite different from Eq. (1). Some of the most common

mapping functions, used to represent mathematical

CAMERA
OBSCURA

FILM or IMAGE
SENSOR

PIN-HOLE

LIGHT BEAMS

LIGHT BEAMS

Fig. 1 Pin-hole camera model

• Rp : the distance between the projection of P and h
• f : the distance between the film and the pin-hole

PIN-HOLE

θ

Rph

f

P
LIGHT BEAM

Fig. 2 Pin-hole camera basic principles

J Real-Time Image Proc (2014) 9:463–478 465

123

behavior of the fish-eye lenses, are proposed below in Eqs.

(2), (3), (4) and (5) [10], in which we leave out the mul-

tiplier K.

Linear scaled: Rfish ¼ f h ð2Þ
Orthographic: Rfish ¼ f sin hð Þ ð3Þ

Equisolid angle: Rfish ¼ 2f sin
h
2

� �
ð4Þ

Stereographic: Rfish ¼ 2f tan
h
2

� �
ð5Þ

Obviously the representation obtained with the above

lenses will not have the same proportions as the one taken

with a standard lens. Particularly, as already shown in

Fig. 3b, fish-eye lenses introduce radial distortion, which

occurs when proportions between points lying on the same

radius are not respected before and after the lens.

3.3 Back-mapping method for fish-eye effect

correction

The exact method to correct an image affected by a fish-

eye distortion would be to use an optical lens opposite to

the fish-eye one (i.e., that has a reversed mapping function)

in front of the output screen. This is practically impossible

for many reasons, so digital processing is the only way to

achieve this goal. The simplest method to do a digital

correction is the direct rearrangement of pixels, i.e., copy

every pj,k pixel of the source image in its correct position to

obtain a new corrected image by filling an empty output

buffer. Referring to a stream of pixels given by a camera

this can be done with the algorithm described below:

1. Initially allocate an empty buffer for the output

images, with size of a full frame.

2. Receive a pixel pj, k from camera.

3. Use the coordinates (j, k) of the current pixel pj, k to

compute its correct position (n,m), rounded to the

closest integer.

4. Copy the pixel pj, k at the correct position (n, m) in the

output buffer.

5. When a full frame has arrived, send the output buffer

to the video output port.

The correct rearrangement of pixels is done by means of

mapping function: for example, if we had a fish-eye lens

represented by the equisolid mapping function (4), we

know that a light beam that came with an angle h with h

(see Fig. 2) will be projected at a distance Rfish from h

given by Eq. (4), thus we can compute h by reversing the

equation, as shown in (6). Then we have to put the pixel in

the correct radial position, see Eq. (7).

h ¼ 2 sin�1 Rfish

2f

� �
ð6Þ

Rcorr ¼ f tan 2 sin�1 Rfish

2f

� �� �
ð7Þ

So it is sufficient to copy every pixel with a distance of

Rfish from the center to a distance Rcorr along the same

radius on the output buffer. For a digital image radius and

distances are computed as number of pixels from the center

of the film. Unfortunately, this method causes many blank

pixels, because some pixels of the output buffer may not be

filled as a result of the Eq. (7); furthermore, some pixels of

the input stream can be put in the same position, being

overwritten.

As an alternative, the same quality of the image, but no

blank pixels, can be achieved with the ‘‘back-mapping’’

algorithm in Fig. 4 [10] acting as follows:

1. Initially allocate two empty buffers, with dimension of

a full frame, one for the input stream and one for the

output one.

2. Receive an entire frame from camera and store it in the

input buffer.

3. Scan every pj,k location of the (empty) output buffer

and compute for each one the position (n, m) of the

correct pixel of the input buffer to be copied there, or

the nearest integer to that one.

Fig. 3 a Example of an

extreme fish-eye optics for

photography application; b a

picture from a surveillance

system equipped with fish-eye

lens; c representation of the

typical radial distortion

introduced by a fish-eye lens

466 J Real-Time Image Proc (2014) 9:463–478

123

4. Load the pixel (n, m) from the input buffer, and store it

in the output buffer, in the current position (j, k).

5. When the output frame is full, send it out to the video

output port.

Instead of taking pixels from the source and put them in

the correct position in the output buffer, this method

computes for every blank pixel in the output buffer the

‘‘most suitable’’ pixel of the input buffer to put there;

basically, the nearest to the exact one. This causes some

little shape distortion, and that more than one empty

location of the output buffer will be filled with the same

pixel from the input buffer. No blank pixels will result in

the output buffer. This method provides a good resulting

image as it will be shown in next sections.

For example, refer to the equisolid mapping function in

Eq. (4). In a picture taken with a standard lens a generic

pixel far Rp from h represents the light beam coming with hi

from h, according to Eq. (1). Because of the fish-eye lens

distortion that beam has been projected at a different dis-

tance, given by Eq. (4). The incoming angle hi of the correct

light beam can be determined using Eq. (8), while the

correct distance Rsource can be determined using Eq. (9). For

digital images, the parameter f can be computed with the

Eq. (10) [10] where W is the image width in pixel and

FOVhorz is the angular horizontal FoV in radians of the lens.

hi ¼ tan�1 Rp

f

� �
ð8Þ

Rsource ¼ 2f sin
1

2
tan�1 Rp

f

� �� �
ð9Þ

f ¼ W

4 sin FOVhorz

2

� � ð10Þ

Therefore, if the lens mapping function is known, it is

possible to perform the back-mapping correction of the

radial distortion.

