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Abstract Image-processing applications like high

dynamic range imaging can be done efficiently in the gra-

dient space. For it, the image has to be transformed to

gradient space and back. While the forward transformation

to gradient space is fast by using simple finite differences,

the backward transformation requires the solution of a

partial differential equation. Although one can use an effi-

cient multigrid solver for the backward transformation, it

shows that a straightforward implementation of the standard

algorithm does not lead to satisfactory runtime results for

real-time high dynamic range compression of larger 2D

X-ray images even on GPUs. Therefore, we do a rigorous

performance analysis and derive a performance model for

our multigrid algorithm that guides us to an improved

implementation, where we achieve an overall performance

of more than 25 frames per second for 16.8 Megapixel

images doing full high dynamic range compression

including data transfers between CPU and GPU. Together

with a simple OpenGL visualization it becomes possible to

perform real-time parameter studies on medical data sets.

Keywords High dynamic range imaging � GPGPU �
Multigrid � Performance model

1 Introduction

High dynamic range (HDR) imaging studies techniques that

allow a wide dynamic range of luminances between the

lightest and darkest areas of an image. In medical X-ray

imaging, we face the problem that gray value intensities

within objects like parts of the human body are much lower

than outside where almost no X-rays are absorbed. There-

fore, these bright areas outside the objects deteriorate the

contrast within important areas for diagnostics. HDR com-

pression is done by manipulation of the image gradients to

improve the contrast of 2D X-ray images. However, since

this is only one step within the image acquisition pipeline

there are hard time constraints that have to be met in prac-

tical industrial applications. We address this on the one hand

algorithmically by using an efficient multigrid solver for the

arising linear systems and on the other hand by using GPUs

that are currently one of the fastest hardware architectures

for bandwidth-limited algorithms on structured data.

We demonstrate the structured development and engi-

neering of a fast multigrid solver for imaging in the gra-

dient domain on GPUs and its industrial application for

HDR compression. The resulting software processes more

than 25 frames of 16.8 MPixels per second on an Nvidia

GTX 480 consumer GPGPU. As it is the main challenge to

solve the Poisson equation as fast as possible, one could

also think of applying our software to other problems like

seamless image stitching [16] or painting [17].

The problem is that it is usually not sufficient to choose

1. a common HDR compression method [6],

2. an efficient multigrid solver [21], and

3. a fast and suitable hardware like a GPU,

but additionally it is necessary to adapt themultigrid algorithm

and its implementation to the specific features of the hardware.
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In order to obtain efficient software we will use a per-

formance engineering approach that consists of

1. a rigorous analysis of the algorithm, possible imple-

mentation approaches, and target platforms,

2. development of a performance model for promising

approaches,

3. the actual implementation, and eventually

4. measurement and analysis of the software performance

and validation of the performance model.

Depending on the outcome of 4, it may be reasonable to

adapt or refine the model, tweak the algorithm and its

implementation, or—if the model(s) prove(s) to be based

on wrong assumptions—start all over again.

This approach is a co-design of algorithm (components

and parameters of multigrid method), its implementation

(GPU kernels), and target platform (GPGPU) with respect

to the application (gradient imaging).

In addition to giving better control of implementation

process, this systematic approach including performance

model, performance measurement and analysis enables

other researches to estimate the quality of the implemen-

tation much better than raw numbers.

Therefore, one of the the main contributions of this

paper is to outline the process of performance engineering

and emphasize its benefits for real-time image processing

applications. Furthermore, we introduce a new temporal

shared memory blocking technique for our multigrid solver

on GPU that fuses multiple steps of the algorithm.

In detail, we summarize in Sect. 2 the model for

HDR compression in the gradient domain and show how

to reconstruct the HDR compressed image from the

gradient domain into the usual image domain by solving

a simple partial differential equation (PDE). This is

done numerically by a multigrid algorithm which is

discussed in Sect. 3. For a proper performance engi-

neering of the multigrid solver, we first select suitable

multigrid components guided by local Fourier analysis

and then outline and analyze three different implemen-

tation approaches in Sect. 4. Performance of the whole

HDR compression algorithm and visual results on

medical images are found in Sect. 5.

2 HDR compression in the gradient domain

We do HDR compression in the gradient domain as

described in [6]. Here, the idea is to apply a position-

dependent attenuating function U : R2 7!R to the gradient

rI ¼ Ix
Iy

� �
of an image I : X7!R defined in the rectan-

gular image domain X � R
2: This results in compressed

dynamic range image derivatives

Cðx; yÞ ¼ rIðx; yÞUðx; yÞ: ð1Þ

Note that we change only the magnitude of the gradients,

but not their directions.

To increase the robustness of the method and to improve

the visual quality of the results, the attenuating function U
is computed on different image resolutions with the help of

a Gaussian pyramid obtained by linear downscaling of the

input image. The scaling factors /lðx; yÞ of the image

gradients on each pyramid level l ¼ 0; . . .; L are

/lðx; yÞ ¼
a

krIlk
krIlk
a

� �b

ð2Þ

where the first parameter a determines which gradient

magnitudes are left unchanged, and the second parameter

b\1 is the attenuating factor of the larger gradients.