4 Fish-eye algorithm with new LUT process method

As seen in Sect. 3 the remapping of a single pixel involves

the calculation of several equations with trigonometric

functions. The real-time computing of every pixel coordi-

nates is a heavy-duty task, not feasible under the power and

cost budget constraints of automotive applications. On the

other hand, real-time computing of correction parameters

ensures high flexibility to every type of fish-eye lens and

the possibility to apply other types of modification to the

image such as digital zoom; these are eligible features for

such a video system. Real-time state-of-the-art solutions

use a fixed correction so, basically, a memory in which the

results of the equations in Sect. 3 are stored, previously

computed for every pixel. This solution is suitable just for a

single type of lens at a time and changing the lens means

changing the memory. For example, proprietary surveil-

lance systems uses external NV memory card with a pre-

computed LUT that is right only for their proprietary

lenses.

Instead the solution proposed in this paper has the

flexibility to adjust to almost every type of available lens

and does not need any dedicated external NV memory to

contain the LUT. We use the same approach to do the

remap, so we obtain the same quality as state-of-the-art

methods. The remap indexes are computed once at start-

up according to a parameter identifying the lens type.

They are then stored in a small random access memory

(RAM), the same for program and data, so we read cor-

rection indexes for the remapping process directly from

RAM. This technique combines the good results of the

back-mapping method to correct the images with a high

flexibility.

4.1 Look-up table computation

The LUT is computed by means of three steps: in the first

step, we compute the correction of radial distortion for

every pixel; hence, we get both horizontal and vertical

indexes for every pixel referring to the center of the image.

In the second step, we compute the correct location of

pixels to be taken for every empty location of the output

buffer. Finally we compute memory addresses of pixels in

the input buffer for direct load and store operations. The

mathematical equations used to perform these actions are

those described in Sect. 3.

For instance, consider the equisolid mapping function

(4). In digital world distances are reported as pixel unity, so

we must transform distances into pixel coordinates. Con-

sider a generic point P and let (j, k) and (n, m), respec-

tively, be the coordinates of pixels of the source (distorted)

and target (undistorted) image. Since tangential distortion

j,k

OUTPUT BUFFER

COMPUTE
CORRECT
INDEXES

BLANK PIXEL
pj,k

n,m

INPUT BUFFER
(FULL FRAME)

PIXEL pn,m

TAKE PIXEL pn,m and put in
position j,k of the output buffer

Fig. 4 Representation of the back-mapping method

J Real-Time Image Proc (2014) 9:463–478 467

123

is negligible (points of the source buffer have to be rear-

ranged theoretically on the same radius) it results:

j

k
¼ n

m
ð11Þ

This implies that the corrected point coordinates can be

computed by means of Eqs. (12) and (13).

n ¼ 2f j

Rp

sin
1

2
tan�1 Rp

f

� �� �
ð12Þ

m ¼ 2f k

Rp

sin
1

2
tan�1 Rp

f

� �� �
ð13Þ

where:

Rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

p
ð14Þ

After the first step, we have, for every (j, k) blank pixel

of the output buffer two floating-point numbers (n, m) that

represent the indexes of the right pixel to be taken from the

input buffer, referred to the center of the image. In the next

step, we associate to these indexes their rounded integer

location in the input buffer and then its memory address so

we have exactly the RAM address of that pixel in the

source buffer, not only its indexes. The LUT computation

is briefly represented in Fig. 5.

As said before, a LUT that stores pointers to memory

locations and not indexes can be used for load and store

operations. Only simple instructions (memory access and

sum) are used during real-time execution, while heavy-duty

operations are concentrated at the start-up. Hence, after the

start-up phase when the LUT is calculated, this algorithm

mainly requires the use of RAM memory.

4.2 Real-time processing

After the start-up phase and after the calculation of the

LUT, real-time operations can be easily explained with the

pseudo-code below:

– Scan position (j, k) of the output buffer

– Access LUT at (j, k) position

– Read a data which represents the memory address of

the source buffer to be taken (a pointer to that location)

– Copy that pixel to the current blank position of the

output buffer

– Go to the next blank position (j ? 1, k) and repeat

Incoming frames are stored and remapped one by one;

when a frame is ready this is sent to the video output port

and a new frame is captured, see Fig. 6.

To further reduce the memory access a new pixel pair

management strategy, exploiting chrominance sub-sam-

pling, is introduced in Sect. 5, allowing the implementation

of a low-cost and low-power embedded system.

5 Pixel pair management for reduced data transfer

and storage complexity

5.1 Principles of chrominance sub-sampling

Data for image and video applications can be coded in

many different ways. Color and position information about

pixels can be also mixed to obtain a compression format

suitable for the application. For example, an RGB signal

carries information about brightness of the three funda-

mental colors that our eyes can perceive, i.e., red, green

and blue. Other encoding methods can carry, for example,

only brightness information (e.g., black/white images), or

full color information plus transparency (images with alpha

channel). Encoding method can be lossy or not vs. the

original image captured by the sensor. One of the simplest

color spaces is YCbCr 4:4:4; every pixel has the same

information as RGB, but signals are carried as luminance

(three colors mixed together) and chrominance (color

components mixed together). Since human eye is more

sensitive to the brightness intensity than colors, several

ways to reduce information carried by video signals with-

out noticeable loss of quality have been proposed in

literature.

One of the most common video standards is ITU-R

BT601 [29]. It specifies frame size, color space (YCbCr)

and communication protocols; but also specifies a method

to reduce the bandwidth of the carried signal, the so-called

‘‘4:2:2 horizontal chrominance sub-sampling’’. It basically

consists of a reduction of chrominance information for

horizontally paired pixels: luminance information (Y) is

sampled at full rate, instead chrominance information (Cb

and Cr) is sampled every two pixels. Thus, pixels are

coupled two by two, every pixel has its own luminance but

chrominance information is the same for each pair.

In Fig. 7a we see some pixels coded as 4:4:4. In Fig 7b,c

and d these pixels are decomposed as their Y (luminance),

Cb and Cr chrominance components. In Fig. 7f, g and h,

we see instead the process of chrominance sub-sampling.