U is computed starting from the coarsest pyramid level

UL ¼ /L and then using linear interpolation P recursively

Ul ¼ PðUlþ1Þ/l ð3Þ

to obtain on the finest pyramid level, i.e., for the full image

resolution, U ¼ U0:

In order to reconstruct the HDR compressed image from

the changed image gradients, we are looking for an image

u : X 7!R minimizing the energy functionalZ
X

kru� Ck2dX: ð4Þ

A minimizer has to satisfy the Euler–Lagrange equation

r2u ¼ divC: ð5Þ

Setting f ¼ divC; we thus have to solve the partial

differential equation (PDE)

Du ¼ f in X ð6aÞ
u ¼ 0 on oX ð6bÞ

in order to compute u, where we assume Dirichlet bound-

ary conditions.

For discretization of the image I we use finite differ-

ences on a node-based grid Xh with mesh sampling size

h, i.e., the distance between two neighboring grid points is

h in each direction. The discrete image reads Ih : Xh 7!Gh:

Gh � R denotes the gray value range which is typically

[0..4095] for our application. The image derivatives are

computed by simple forward and backward finite

differences.

Equation (6) is also discretized by finite differences

which leads to a linear system

Ahuh ¼ f h ;
X
j2Xh

ahiju
h
j ¼ f hi ; i 2 Xh ð7Þ

with system matrix Ah 2 R
N�N ; unknown vector uh 2 R

N
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and right-hand side (RHS) vector f h 2 R
N on a discrete

grid Xh: N denotes the total number of grid points and the

number of unknowns in the linear system. In stencil

notation the discretized Laplacian Dh ¼ Ah reads on a

uniform grid

Ah ¼ 1

h2

0 �1 0

�1 4 �1

0 �1 0

2
4

3
5: ð8Þ

Note that a stencil corresponds to one row i of Ah, where

the center point is the diagonal entry aii.

3 Multigrid

3.1 Multigrid basics

Equation (7) is solved numerically by a geometric multigrid

method [1, 9]. As an iterative solver for large, sparse linear

systems its major advantage is that it has an asymptotically

optimal complexity of OðNÞ; where N is again the number

of unknowns in the system [2, 21]. This theoretical effi-

ciency can be combined with hardware-adapted and parallel

algorithms to achieve the best possible performance like in

[3, 8, 11, 14, 15, 19, 20]. In [13] we have shown that

multigrid solvers can be used within variational approaches

in medical image processing and computer vision problems

like image denoising or optical flow.

If we define uh
* to be the exact solution of Eq. (7) and uh

(k)

an approximation to it after k iterations, the algebraic error

is

eh ¼ u�h � u
ðkÞ
h : ð9Þ

The multigrid idea is now based on two principles:

Smoothing property Classical iterative methods like

Jacobi or Gauss–Seidel (GS) are able to smooth the error eh

after very few steps. This means the high-frequency com-

ponents of the error are removed well by these methods. But

they have little effect on the low-frequency components.

Therefore, the convergence rate of these methods is good in

the first few steps and decreases considerably afterwards.

Coarse grid principle A smooth function on a fine grid

can be approximated satisfactorily on a grid with less

discretization points, whereas oscillating functions would

disappear. Furthermore, a procedure on a coarse grid is less

expensive than on a fine grid. The idea is now to approx-

imate the low-frequency error components on a coarse grid.

Multigrid combines these two principles into a single

iterative solver. One multigrid iteration, here the so-called

V-cycle, is summarized in Algorithm 1. Starting on the

finest level, first the smoother, typically a simple itera-

tive method like GS, reduces the high-frequency error

components in m1 pre-smoothing iterations (step 4). Since

usually the exact solution uh
* of the linear system is not

known, we compute then the residual to estimate the

quality of the current solution (step 5). Because of the

linearity we have

Aheh ¼ Ah u�h � u
ðkÞ
h

� �
¼ f h � Ahu

ðkÞ
h ¼ rh: ð10Þ

The residual rh can now be restricted to the next coarser grid

level with H = 2h by averaging into rH. The linear operator

R (step 6) is either the transpose of a linear interpolation

(called full weighting Rf) taking into account all eight

neighboring points in 2D or only the four direct neighbors

excluding the diagonals (called half-weighting Rh).

After that this so-called residual equation

AHeH ¼ rH ð11Þ

is solved on the coarser grid level in order to approximate

the low-frequency error components there (step 7). Ah is

represented by the stencil from Eq. (8) at each grid point,

and on coarser levels we use rediscretization such that only

the prefactor changes depending on the mesh sampling

size.

The resulting error eH is then interpolated back to the

finer grid by a linear interpolation operator P (step 8) and

eliminated there by the coarse grid correction (step 9). At

the end m2 post-smoothing iterations are performed (step

10). For more than two grid levels one obtains a recursive

V-cycle which traverses between fine and coarse grids in a

grid hierarchy.

By nested iteration, the multigrid V-cycle algorithm can

be extended to Full Multigrid (FMG). This means that we

start with Eq. (6) on the coarsest grid level and compute a

solution there using a low-resolution image obtained from

the Gaussian image pyramid. This solution is then inter-

polated to the next finer level. Here, we can now do a

V-cycle and use the interpolated solution as an initial

guess. If we repeat these steps until we reach the finest grid

level, ultimately only a small number of smoothing
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iterations independent of the number of unknowns must be

performed on each level. Thus, multigrid can reach an

asymptotically optimal complexity OðNÞ [21].

3.2 Choice of multigrid components

Since the optimal multigrid components depend on the

operator Ah, there is a large number of possible smoothers

and inter-grid transfer operators (restriction and prolonga-

tion) available, and even more ways to combine them into a

working multigrid method. Choosing the right multigrid

components is as important for the performance as their

concrete implementation. It is impossible to evaluate all

options, thus only a small number of alternatives is con-

sidered which have proven to yield good convergence as

well as performance in literature and personal experience.