As you can see luminance data of both images (Fig. 7b and

f) are the same, but chrominance signals are different. The

reconstruction of a 4:2:2 representation of the original

image is shown in Fig. 7e. It is easy to see that, at first

sight, it is similar to the original one (Fig. 7a) but, looking

deeply, some pixels are significantly different. Please note

that the image in Fig. 7a was expressly made for this

example and due to this fact the 4:2:2 sub-sampling tech-

nique appears very lossy compared to the 4:4:4 image. For

images taken from the real world, chrominance information

has a slow variation, so the quality of images coded with

this lossy compression results very high, as shown in Sect.

5B. ITU-R BT601 standard encodes also the data depth, 8

or 10 bits, for digital transmission. The use of 8-bit data

468 J Real-Time Image Proc (2014) 9:463–478

123

depth is the most common for standard video applications,

including automotive, instead 10-bit depth is mainly used

for high quality video such as movies. In many applications

data are streamed with a single 8-bit parallel interface and

typically arrive with the order | Yi | Cbi,i?1 | Yi?1 | Cri,i?1 |,

this means that, starting from the first pixel, we get com-

plete data of two pixels every 4 byte transfers; these two

pixels have their own luminance information, but share the

same chrominance information.

5.2 Pair by pair pixel remapping

While cameras used for surveillance applications are

mostly mounted as overhead or above position (see

Fig. 8a), for automotive application cameras are mounted

to have the street as horizontal reference (Fig. 8b). This

fact implies that optical axis is approximately parallel to

the street, then horizontal distortion is less noticeable.

Using 4:2:2 encoding and 8-bit data depth, it is possible

to store two paired pixels in a 32-bit word. Thus, an entire

frame with N 9 M pixels is stored as �(N 9 M) 32-bit

words. Every word contains a pair of pixels, i.e., two 8-bit

luminance information, one chrominance Cb (the same for

both pixels) and one chrominance Cr (the same for both

pixels again). Since our target application is a video system

for automotive applications, we propose to do the correc-

tion for paired pixels and not for every single pixel. This

can be made with the same load and store operations, but

implies half operations than a complete rearrangement;

furthermore, it will be shown that the achieved image

quality is still good.

In Fig. 9 we see a real-scenario image captured with a

fish-eye lens. Figure 10 shows the same image corrected

with a complete rearrangement (pixel by pixel), instead

Fig. 11 shows the image corrected with pair by pair re-

mapping. It is easy to see that there is no noticeable differ-

ence between the two images. Only if we zoom on a

particular region of the Figs. 10 and 11 (see Figs. 12 and 13

representing the particular of the solar reflection on the rear

part of the parked black car, the second from left), we can see

some differences due to the 4:2:2 chrominance sub-sam-

pling. In fact, if we look at the first column of Figs. 12 and

13, we see that they are equal, but pixels in the second

column are not the same, and this is true for all even column.

k

j

n,mk0x########

j

CORRECT
RADIUS

TABLE WITH RIGHT x,y INDEXES

W
RONG RADIUS

TRANSLATE INDEXES INTO
BUFFER LOCATIONS

TRANSLATE
LOCATION
INTO RAM
ADDRESS

RIGHT RADIUS

TABLE WITH RIGHT LOCATIONSTABLE WITH RIGHT ADDRESSES

Fig. 5 Proposed three-step

LUT creation

CAPTURE
FRAME

DISPLAY
FRAME

INPUT
BUFFER

OUTPUT
BUFFER

REMAP FRAME

Fig. 6 Real-time data flow and processing

J Real-Time Image Proc (2014) 9:463–478 469

123

In our work, we made several examples of images taken

from urban scenario. In each test we see that, for hori-

zontally mounted cameras, the fish-eye effect correction of

paired pixels gives results that are practically the same as

those obtained with a complete rearrangement. Thus, the

proposed method meets standard quality for rear-view

automotive cameras with half load and store operations

compared to a full rearrangement and this implies a less-

costly and low-power hardware to be used.

Further chrominance compression, for example 4:1:1

and 4:2:0, would not provide significant enhancements

compared to the 4:2:2 one.

According to the 4:1:1 compression (see Fig. 14c),

chrominance information (both Cb and Cr) is sampled

every four pixels; so if data are transmitted 8 bits a time,

we get a group of pixels every 48 bits (6 byte transfers);

every pixel has its own luminance (Y), but Cb and Cr are

shared for four pixels. If we apply our method for every

four pixels instead of two, we have to remap groups of 48

bits (one 32-bit word and a half) instead of one word a

time. But it is common knowledge that, for a memory with

32-bit interface it would require two transfers, and there are

16 useless bits every two remap operations because pixel

groups are not remapped next to each other, but they can lie

on a different row and column. So applying our method to

YCbCr 4:4:4 Y 4:4:4

Y 4:2:2YCbCr 4:2:2

Cb 4:4:4 Cr 4:4:4

Cb 4:2:2 Cr 4:2:2

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 Representation of 4:2:2

chrominance sub-sampling

ROOM or
OUTDOOR

CAMERA

CAM
ERA

CAM

(a) (b)

Fig. 8 Representation of the

typical mounting of fish-eye

cameras for a surveillance and

b automotive applications

Fig. 9 Original distorted example image

Fig. 10 Example image corrected pixel by pixel

470 J Real-Time Image Proc (2014) 9:463–478

123

4:1:1 compression will result in a loss of quality without

allowing a better exploitation of resources vs. a 4:2:2

coding. This fact happens also for 4:2:0 compression: again

a group of four pixels shares chrominance information, but

this time the group is composed of two pixels that are close

to one line and the two lying on the next line in the same

position (see Fig. 14d). Also in this case we obtain just a

loss of quality without any further enhancement about data

transfer.

6 Design flow

This section discusses the design flow for the development

of a real-time embedded system (first prototyping genera-

tion) for fish-eye correction, starting from the method

proposed in Sects. 4 and 5. Its optimization in the final low-

power platform is discussed in Sect. 7.

6.1 Algorithm development in MATLAB

The first task of our design flow was to test the quality of

the proposed method (with the pixel pairing technique)

applied to the rear-view parking video system. An image

captured by a fish-eye automotive camera has been coded

as 4:2:2 and then remapped as described in Sects. 4 and 5.

Referring to the previous figures, we took an RGB picture

with a standard rear-view camera equipped with fish-eye

lens. Then it has been coded as 4:4:4 YCbCr (Fig. 9)

without any loss of quality with respect to the original. As

introduced before we performed a fish-eye correction pixel

by pixel (Fig. 10). Then we coded the picture as 4:2:2 with

a loss of quality, but without any noticeable defect. Finally,

we made the correction pair by pair still obtaining a good

quality image (Fig. 11).

The equations to be used and the quality of result images

have been tested in MATLAB with still pictures and videos

taken from urban scenarios; with this information we got

parameters to perform some good LUTs, suitable for sev-

eral types of lens. Many experiments in different urban

scenarios confirmed the suitability of this approach for

real-time correction of fish-eye camera in automotive

assistance and, hence, we decided to start writing code for

the development of a HW-SW low-power embedded

system.

6.2 Code development in Linux and Qt IDE

After the validation performed in MATLAB we developed

a C-code by means of Qt IDE and OpenCV libraries on a

Linux platform. The used frame size was the most common

for automotive rear-view camera, i.e., 720 9 480, but

could have been selected any of the most common frame

size for standard quality video, e.g., 720 9 486,

720 9 576, 640 9 480 and others. At this time we also

performed a code analysis and optimization to get infor-

mation about computational and memory resources needed

for the application.

Fig. 11 Example image corrected with paired pixels method

Fig. 12 Detail of Fig. 9 corrected with pixel by pixel rearrangement

Fig. 13 Detail of Fig. 9 corrected with paired pixels method

J Real-Time Image Proc (2014) 9:463–478 471

123

6.3 Porting on first generation prototyping high-end

platform

The performed analysis allowed a first porting of the

developed algorithm for real-time video correction on a

high-end video processor. We used a Spectrum Digital

EvmDM642 board equipped with high performance

TMS320DM642 processor by Texas Instruments. It

includes a VLIW (very long instruction word) computing

core capable of up to eight 32-bit operations concurrently

[30]. It features also high-speed interfaces for external

memory connection and video peripherals. The Ev-

mDM642 evaluation board is also equipped with 64 Mb of

external DDR RAM and both with video decoder and

encoder and other peripherals that are not used in this

work. Realized in 130 nm CMOS technology the 720 MHz

core requires a 1.4 V voltage supply and consumes roughly

1.5 W.

For the development of the embedded software we used

the code written previously for Qt IDE and a TVP5146

video decoder (A/D converter) with 4:2:2 8-bit output. The

first design step on this platform, although not meeting

low-cost and low-power requirements, ensured a rapid

development and prototyping of the application with the

certainty to reach a result. The analysis carried out by

means of TMS320DM642 processor allowed to easily

port our code on a lower cost platform as described in

Sect. 7.

7 Low-power embedded platform for fish-eye

correction

Since this work aims at the implementation of a cost-

effective fish-eye correction system, an important aspect of

the research is the hardware targeting. The TMS320

DM642 processor (technically speaking a System-on-Chip)

is not as low cost and low power as desired so it was

necessary to perform a new porting of the software on a

different platform, with lower cost and less power

consumption.

Fish-eye effect correction is an emerging feature whose

foreseeable market volume does not justify the design of an

ASIC, hence a commercially available computing core

has to be preferred. An affordable and cost-effective

video correction system for automotive applications must

have:

• flexibility to be adapted to several resolutions (input

and output) and to an arbitrary lens, i.e., any mapping

function,

• low cost,

• low-power consumption,

• enough performance for video processing up to 30 fps,

• high reliability, and

• good image quality,

Since a solution with a microcontroller does not provide

enough computing power to face real-time video

(2,1) (2,2) (2,3) (2,4)

(1,1) (1,2) (1,3) (1,4) ...

......

(1.N)

(M,N)(M,1)

...

(M,2)

...

(M,3)

...

(M,4)

... (2,N)

...

...

(2,1) (2,2) (2,3) (2,4)

(1,1) (1,2) (1,3) (1,4) ...

......

(1.N)

(M,N)(M,1)

...
(M,2)

...
(M,3)

...

(M,4)

... (2,N)

...

...

(2,1) (2,2)

(1,1) (1,2) ...

......

(1.N)

(M,N)(M,1)

...

(M,2)

... ...

... (2,N)

...

...

(1,1) (1,2) (1,3) (1,4) ...

......

(1.N)

(M,N)(M,1)

...

(M,2)

...

(M,3)

...

(M,4)

... (2,N)

...

...

(2,3) (2,4)

(1,3) (1,4)

(M,4)(M,3)

(a) (b)

(c) (d)

(2,1) (2,2) (2,3) (2,4)

Fig. 14 Representation of

some chrominance

compressions referring to a

screen with M 9 N resolution,

a 4:4:4, b 4:2:2, c 4:1:1, d 4:2:0.

Pixels in white–gray are not

known referring to Fig. 14a

472 J Real-Time Image Proc (2014) 9:463–478

123

processing, only FPGA and GPP solutions can be selected.

Both GPP and FPGA technologies could ensure enough

performance with power consumption suitable for the

application. A GPP platform was finally selected for two

main reasons: the first is that, we found several systems-on-

chip (SoC) that integrate both input and output video port

and other useful peripherals for image management (size

formatter, D/A converter, blank pixel correction and other);

secondly because porting C-code on GPP, such as ARM-

based one, is simpler that implementing the algorithm on

FPGA. These facts allow for lower hardware costs and

reduced time for the software development, with negligible

performance degradation.