In a first step we derive asymptotic convergence rates by

local Fourier analysis (LFA) for Eq. (6) to select the most

promising multigrid components.

LFA is the main tool used for practical analysis of

multigrid solvers and is based on (discrete) eigenfunctions

or Fourier components that are for a constant coefficient

infinite grid operator in 2D given by

uhðh; xÞ ¼
Y2
j¼1

e
ihj

xj
hj ; h 2 R

2; x 2 Xh ð12Þ

with imaginary unit i and Fourier frequency h on an infinite

grid Xh ¼ fðxÞ j xi ¼ zihi; i 2 f1; 2g; zi 2 Zg: The

corresponding (discrete) eigenvalues or Fourier symbols

are, e. g., for the discretized Laplacian

�DhðhÞ ¼ 1

h2
ð4� eih1 � e�ih1 � eih2 � e�ih2Þ ð13Þ

¼ 1

h2ð4� 2cosðh1Þ � 2cosðh2ÞÞ
: ð14Þ

From this we are able to derive Fourier symbols for the

smoother, the coarse grids, and the inter-grid transfer

operators in order to compute an error reduction factor for a

multigrid iteration. In order to evaluate, e.g., the symbol of

the smoother Ŝ in the whole domain, we note that Fourier

components with

jĥj ¼ maxfjĥ1j; jĥ2jg� p ð15Þ

are not visible on Xh; since they coincide with components

uhðh; :Þ; where h ¼ ĥðmod2pÞ; due to the periodicity of the

exponential function. Therefore, the Fourier space

F ¼ spanfuhðh; :Þ : h 2 H ¼� � p; p�2g ð16Þ

contains any bounded infinite grid function vh 2 FðXhÞ ¼
fvh j vhð:Þ : Xh 7!C; kvhkXh\1g: Since we use a grid

hierarchy for multigrid, on coarser grids certain high

frequencies coincide with low frequencies, depending on the

coarsening scheme.We assume standard coarsening, i.e., the

number of grid points is reduced by a factor of two in each

dimension and decompose the Fourier space into low and

high frequencies with Hlow ¼� � p=2; p=2�2 and Hhigh ¼
HnHlow as shown in Fig. 1. Then, a smoother acts mainly on

high frequencies and the smoothing factor q is defined as

qðŜÞ ¼ sup
h2Hhigh

jŜhðh;xÞj
n o

: ð17Þ

In Table 1 we list LFA results for a varying number of

smoothing steps and two different restriction operators

computed by the LFA software provided within [23]. Note

that these predicted asymptotic error reduction factors are

an upper limit for measured error reduction factors in our

numerical experiments. The measured reduction factors

depend on the initial solution and especially in the first few

V-cycles the error reduction factors can be substantially

better than the asymptotic error reduction factors.

Only V-cycles are taken into account, since although

other cycle types like FMG are asymptotically better, they

were less effective in our experiments. We will see that

only a few multigrid iterations are required to reach a

satisfactory solution within our application.

Furthermore, we choose the following components: as

smoother Sm
h; Gauss–Seidel with red–black ordering of the

unknowns is used as shown in Fig. 2. In contrast to a usual

lexicographic Gauss–Seidel, it leads to slightly better

asymptotic convergence rates for our problem [23] and can

be parallelized easily, because first the red unknowns can

be updated in parallel and then the black ones.

Fig. 1 Fourier frequencies generating a space of 2h-harmonics,

where Hlow is the white region (the white diamond denotes a

h00 2 Hlow) and Hhigh ¼ HnHlow is the shaded region (the black

diamonds denote h11; h10; h01 2 HnHlow) [23]
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LFA results, as shown in Table 1, suggest that half-

weighting is preferable for more than two smoothing steps

on each level and that more than five smoothing steps do

not improve the convergence rate considerably. Therefore,

we will use half-weighting and V(2, 1), V(2, 2), or V(3,2)

cycles in our further studies. For prolongation of the error,

a bilinear interpolation operator P is applied. For simplicity

we restrict ourselves to squared domains of size

N ¼ 2L � 1ð Þ2; L 2 N and thus have only one unknown on

the coarsest grid such that we can easily solve there

exactly.

Next we correlate for k V-cycles the error reduction

factor j ¼ q1ð Þk (we choose q1 ¼ q3L in the following)

with the associated resource usage. Here, the resource of

interest is time T ¼ k � tV : This enables us to rate the effi-

ciency of our multigrid solver and compare different

multigrid settings, either according to the required resource

usage

T ¼ tV � logq1j ð18Þ

to reach a common error reduction, or according to the

error reduction factor

j ¼ q1ð Þ
T
tV ð19Þ

which is achievable with a certain amount of resources.

In the next section we will estimate tV for concrete

optimal GPU implementations of a multigrid V-cycle.

4 Performance engineering for the multigrid solver

This section follows the basic principles of performance

engineering. It outlines and creates performance models

first for a baseline implementation using a straightforward

memory layout, then for an improved memory layout, and

eventually for an advanced temporal blocking technique.

4.1 Preliminary considerations

It is known from previous work, e.g., [5] that most simple

geometric multigrid methods are mainly memory bounded.

Therefore, it is reasonable to aim for GPUs as target

platforms, as they provide much higher bandwidth than

general purpose CPUs at a better cost to bandwidth ratio. In

the following, we focus on NVIDIA’s Fermi architecture.

The GPU code is developed using the Open Compute

Language (OpenCL).