Our analysis demonstrated that the application is par-

ticularly memory-dominated, indeed the computing power

is important only at the start-up (the LUT calculation

involves many trigonometric functions to be computed),

but in real time we do not need high computing capabili-

ties, since the method proposed mainly exploits load and

store instructions. Anyway, we cannot neglect the com-

puting power at all, since it is important to keep low start-

up time, about few seconds.

The complexity profiling analysis that has been carried

out, allowed the selection of the TMS320DM36x processor

family by Texas Instruments [31, 32]. This is realized in

65 nm CMOS technology, and is based on a 32-bit

ARM926EJ-F core with 16 Kbytes instruction cache

memory, 8 Kbytes data cache and further 32 Kbytes of on-

chip RAM. The clock frequency of DM365 is 2.4 times

lower than the DM642, and the one of DM368 (432 MHz)

is roughly 1.6 times lower. These processors share the

same architecture and on-board peripherals. The DM368

ensures more performance than the DM365, due to its

higher core clock. On the other hand, the DM365 core can

be powered at 1.2 V, thus allowing for lower power con-

sumption, while the DM368 core requires a 1.35 V supply

voltage. However, the DM365 and DM368 cores are pin-

to-pin and software compatible, so both can be used for the

final implementation.

Due to low-power considerations the DM365 has been

selected to build the real-time fish-eye correction platform

whose scheme is presented in Fig. 15. The input section

of the prototyping platform is composed by a TI

TVP5146 A/D converter, also referenced as ‘‘video

decoder’’, that accepts signals in the most common analog

formats: composite, Y/C (S-Video), RGB and YPbPr

(Component). This way the system is flexible enough to

be connected with different types of camera, both with

analog and digital interface. This decoder provides the

desired 8-bit 4:2:2 YCbCr output for subsequent digital

processing. The decoder is not equipped with an internal

buffer memory so it provides a continuous stream of data

to the video input port of the processor. The digital

stream is then conveyed to the digital input port of

DM365. The processor performs the pixel rearrangement

by means of an external small SDRAM (approx. 16 MB)

and then subsequently copies the corrected frames to the

video output port. The digital video is converted by

internal D/A to component or composite analog video.

Thus, the proposed architecture is suitable for both analog

input and output.

Figure 16 provides more details of the internal processor

data flow between its internal registers, video input port,

video output port and the external SDRAM hosting the

LUT plus the input and output frame buffers.

8 Implementation results

This section shows the implementation results of the

developed system both hardware and software aspects.

8.1 Developed hardware platform

During this work a custom board equipped with the

peripherals described previously has been developed with

the industrial partner R.I.Co. srl. The board in Fig. 17 was

designed for a wider video system usage and, thus, is

equipped with other peripherals not used by the fish-eye

correction application such as audio in/out, USB support,

Ethernet support, RS-232 level shifter for UART commu-

nication and others. The devices circled in Fig. 17 by red

lines represent those who have a primary functionality for

the fish-eye correction, these are respectively (from top left

to bottom right) RAM memory, DM365 SoC and NAND

memory (to store the program), instead unnecessary devi-

ces are circled by yellow lines. As you can see the

dimensions of the system for fish-eye correction can be

reduced down to a 20 mm square (4 cm2) PCB using small

connectors for external peripherals.

The developed hardware has a cost of about 40$ for

small production scale but, as previously said, it is

equipped with some peripherals that can be removed for

fish-eye system production, for which the expected cost

can be reduced down to 20–25$ each. Indeed, the cost of

the DM365 processor core for large volume market is in

the order of few $. Such values are very interesting for

the automotive market if compared to state-of-the-art

solutions.

We made several tests for estimating power con-

sumption; some of the not used components of the board

have been disabled for the test, so only the key parts have

been included in the measurement. We saw that the start-

up phase is more power consuming than the execution

one. This is because the calculation of the indexes

involves many floating-point operations. Instead the

J Real-Time Image Proc (2014) 9:463–478 473

123

remap process basically uses load and store instructions.

Due to scaled voltage and frequency values, the simple

core architecture and the custom board hardware design,

we obtained a power consumption of about 100 mW. This

quantity was measured by means of a laboratory power

supplier. A typical power consumption graph is reported

in Fig. 18.

We explored also the possibility to develop a multi-

camera correction with the same hardware, while the

memory is enough to contain data for remapping up to

eight cameras, the bus throughput is enough only for real-

time correction of two cameras with a reduced frame size

or a reduced frame rate. Since, the developed board can

manage only one video signal at time, it is necessary to put

an external multiplexer to mix the signals from the two

cameras. The fish-eye correction is, hence, performed with

time division frame by frame.

The maximum frame rate is actually 25 fps with the

maximum frame size of 720 9 576 and 30 fps with

640 9 480. The process is quite fast, we calculated a rough

delay of 100 ms for the entire remapping of a 720 9 576

frame, so it is quite negligible.

ANALOG
VIDEO
INPUT VIDEO

DECODER
A/D

(EXTERNAL)

4:2:2
Digital
Video

8 bit INPUT VIDEO
PORT

ARM926EJ-S
CORE

VIDEO OUTPUT
PORT

8 bit 4:2:2 Digital Video

EXTERNAL
SDRAM

VIDEO
ENCODER

D/A
(INTERNAL)

ANALOG
VIDEO

OUTPUT TMS320DM36x DMSoC

Fig. 15 Block diagram and

signal flow of the fish-eye

correction system

VIDEO INPUT
PORT (DIGITAL)

TMS320DM365 DMSoC

VIDEO OUTPUT
PORT (WITH

EMBEDDED D/A)

ARM926 PROCESSOR

BUFFER BUFFER

INPUT FRAME BUFFER
(DISTORTED)

OUTPUT FRAME BUFFER
(DISTORTED)

LUT

VIDEO INPUT VIDEO OUTPUT

INTERNAL
REGISTERS

UNCORRECT PIXELS

CORRECTED PIXELS

ADDRESSES

DDR2
RAM

Fig. 16 Representation of

internal processor data flow

Fig. 17 Developed custom hardware board

474 J Real-Time Image Proc (2014) 9:463–478

123

8.2 Features

The developed system has the possibility to perform real-

time fish-eye correction with a given remap function

without the need of factory customization, by simply

choosing the desired configuration before start-up. It is

possible to use the same system with different types of

camera by simply using one or more custom selector on the

board, e.g., DIP switches, which let the OEM select some

of the pre-compiled features:

• Standard of input and output (e.g., NTSC, PAL).

• Frame size, both input and output.

• Vertical and horizontal shift.

• Remapping function to be used for the correction or no

correction.

So the OEM has the highest flexibility to adapt the

system to many different types of camera and display. That

operation could be ideally made also by the final user

through a GUI interface running on the same display of the

car infotainment system.

An example of the correction algorithm was previously

shown in Fig. 11. More examples from real scenarios are

provided in Figs. 19, 20 and 22. In Fig. 21 you can see a

typical parking situation: a car is running in reverse

obliquely towards a park line, but the uncorrected video

(Fig. 22a) shows a stationary car as it is almost frontal.

This misunderstanding can be the cause of an accident so it

is important to correct the image (Fig. 22b) to see the

correct angular orientation of the view and the real distance

from the car.

The pictures were captured with the MT9V125 CMOS

sensor by Micron Aptina operating at 25 fps with a reso-

lution of 720 9 480 pixels per frame.

As introduced in the previous section, during start-up the

software computes the address locations for all remap

pixels (the so-called LUT) and stores them in an external

RAM: this step would take an approximate time of some

seconds (up to 4), depending on the type of mapping

function to be used and the resolution of the capture and

display buffer. After the initialization step the algorithm

starts real-time acquisition, remap and display of the

frames captured by the camera.

8.3 Memory resources

Regarding the memory (external RAM) occupation it

depends on the frame size, see Tables 1 and 2. Table 1

shows the memory occupation of the computed LUT,

necessary for the continuous remap of the pixels. This LUT

must be stored in RAM during remap. Instead Table 2

shows the memory occupation of the input and output

buffer. As seen before a full frame is stored in the input

buffer, when captured by decoder, then a target (output)

buffer is used to store the new, undistorted, image. Sum-

marizing, the memory requirements can be easily faced by

means of a small and affordable RAM module, like for

example 16 MB. No other memory module is required for

the remap operations. Memory occupation of the program

itself is much lower than 1 MB.

8.4 Comparison with state-of-the-art solutions

Regarding software implementation, several advantages

are obtained vs. the state-of-the-art solutions based on

0.35

0.1

Power
(W)

Time (s)executionstartup
~ 4

Fig. 18 Typical power consumption graph

Fig. 19 Example result:

a picture as captured from fish-

eye camera, b corrected image

J Real-Time Image Proc (2014) 9:463–478 475

123

FPGA. Being correction LUT computed during the initial

transient phase no extra NV memory, such SD-card, is

required. During the correction process it is possible to

adaptively change the correction LUT and, hence, the

applied correction effect. The system also allows for

adapting camera and display with different frame size and

can acquire region of interest of the input frame. Finally, it

is possible to add an extra feature such as digital zoom,

with the same hardware.

With respect to software-based fish-eye correction sys-

tems realized off-line [23, 24] or real-time on powerful

processing platforms [20], thanks to algorithmic and

architectural optimizations, the proposed system allows for

the flexibility of a software solution but with power con-

sumption of less than 100 mW, board size of few cm2 and a

cost of few tens of $. Another aspect to be noticed as

important feature for automotive applications, where

lighting conditions are often not optimal, is that the cor-

rection is not influenced by lighting conditions, since the

algorithm operates just on pixel location and not on pixel

value.

A direct comparison with commercial and state-of-the-

art solutions shows that our system can be easily applied to

different types of lens without hardware modifications, just

sliding a simple DIP switch. With respect to every PC

based solutions [20] the developed system can reach the

Fig. 20 Example result:

a picture as captured from fish-

eye camera, b corrected image

Fig. 21 Typical parking situation

Fig. 22 Example result:

a stationary car as captured

from fish-eye camera,

b corrected image that shows

the exact angular position of the

car

Table 1 LUT dimension for various frame resolutions

LUT dimension for various resolutions

Resolution of the image Dimensions of LUT (KB)

640 9 480 (VGA) 600

800 9 600 (SVGA) 937.5

720 9 480 (NTSC 16:9) 1350

720 9 576 (PAL 16:9) 1620

476 J Real-Time Image Proc (2014) 9:463–478

123

same performance within a processing power of few hun-

dreds of mW, instead of few tens of Watts.

Another important aspect of the developed system, with

respect to every state-of-the-art FPGA-based solution, is

the reduced cost for hardware components and their inte-

gration due to the selection of a full integrated system-on-

chip equipped with input and output video ports, D/A, and

formatters.

8.5 Future enhancements

The DM36x chip integrates several on-chip peripherals not

used for the fish-eye correction system, but dedicated to

other video tasks such as H.264 coding. It also has USB

support and UART ports. This way the proposed platform

can be concurrently used for other processing tasks on-

board the car. Indeed, future enhancements will be

explored by testing the on-chip Enhanced DMA peripheral

to let the processor being free to do other tasks. This can be

useful to implement digital zoom and interpolation of

pixels or manage multiple cameras. We are also planning

to try a low-complexity real-time operating system to

implement correction as a task and concurrently perform

other tasks.