In contrast to its predecessors, Fermi relies on caches

similar to most standard CPUs, and reading a single value

requires to allocate a whole cache line. On the other hand,

stencil operations on regular grids automatically exploit not

only spatial, but even temporal locality, as multidimensional

OpenCL work-groups typically map to rectangular regions.

For write operations Fermi can prevent allocation of

partially written cache lines, but their eviction is about as

expensive as for whole cache lines.

Hardware and algorithms are often characterized by the

ratio between floating point operations and operand trans-

fers. For all tests, an NVIDIA GTX 480 was used. It per-

forms up to 1.35 GFlop/s with fused multiply-adds and has

177.4 GB/s peak memory bandwidth, leading to a balance

of about 30.

The total runtime of a V-cycle

tV ¼
XL
l¼1

tl ¼
XL
l¼1

Xnl
k¼1

tkl ¼
XL
l¼1

Xnl
k¼1

t dkl
� �

¼
XL
l¼1

Xnl
k¼1

max
dkl

bðdkl Þ
; tk

� � ð20Þ

comprises the times tl spent on each grid level l, which

again consist of the execution times tl
k of the nl associated

kernels. As main memory access dominates performance,

tl
k will be modeled based on an estimate of how much data

dl
k it transfers and with which bandwidth b(d) this can

optimally be done. Additionally, control and bookkeeping

on the host system, taking place in the NVIDIA CUDA

Table 1 One-level smoothing factor q; spectral norm of two-level

error reduction factor q2L; and spectral norm of three-level error

reduction factor q3L obtained by LFA for the 2D Poisson problem

computed by the LFA software provided in [23]. We use a red–black

Gauss–Seidel smoother, full- (Rf) or half-weighting (Rh) for restric-

tion, and bilinear interpolation. Vðm1; m2Þ denotes a V-cycle with m1
pre-smoothing and m2 post-smoothing steps

R V(1,1) V(2,1) V(2,2) V(3,2)

q 0.063 0.033 0.025 0.019

q2L Rf 0.074 0.052 0.041 0.033

q2L Rh 0.104 0.074 0.056 0.044

q3L Rf 0.125 0.034 0.024 0.019

q3L Rh 0.161 0.053 0.034 0.027

Fig. 2 Red–black ordering of the grid points in 2D
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driver and the OpenCL runtime library, limits kernel

throughput further. The observed runtime of a kernel is

therefore at least tk.

On each level, Ah is given by the constant stencil from

Eq. (8) and only the current approximation uh
* and the right-

hand side fh of Eq. (7) need to be stored. For each of

them, a storage size of sl is assumed, which will become

the basis of the performance estimates. For simplicity,

let also m :¼ m1 þ m2 be the total number of smoothing

steps per level.

4.2 Considered optimizations

One iteration of the red–black Gauss-Seidel smoother

consists of an update of the solution at all red grid points,

followed by an update of the solution at all black grid

points. In order to compute the new value of the solution at

a certain grid point, the value of the right-hand side fh at

that point, which is of the same color, and the value of the

solution at the four direct neighbors, which are of the other

color, are involved. It sets the local residual at the

respective point to zero. This can be exploited in the fol-

lowing ways, as is also described in Algorithm 2.

Each resulting value of a half-weighting restriction

depends on five residual elements. After at least one pre-

smoothing step, four of them have just been set to zero. The

restriction therefore degenerates to a weighted injection.

If at least one post-smoothing step is performed, it

makes no sense to correct the red unknowns, as the suc-

ceeding red update will overwrite these results anyway.

It is sufficient to correct only black unknowns.

A zero initial guess is used for coarse grid problems, and

homogeneous Dirichlet boundary conditions are to be

imposed. So the first red update on the coarse grid corre-

sponds to a scaling of the red values of fh by the reciprocal

of the diagonal matrix entry, which is constant on each grid

level. This can be performed efficiently together with the

construction of a coarse fH.

If two or more red–black Gauss-Seidel iterations are

used for pre-smoothing, one can even go further and omit

initialization of the coarse-grid approximation and the first

red update altogether. Instead, the first black update

directly loads and scales the respective red values of fH as

input. A second iteration of the smoother is necessary, as

the red unknowns are otherwise still uninitialized.

It is assumed that the V-cycle descents to a coarse grid

of 1 unknown, so that a single Gauss-Seidel iteration can be

used as exact coarse grid solver. For these small grids,

however, kernel call overhead becomes dominant over

execution time. It, therefore, makes sense to handle all

computations of the V-cycle below a certain level in a

single kernel call employing a single OpenCL work-group.

A reasonable threshold is at 312 unknowns, because all

required data will fit into the shared memory of the

graphics card then (in OpenCL terminology this is local

memory).

4.3 Basic memory layout

Each iteration of the smoother requires two separate calls

to update the red and later the black unknowns due to the

restricted synchronization capabilities of OpenCL’s paral-

lel paradigm. A basic memory layout will use one two-

dimensional array for the current approximation uh
* and one

for fh. Even if only one in two values of each buffer is read

or written, the hardware will have to effectively transfer

each buffer completely. Each of the 2m kernel calls for the

smoother will therefore transfer at least 3 sl.

Except for the finest grid, the first red pre-smoothing

update can be dropped, and the succeeding black update

will use scaled red values from fH as input. These red

values are brought into the cache with the black values,

anyway, so that the first pre-smoothing requires only one

kernel call transferring at least 2 sl.

For half-weighting restriction the residuals need to be

computed at all red points in only every second line, but

half of the lines of fh and the whole uh
* are effectively read.

Additionally, the coarse right-hand side fH needs to be

written, leading to an estimate of 1.5 sl ? sl?1.

Correction needs only to be applied to black fine grid

unknowns, but effectively the whole fine grid uh
(k) is read
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and written. Together with the coarse grid approximation,

this kernel transfers at least 2 sl ? sl?1.

Looking only at transfer estimates, the simplification

of the first pre-smoothing on coarse grids is the only

algorithmic optimization this implementation draft

profits from.

The execution times on each level tl from Eq. (20)

become

tbasic1 ¼ tð1:5s1 þ s2Þ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{restriction

þ tð2s1 þ s2Þ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{correction

þ 2m � tð3s1Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{smoother

tbasicl ¼ tð1:5sl þ slþ1Þ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{restriction

þ tð2sl þ slþ1Þ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{correction

þ tð2slÞ
zffl}|ffl{first pre�smoothing

þ 2ðm� 1Þ � tð3slÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
rest of smoother

for 1\l\ðL� 4Þ

XL
l¼L�4

tbasicl ¼ t31�31: ð21Þ

4.4 Improved memory layout with color splitting

As has become obvious in the previous section, the fact

that red and black unknowns are stored intermixed results

in unnecessary memory transfers. A common strategy is

therefore to split the buffers for uh
(k) and fh each into two

buffers that either hold red or black values. When referring

to the respective buffers on a certain grid level, they are for

simplicity denoted as ur, ub, fr, and fb. Each of those half-

arrays requires hl 	 sl
2
of memory. The kernel structure and

their tasks do not change, but the device memory transfer is

reduced by this modification.

The smoother profits greatly from this memory layout.

The update of one color of unknowns, for instance red, will

only require reading ub and fr as well as writing ur. This

about halves the requirements of the basic memory layout

to 3 hl & 1.5 sl in each kernel call. The first red update of

pre-smoothing can still be dropped, but the succeeding

black update will have the same transfer as any other—

instead of the basic layout, the red values of fh must

explicitly read from fr.

For the restriction, red values for uh
* and fh are only

required in every second line, but ub will need to be

transferred completely, and both half-arrays of the coarse

fH need to be written. Altogether, about 2 hl ? 2 hl?1 &
sl ? sl?1 need to be transferred.

If constrained to black fine grid points, also correction

profits from the split memory layout. Transfer is reduced to

modifying black values of uh
* and reading the whole

uH
(k), resulting in transfer of 2 hl ? 2 hl?1 & sl ? sl?1 just

like for the restriction.

The time spent on each level now accumulates to

t
split
1 ¼ 2 � tðs1 þ s2Þ

zfflfflfflfflffl}|fflfflfflfflffl{restriction=correction

þ 2m � tð1:5s1Þ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{smoother

t
split
l ¼ 2 � tðsl þ slþ1Þ

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{restriction=correction

þ ð2m� 1Þ � tð1:5slÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
smoother

for 1\l\ðL� 4Þ

XL
l¼L�4

t
split
l ¼ t31�31: ð22Þ

4.5 Temporal shared memory blocking

Spatial cache blocking techniques, which adapt the pro-

cessing order to improve cache locality, and temporal

cache blocking techniques, that fuse multiple operations to

increase locality further, have been proven to be efficient

especially on standard CPUs and, to some extent, on GPUs

[4, 7, 12, 18]. Especially for regular data structures, spatial

cache blocking works equally simple in sequential and

parallel codes and are implemented implicitly in OpenCL if

multidimensional work-groups map to rectangular regions.

Utilizing temporal blocking techniques on GPUs is

challenging. Coherency provided by OpenCL’s memory

model and synchronization facilites except inside work-

groups are limited. On the other hand, a high degree of

parallelism is essential. As a direct consequence of

OpenCL’s definition, work-groups must cooperatively

compute the outcome of multiple operations and compose

the result by writing disjoint regions. Using OpenCL’s

local memory (which will map to at most 48 kiB of shared

memory per multi-processor in Fermi GPUs) is used as a

common scratchpad for sharing intermediate results.

When fusing a whole red–black Gauss–Seidel update to

uh
(k?1) into a single kernel call, a work group is responsible

to compute new black values in a certain rectangular region

[ x1, x2 ] 9 [ y1, y2 ]. For simplicity it is assumed that this

region is not close to the boundary. To be able to compute

and store these black values, values of the preceding red

update are required, in fact inside the larger region [ x1 -

1, x2 ? 1 ] 9 [ y1 - 1, y2 ? 1], to satisfy data depen-

dencies. These intermediate values in turn depend on the

black values from uh
(k) within [ x1 - 2; x2 ? 2 ] 9 [ y1 -

2; y2 ? 2 ]. Obviously, this halo of data dependencies and

temporaries that need to computed redundantly by multiple

work-groups grows further if fusing more operations.

To allow reasonable sizes, one-dimensional work-

groups are used that compute only one line of such a region

at a time. The respective procedure is depicted in Fig. 3 for
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the temporally blocked smoother. Three partial lines of red

intermediates need to be stored in localmemory (see Fig. 3a) to

enable the succeeding black update (see Fig. 3b). Like in a ring

buffer, the oldest red line is then replaced (see Fig. 3c),

allowing to compute thenext black line (seeFig. 3d), and soon.