As said before our system has the capability to manage

up to two different fish-eye cameras, this can result in a 4D

(three space dimensions and time) video system, allowing

the development of anti-collision and distance detector for

automotive application.

Another potential application is in conjunction with a

four-way video multiplexer: managing up to four different

video signals, an all-round vision of the car (either front or

rear according to the selected cameras) can be obtained.

9 Conclusions

This paper presented a flexible and low-cost solution for

the real-time correction of the fish-eye distortion effect for

automotive application. With respect to the state-of-the-art

the proposed platform provides a solution that can be easily

adapted to different types of lens or frame size, meeting

real-time constraints with a power budget within 100 mW

and a board size of few cm2. Experimental results from real

automotive scenarios confirm the quality of the corrected

images. These results were achieved through optimization

adopted at different levels: at algorithmic level, where a

LUT correction technique with a new LUT exploitation is

introduced avoiding extra NV off-chip memory cards; at

data transfer level, where a new pixel pair management

method reduces memory access and storage burden; at

HW-SW implementation level, where a low-power board

has been developed and tested in a real automotive

scenario.

Acknowledgments We would like to thank Prof. M. Diani who lent

us the EvmDM642 board and R.I.Co. srl that supported the research.

References

1. Yamada, K., Soga, M.: ‘‘A compact integrated visual motion

sensor for ITS applications’’. In: IEEE transactions on intelligent

transportation systems, vol. 4, no. 1, pp. 35–42 (2003)

2. McCall, J.: ‘‘Video-based lane estimation and tracking for driver

assistance: survey, system, evaluation’’ In: IEEE transactions on

intelligent transportation systems, vol. 7, no. 1, pp. 20–37 (2006)

3. Soga, M., Kato, T., Ohta, M., Ninomiya, Y.: ‘‘Pedestrian detec-

tion with stereo vision’’, ICDE Workshops 2005

4. He, Z. et al.: ‘‘Video-based measure of traffic volume parameter’’,

IEEE International conference automation and logistics,

pp. 421–425 (2007)

5. Saponara, S., et al.: Algorithmic and architectural design for real-

time and power-efficient Retinex image/video processing.

J. Real-Time Image Process. 1(4), 267–283 (2007)

6. Marsi, S., et al.: Integrated video motion estimator with Retinex-

like pre-processing for robust motion analysis in automotive

scenarios: algorithmic and real-time architecture design. J. Real-

Time Image Process. 5(4), 275–289 (2010)

7. Maddalena, S., Darmon, A., Diels, R.: ‘‘Automotive CMOS

image sensors’’, VDI-Buch, advanced microsystems for auto-

motive applications, Part 6, pp. 401–412 (2005)

8. Römer, M., Heimann, T.: ‘‘Real-time camera link for driver

assistance applications’’, VDI-Buch, advanced microsystems for

automotive applications, Part 3, pp. 299–310 (2009)

9. Azzopardi, M., et al.: A high speed tri-vision system for auto-

motive applications. Eur. Transp. Res. Rev. 2, 31–51 (2010)

10. Manipal Dot Net with Altera Corporation: ‘‘A flexible architec-

ture for fisheye correction in automotive rear view cameras’’,

white paper (2008)

11. Manipal dot Net and Altera: ‘‘generating panoramic views by

stitching multiple fisheye images’’, white paper (2009)

12. Dhane, P., et al.: ‘‘A generic non-linear method for fisheye cor-

rection’’, Int. J. Comput. Appl., vol. 51, no. 10, August (2012)

13. Wei, J., et al.: ‘‘Fisheye video correction’’, IEEE Trans. Vis.

Comput. Graph. 18(10), pp. 1771–1783 (2012)

14. Kun, B., et al.: ‘‘An image correction method of fisheye lens base

on bilinear interpolation’’, In: fourth international conference on

intelligent computation technology and automation (2011)

15. Hughes, C., Glavin, M., Jones, E., Denny, P.: Wide-angle camera

technology for automotive applications: a review. IET Intell.

Transp. Syst. 3(1), 19–31 (2009)

Table 2 Dimension of input and output buffers for various

resolutions

Dimension of I/O buffers for various resolutions

I/O color space and resolution Total dimensions

of two buffers (KB)

YCbCr 4:2:2 640 9 480 (VGA) 1200

YCbCr 4:2:2 800 9 600 (SVGA) 1875

YCbCr 4:2:2 720 9 480 (NTSC 16:9) 2700

YCbCr 4:2:2 720 9 576 (PAL 16:9) 3240

J Real-Time Image Proc (2014) 9:463–478 477

123

16. Friel, M., Hughes, C., Denny, P., Jones, E., Glavin, M.: Auto-

matic calibration of fish-eye cameras from automotive video

sequences. IET Intell. Transp. Syst. 4(2), 136–148 (2010)

17. Thomas, B., et al.: ‘‘Development of a cost effective bird’s eye

view parking assistance system’’. In: International journal of

advanced research in computer science and software engineering

(IJARCSSE) 2011, pp. 461–466

18. Bellas, N.: ‘‘Real-time fisheye lens distortion correction using

automatically generated streaming accelerators’’. In: 17th IEEE

symposium on field programmable custom computing machines

(2009)

19. Hughes, C., et al.: ‘‘Review of geometric distortion compensation

in fish-eye cameras’’, ISSC, pp. 162–167 (2008)

20. Bangadkar, S., et al.: ‘‘Mapping matrix for perspective correction

from fish eye distorted images’’, IEEE ICRTIT, pp. 1288–1292

(2011)

21. Saito, M., et al.: ‘‘People detection and tracking from fish-eye

image based on probabilistic appearance model’’, IEEE SICE,

pp. 435–440 (2011)