Fusing as many operations as possible and increasing

the size of such regions to improve surface-volume-ratio

can reduce transfer, but only until size of local memory and

the required high degree of parallelism oppose. Eventually,

it only makes sense until device memory bandwidth is not

the limiting factor anymore. As intensive temporal block-

ing requires complicated control, introduces synchroniza-

tion and heavily accesses shared memory and cache, this

point can be reached very soon.

In the smoother, red points only show up as intermediate

values—in fact, this section will outline an implementation

that uses a split memory layout that does not store the zero-

valued boundary conditions and handles all red unknowns

on all levels as temporaries, so that red values need only to

be written in the very last post-smoothing step of the last

V-cycle to create a complete solution.

By fusing red and black update, smoothing only requires

m kernel calls. Each will need to read the stored black half

of uh
(k) and the whole fh to write a new black half of uh

*, so

that the estimate becomes 4 hl & 2 sl. The initial

smoothing step on coarser grid levels only depends on

fH; hence transfer is reduced to 3 hl & 1.5 sl.

The restriction is always performed together with the last

pre-smoothing step. In addition to the three red lines required

for the smoothing part, three lines of black need to be pre-

served for the residual calculation and the dependency halo is

increased by another layer. On the other hand, no additional

kernel call is added. As only the coarse fH needs to be written

in addition to pure smoothing, the combined kernel transfers

accumulates to about 4 hl ? 2 hl?1 & 2 sl ? sl?1. If only a

single pre-smoothing step is used—such V-cycles are not

examined—this is reduced by another 0.5 sl.

Similarly, the correction of level l - 1 is combined with

the last post-smoothing step on level l. As the coarse

iteration uh
* is not required further, its values are used for

correction and then discarded. Concerning the coarse grid,

only the black values of uH
(k) and the whole fH are read, and

the transfer sums up to 3 hl ? 2 hl-1 & 1.5 sl ? sl-1.

Please note that here correction contributes to the run-

time of the coarser level. As the red intermediates are

required for fine grid correction, the specialized kernel for

descending below 31 9 31 will skip the last post-

smoothing. Instead, a kernel call performing that Gauss-

Seidel update and correcting the 63 9 63 level is added.

The time spent on each level is now estimated as

tblock1 ¼ tð2s1þ s2Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{last pre�smoothing with restriction

þðm� 1Þ � tð2s1Þ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{rest of smoother

tblockl ¼ tð1:5slÞ
zfflfflffl}|fflfflffl{first pre�smoothing

þ tð2slþ slþ1Þ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{last pre�smoothing with restriction

þ tð1:5slþ sl�1Þ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{last post�smoothing with correction

þðm� 3Þ � tð2slÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
rest of smoother

for1\l\ðL� 4Þ

XL
l¼L�4

tblockl ¼ t31�31þ tð1:5sL�4þ sL�5Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
correction of levelðL�5Þ

: ð23Þ

Fig. 3 Temporal blocking is

used to perform a red–black

Gauss-Seidel iteration within

the shaded rectangular

subdomain of the grid. a Red

unknowns from three lines need

to be held in local memory as

temporaries to compute black

unknowns. b One line of black

values can be computed within

the rectangle and stored to

global memory. c The oldest

buffer of red temporaries is

recycled for another partial line.

d Another line of black

unknowns can be updated

134 J Real-Time Image Proc (2016) 11:127–139

123



4.6 Evaluation of implementation approaches

As gold standard for memory bandwidth, the device-to-

device copy performance of the clEnqueueCopyBuffer

command is used. Results for the GTX 480 are depicted in

Fig. 4. For small sizes, the observed bandwidth only

depends on the maximum throughput of copy operations,

which is roughly one per 4 ls on the test system. Starting

from about 256 KiB, the actual operation on the card

becomes dominant, reaching a peak bandwidth of slightly

below 150 GB/s at 64 MiB. Consider that data needs to be

read and written for copying, so actually twice as much

data was transferred.

The possible kernel throughput varies with, among other

factors, number and type of arguments, and can be derived

experimentally. As a reference, executing an empty

OpenCL kernel taking four buffer and four integral argu-

ments using a single work-item was chosen, resulting in a

throughput of about one kernel call every 7.5 ls: For small

data sizes, this imposes a stricter limit than the built-in

copy performance, the corresponding bandwidth limitation

is also included in the graph.

The specialized 31 9 31 coarse grid kernel cannot be

reasonably modeled by its device memory throughput. As

only a single work group is started, only a small part of the

GPGPU is active—a single of 14 so-called streaming

multiprocessor. Memory operations that are cached or to

local memory become similar slow as global memory

accesses, frequent synchronization limits performance

further. Thus we chose to use the measured runtime of our

implementation for a coarse V(2,1) kernel call as t31 9 31,

which is 30 ls:
An intuitive understanding is possible when looking at

the performance estimates for typical setups. Eventually,

one is interested in reducing the error as fast as possible.

Based on Eq. (18), t1E-4 estimates the time to reduce the

error by four magnitudes, which requires 3.14 V(2,1)-

cycles, 2.72 V(2,2)-cycles, or 2.55 V(3,2)-cycles. This

comparison is equally valid for any other target accuracy

due to the monotonicity of the logarithm.

For problems of 1,0232, 2,0472, and 4,0952, Table 2

compares the runtime and time-to-solution efficiency that

can be expected for three V-cycle configurations.

Here, the V(2,1)-cycle promises fastest convergence for

all outlined implementations. But as the performance of a

final implementation will vary to some extent, this will

have to be re-evaluated with measured performance values

again.

4.7 Performance results for multigrid solver

with temporal blocking

Eventually, temporal blocking with a split memory layout

was implemented in OpenCL as outlined before. Perfor-

mance measurements are included in Table 2. Also for the

real execution time, the V(2,1) proves to be optimal.

The actual runtime is about twice as long as the estimate

at grid size 1,0232, about 1.6 times as long at 2,0472, and

about 1.4 times as long at 4,0952. There are various reasons

and explanations for these deviations:
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The performance models are optimistic in the assump-

tion of perfect caching, which is not feasible in practice.

Further, an algorithm that requires complex addressing and

relies on data reuse is likely not to saturate the memory bus

as good as a simple copy operation. Both are especially

true for temporal blocking, where a resulting value depends

on a larger neighborhood and where the ratio between

device memory access and work inside the multiprocessor

gets even worse.

Using the NVIDIA visual profiler (nvvp), the behavior

of the V(2,1)-cycle for 20472 is now investigated in more

detail. An extensive description of the Fermi architecture

can be found in OpenCL Programming Guide, 2012,

appendix C; an exact description of the events and metrics

supported by nvvp can be found in CUPTI User’s Guide

(2012).

Table 3 shows the measured bandwidth and the exces-

sive transfer, i.e., how much more memory transfer was

measured than estimated in the optimistic performance

model, for the smoothing kernel at 2,0472, for the kernel

call that performs smoothing with successive restriction to

1,0232, and for the smoothing at 1,0232 with correction of

the finer grid of 2,0472. The two questions remaining are if

the excessive transfer is reasonable and why the achieved

memory bandwidth is below prediction.

The excessive transfer depends on the block size used by

the blocking technique, which was determined experi-

mentally to yield best performance. To get a simple yet

reasonable estimate the effects at the boundaries and of

caching between work-groups are neglected, and opti-

mal caching inside work-groups is assumed. A single

work-group performing the smoothing as analyzed in Table

3 will read 193 9 26 elements of ub and 192 9 24 of fr for

the red update from device memory first, and then

191 9 22 elements of fb to compute and write as many new

black iterates. Considering that always whole cache lines

comprising 32 values are loaded and the transfer estimate

of 4 9 191 9 22 values from the model, an excess of

224 � 26
zfflfflfflffl}|fflfflfflffl{read ub

þ 192 � 24
zfflfflfflffl}|fflfflfflffl{read fr

þ 192 � 22
zfflfflfflffl}|fflfflfflffl{read fb

þ 191 � 22
zfflfflfflffl}|fflfflfflffl{write ub

4ð191 � 22Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
model estimate

� 100% 	 12:2%

should be expected, and using the same approach

14.5 % excess for smoothing with restriction and 13.0 %

for smoothing with correction. This also proves that the

shared memory blocking method actually works.

NVIDIA’s Fermi architecture provides a dual-issue

pipeline, resulting in a peak performance for each pro-

cessing element of two instructions per cycle (IPC).

Additionally, operations that cannot complete in time may

need to be replayed—e.g., because of memory bank col-

lisions when accessing cache or shared memory or cache

misses.

The profiler measures an IPC value of roughly 1.25 for

smoother and about 1.45 for smoother with restriction. An

instruction replay of close to 20 % in the first case and

more than 10% in the latter indicate an even better utili-

zation. Also other metrics, e.g., low thread divergence

(below 4 %) and high achieved occupancy (over 95 %),

imply that the kernels execute efficiently on large grids.

Reducing the number of instructions further is difficult.

One can retrieve the intermediate code that is generated

from the OpenCL runtime and passed to the graphics dri-

ver, but the final binary code can neither be extracted nor

are its instructions publicly documented. Experience,

guess-work, and trial-and-error have already been largely

invested to optimize the kernels.

Looking at small grids, however, the picture changes.

For 5112 unknowns, the smoother achieves only below

16 GB/s of device memory bandwidth instead of the model

Table 1 Performance estimates and measurements for implementa-

tion of temporal blocking in ms

tV t1E-4

V(2,1) V(2,2) V(3,2) V(2,1) V(2,2) V(3,2)

1; 0232

Basic layout 1.03 1.31 1.59 3.2 3.6 4.1

Split layout 0.68 0.85 1.03 2.1 2.3 2.6

Blocking 0.43 0.54 0.64 1.4 1.5 1.6

Measurement 0.90 1.10 1.30 2.8 3.0 3.3

2; 0472

Basic layout 3.4 4.4 5.4 10.7 12.0 13.7

Split layout 2.0 2.5 3.0 6.1 6.7 7.6

Blocking 1.3 1.6 2.0 4.1 4.4 5.0

Measurement 2.1 2.6 3.2 6.6 7.2 8.1

4; 0952

Basic layout 12.9 16.5 20.2 40.3 45.0 51.5

Split layout 7.0 8.8 10.7 21.9 24.1 27.3

Blocking 4.7 5.9 7.1 14.6 16.1 18.2

Measurement 6.5 8.3 10.0 20.5 22.5 25.4

Table 3 Analysis of runtime, bandwidth, and amount of excessive

memory transfer for smoothing at grid size 2,0472 alone and with

restriction to 1,0232, and for smoothing at 1,0232 with successive

correction

Runtime

(ms)

Bandwidth

(GB/s)

Excess

(%)

Smoothing 0.31 124 13

Smoothing

with restriction

0.42 108 19

Smoothing

with correction

0.26 112 14
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value of 110 GB/s. As there are not even enough work

groups to employ all multiprocessors, the occupancy drops

below 15 %.