22. La Hung Manh et al.: ‘‘A small-scale research platform for

intelligent transportation systems’’, IEEE ROBIO, pp. 1373–1378

(2011)

23. Panorama Tools [Online]. Available: http://panotools.source

forge.net

24. Image Trends Fisheye-Hemi Plug-In [Online]. Available: http://

www.imagetrendsinc.com/products/prodpage_hemi.asp

25. Intel Core 2 processor datasheet http://download.intel.com/

design/processor/datashts/318732.pdf

26. Xylon logiBrics Technology, logiVIEW [Online] Available:

http://www.logicbricks.com/Products/logiVIEW.aspx

27. Intersil Fisheye Image Correction Technology [Online]. Available:

http://www.intersil.com/video/fisheye.asp

28. Salomon, D.: Transformations and projections in computer

graphics, Springer, Berlin, (2006)

29. ITU Recommendation BT.601 [Online] http://www.itu.int/rec/

R-REC-BT.601-7-201103-I/en

30. TI, ‘‘TMS320DM642 Video/Imaging Fixed-Point DSP’’, Oct.

2010, [Online] http://focus.ti.com/docs/prod/folders/print/tms320

dm642.html

31. TI, ‘‘TMS320DM365 Digital Media System-on-Chip’’, June 2011

[Online] http://focus.ti.com/docs/prod/folders/print/tms320dm

365.html

32. TI, ‘‘TMS320DM368 Digital Media System-on-Chip’’, June 2011

[Online] http://focus.ti.com/docs/prod/folders/print/tms320dm368.

html

Author Biographies

Mauro Turturici received the Master of Science degree in Electronic

Engineering in 2010 from the University of Pisa. Currently he has a

research contract with the Department of Information Engineering,

University of Pisa, working on electronic systems for healthcare and

vision automotive systems. He is also a Ph.D. candidate in

Information Engineering at the University of Pisa.

Sergio Saponara got the Master of Science degree, cum laude, and

the Ph.D. in Electronic Engineering from the University of Pisa. In

2002 he was with IMEC, Leuven (B), as Marie Curie Research

Fellow. Since 2001 he collaborates with Consorzio Pisa Ricerche. He

is Associate Professor at University of Pisa in the field of electronic

circuits and systems for telecom, multimedia, space and automotive

applications. He co-authored more than 160 scientific publications

and holds 10 patents. Sergio Saponara is also research associate of

CNIT and INFN and served as guest editor of special issues on

international journals and as program committee member of interna-

tional IEEE and SPIE conferences. He is associate editor of the

Journal of Real-Time Image Processing, Springer.

Luca Fanucci got the Master of Science and the Ph.D. degrees in

Electronic Engineering from the University of Pisa in 1992 and 1996,

respectively. From 1992 to 1996, he was with ESA/ESTEC,

Noordwijk (NL), as research fellow. From 1996 to 2004, he was a

senior researcher of the CNR in Pisa. He is Professor of Microelec-

tronics at the University of Pisa. His research interests include VLSI

architectures for integrated circuits and systems. Prof. Fanucci co-

authored more than 180 scientific publications and he holds more than

20 patents. He was program chair of IEEE Euromicro DSD 2008 and

IEEE DATE Designer’s Forum. He is the director of the Microelec-

tronics division of Consorzio Pisa Ricerche scarl.

Emilio Franchi received the Master of Science degree in Electronic

Engineering from University of Pisa. Currently he is R&D manager of

RICO srl, Castelfidardo (AN), Italy and collaborates with CUBIT

technology lab, Polo Tecnologico di Navacchio, Italy and with the

University of Pisa. In the past he worked for MITSUBA and he

collaborated with main semiconductor companies, including Texas

Instruments. His research interests are focused on electronic systems

for industrial and automotive applications.

478 J Real-Time Image Proc (2014) 9:463–478

123

http://panotools.sourceforge.net
http://panotools.sourceforge.net
http://www.imagetrendsinc.com/products/prodpage_hemi.asp
http://www.imagetrendsinc.com/products/prodpage_hemi.asp
http://download.intel.com/design/processor/datashts/318732.pdf
http://download.intel.com/design/processor/datashts/318732.pdf
http://www.logicbricks.com/Products/logiVIEW.aspx
http://www.intersil.com/video/fisheye.asp
http://www.itu.int/rec/R-REC-BT.601-7-201103-I/en
http://www.itu.int/rec/R-REC-BT.601-7-201103-I/en
http://focus.ti.com/docs/prod/folders/print/tms320dm642.html
http://focus.ti.com/docs/prod/folders/print/tms320dm642.html
http://focus.ti.com/docs/prod/folders/print/tms320dm365.html
http://focus.ti.com/docs/prod/folders/print/tms320dm365.html
http://focus.ti.com/docs/prod/folders/print/tms320dm368.html
http://focus.ti.com/docs/prod/folders/print/tms320dm368.html

	Low-power DSP system for real-time correction of fish-eye cameras in automotive driver assistance applications
	Abstract
	Introduction
	Review of state-of-the-art fish-eye correction systems
	Fish-eye distortion correction
	Camera and lens: basic principles
	Fish-eye optics introduction
	Back-mapping method for fish-eye effect correction

	Fish-eye algorithm with new LUT process method
	Look-up table computation
	Real-time processing

	Pixel pair management for reduced data transfer and storage complexity
	Principles of chrominance sub-sampling
	Pair by pair pixel remapping

	Design flow
	Algorithm development in MATLAB
	Code development in Linux and Qt IDE
	Porting on first generation prototyping high-end platform

	Low-power embedded platform for fish-eye correction
	Implementation results
	Developed hardware platform
	Features
	Memory resources
	Comparison with state-of-the-art solutions
	Future enhancements

	Conclusions
	Acknowledgments
	References