It was shown that the temporal blocking technique is

able to reduce the memory transfer drastically and reach

great performance on large grids, even better than a

straightforward implementation can optimally achieve. On

the other hand, it requires substantial control code on

GPGPUs making instruction throughput a limiting factor.

For large grids the model delivers reasonable estimates,

with explainable deviations. As the optimized solver will

be used interactively, performance is critical for large

images, and sub-optimal performance for small images still

produces sufficient frame rates. Otherwise, we had to adapt

the performance model to better catch the effects on

smaller grid levels and probably switch to another imple-

mentation there.

5 HDR compression results

In order to do full HDR compression, we have to

1. transfer the input image from CPU to GPU via the

PCIe bus,

2. apply the attenuating function U as described in

section 2 to its derivatives,

3. restore the HDR compressed image by solving Eq. (6)

via three V(2,1)-multigrid cycles, and

4. transfer the final image back from GPU to CPU via the

PCIe bus.

In our application we have 2D X-ray images with a gray

value range of 12 bit, i.e., [0..4095], stored as short values.

In order to guarantee subpixel accuracy for the backward

transform for such images, i.e., the maximum pixel error

between the original and the restored image is below 1, we

have to perform three V(2,1)-cycles. Note that the reduc-

tion of the maximal pixel error roughly is in the same order

of magnitude as the reduction of the residual. We fit the

images of arbitrary sizes to the next higher power of two

numbers of pixels in each dimension in order to use our

efficient multigrid solver. For the transfers and the HDR

compression the actual image sizes can be used.

The transfer time can be easily approximated with the

measured bandwidth of the PCIe bus that is for pinned

memory approximately 6 GB/s and the fact that for each

pixel 2 � 2 ¼ 4 Bytes have to be transferred to GPU and back.

The HDR compression part basically computes the

right-hand side for the solver and is implemented within

two GPU kernels. The main kernel loads the original image

on each level from global memory and writes the attenu-

ating function U and the RHS. This kernel is very compute

intensive since for each pixel besides approximately 20 add

or multiply operations and two divisions also a square root

and power have to be computed, where we apply the native

variants of these functions.

In addition to the main kernel we require a bilinear

interpolation kernel for U (see Eq. 3). Note that we did not

further optimize the HDR compression part since it shows

to contribute only a small fraction to the overall runtime.

Table 4 lists the overall performance of HDR com-

pression for different image sizes and splits the runtime

into the fractions for CPU-GPU transfers, HDR compres-

sion and solving. For the largest size 4,0952 that shows best

performance roughly 51 % of the time is spent in the sol-

ver, 28 % in the transfers, and 21 % in the HDR com-

pression. Next we show test results for two HDR

compressed 2D X-ray images in Fig. 5.

The HDR compression is part of a software package that

supports different image formats and provides additional

functionality like an interactive OpenGL visualization of

the HDR compressed images on GPU. This enables the

user to do parameter studies for a series of input images.

Additionally, post processing like windowing of the gray

values can be done.

6 Discussion

Of course, besides multigrid there exist other methods to

solve the Poisson equation like FFT based techniques or

conjugate gradients, but it is known that they have

asymptotically worse convergence rates. Since the com-

putational effort for one grid point within a multigrid solver

is constant independently of the problem size N, i.e., the

computational complexity is OðNÞ; at least for larger

problems multigrid will be faster than FFT-based solvers

having computational complexity OðN logNÞ: In [22] a

discrete sine transform (DST)-based Poisson solver for

HDR compression is developed and in [19] we compared

multigrid and FFT for the 3D Poisson equation for imaging

problems and estimated the problem size, for which mul-

tigrid becomes faster than FFT.

Besides these theoretical considerations it is difficult to

compare different implementations of solvers. Of course,

we could provide runtimes for other solvers, but it would

Table 4 Achievable frames per second (fps) for HDR compression

with different image sizes and runtime in ms for transferring the

image to GPU and back, doing the HDR compression, and restoring

the resulting image

N fps Time transfer Time HDR Time solver

1,0232 240 0.73 0.71 2.70

2,0472 88 2.78 2.22 6.32

4,0952 26 10.8 8.01 19.6
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only be a fair comparison if these codes were also opti-

mized towards our problem and the used hardware. To

roughly give an idea of the performance of an FFT-based

multigrid solver for our problem, we run a forward and

backward FFT using the cuFFT1 library that is one of the

fastest FFT implementations on GPU currently. In order to

solve the Poisson equation with Dirichlet boundary con-

ditions a DST is necessary [22] that can be computed via an

FFT of size 2N. We neglect the time for dividing the

coefficients before the backward transformation. For a

problem size 1,0232 cuFFT takes 2.22 ms, for 2,0472 it

takes 8.61 ms, and thus the multigrid solver is already

faster since it takes 6.32 ms in that case (see Table 4).

7 Conclusions

We have implemented a tool to do real-time imaging in the

gradient domain based on an efficient multigrid solver on

GPU. As an example, we show that on current GPUs real-

time HDR compression of medical data sets up to size

4,0952 is possible. In order to achieve an optimal imple-

mentation we apply a structured performance engineering

approach based on a detailed performance model.

Next we plan to compare our performance on NVIDIA

GPUs to AMD graphics cards and CPU implementations of

OpenCL. Furthermore, the algorithm can be extended

easily to 3D medical data sets, where applicability and

efficiency of temporal blocking techniques is interesting.

Additionally, alternative HDR compression methods

based on filters like in [10] can be compared with the

implemented method.
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