
ORIGINAL RESEARCH PAPER

Real-time HD image distortion correction in heterogeneous
parallel computing systems using efficient memory access patterns

Rui Melo • Gabriel Falcao • João P. Barreto

Received: 19 March 2012 / Accepted: 24 November 2012 / Published online: 12 December 2012

� Springer-Verlag Berlin Heidelberg 2012

Abstract High-definition video is becoming a standard in

clinical endoscopy. State-of-the-art systems for medical

endoscopy provide 1080p video streams at 60 Hz. For such

high resolutions and frame rates, the real-time execution of

image-processing tasks is far from trivial, requiring careful

algorithm design and development. In this article, we

propose a fully functional software-based solution for

correcting the radial distortion (RD) of HD video that runs

in real time in a personal computer (PC) equipped with a

conventional graphics processing unit (GPU) and a video

acquisition card. Our system acquires the video feed

directly from the digital output of the endoscopic camera

control unit, warps each frame using a heterogeneous

parallel computing architecture, and outputs the result back

to the display. Although we target the particular problem of

correcting geometric distortion in medical endoscopy, the

concepts and framework herein described can be extended

to other image-processing tasks with hard real-time

requirements. We show that a heterogeneous approach, as

well as efficient memory access patterns in the GPU,

improve the performance of this highly memory-bound

algorithm, leading to frame rates above 250 fps.

Keywords Radial distortion �Heterogeneous architecture �
Medical endoscopy � Concurrent processing �
GPU optimization

1 Introduction

Endoscopic images are usually acquired using a flexible or

rigid lens coupled to a CCD sensor. The lens is introduced

into the patient’s body through a small port for visualizing

the anatomical cavities during surgery and diagnosis. In

this type of procedure, the endoscopic video is the only

guidance for the medical practitioner and therefore the

system has to provide the best imaging quality possible [1].

The latest endoscopic systems use 1080p video

(1,920 9 1,080 pixels/frame) at 60 Hz as the standard for

visualization. The HD resolution and the high frame rate

allow an enhanced visualization of the structures and

therefore are likely to significantly improve the surgeon’s

perception [2].

Due to the small size of the lens, endoscopic images

present strong RD (also known as barrel distortion). RD is

a nonlinear geometric deformation of the image that moves

the points radially toward the center and can severely affect

the notion of depth [3]. Several authors have addressed

the problem of RD correction in wide angle lenses [4–7],

but these either are not suited for real-time HD processing

[4, 5] or do not fully model the endoscopic camera [6, 7].

Advances in very large-scale integration (VLSI) systems

using the distortion model estimation proposed in [4]

showed promising results in the correction of RD using

dedicated hardware. Asari presented in [8] an efficient

VLSI architecture to correct the RD in wide-angle camera

images by mapping the algorithmic steps onto a linear

array. Later, in [9], a pipelined architecture was presented

R. Melo (&) � J. P. Barreto
Department of Electrical and Computer Engineering, Faculty

of Science and Technology, Institute for Systems and Robotics,

University of Coimbra, 3000-214 Coimbra, Portugal

e-mail: rmelo@isr.uc.pt

J. P. Barreto

e-mail: jpbar@isr.uc.pt

G. Falcao

Department of Electrical and Computer Engineering, Faculty

of Science and Technology, Instituto de Telecomunicações,

University of Coimbra, 3030-290 Coimbra, Portugal

e-mail: gff@co.it.pt

123

J Real-Time Image Proc (2016) 11:83–91

DOI 10.1007/s11554-012-0304-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-012-0304-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-012-0304-3&domain=pdf

that was able to process images at a rate of 30 Mpixels/s. In

[10], the authors proposed a VLSI implementation for RD

correction that reduced in 61 % the number of cells com-

pared to [9] and achieved a throughput of 40 Mpixels/s.

The recent work presented in [11] reduced at least 69 %

hardware cost and 75 % memory requirement compared to

previous works. In [12], the authors presented a compari-

son of RD correction implementations on a homogeneous

multi-core processor, a heterogeneous cell broadband

engine, and an FPGA. They concluded that only an FPGA

and a fully optimized version of the code running on the

cell processor could provide real-time processing speed

(30 fps for input images of 2,592 9 1,944, which trans-

lates into a throughput of 150 Mpixels/s).

While previous software-based implementations fail to

process large amounts of data in real time or do not fully

model the endoscopic camera, hardware-based solutions

lack the versatility to adapt to different devices or lenses

(and therefore changes in the projection model in real time)

and involve additional costs and effort to implement.

In this work, we propose a system for acquiring and

processing the HD video feed from an endoscope in real

time using a conventional PC equipped with an acquisition

board and a GPU. Our solution is based on the work of [13]

that updates the endoscopic camera projection model [6],

according to the possible lens rotation at each frame time

instant. Our system acts like a plug-and-play module that

captures the video feed, processes each frame on a regular

PC, and then outputs the result back into the existing

visualization system (see Fig. 1). We verify that a homo-

geneous multi-core CPU is not capable of supporting HD

real-time video distortion correction, as observed in [12],

and the GPU-based implementation of [13] also fails to

deliver the necessary frame rates for the latest endoscopic

devices. Our framework for correcting the radial distortion

of a HD video stream is based on a heterogeneous imple-

mentation that uses both CPU and GPU concurrently. We

demonstrate that a hybrid solution, where the computa-

tional workload is distributed across the CPU and the GPU

in parallel, enables the processing of the video feed

(1,920 9 1,080 pixels/frame) at frame rates up to 250 fps

(500 Mpixels/s throughput) when implementing efficient

memory access patterns on the GPU side of the heteroge-

neous parallel system.

2 Radial distortion correction in clinical endoscopy

This article is closely related to the work presented in [13].

While [13] describes the camera projection model, the

calibration of the endoscope in the OR, and the estimation

of the relative rotation of the lens scope, the current article

addresses in detail the problem of efficient implementation

for real-time execution in HD endoscopic devices.

In [13], the endoscopic camera is calibrated from a

single image of a chessboard pattern [14] with the radial

distortion being described by the so-called division model

[15] that uses a single parameter n to quantify the amount

of image deformation. Consider X the 3D coordinate of a

point in the world reference frame. The corresponding

point x0 in the image plane is determined by the projection

Eq. 1:

x0 �KCnðPXÞ; ð1Þ

where * denotes an equality up to a scale factor, K is the

well-known intrinsics matrix obtained by the camera

calibration and P denotes the standard 3 9 4 projection

matrix [3]. Cn is the radial distortion non-linear function

that maps world undistorted points xu �ðxu yu zuÞT into the

corresponding world distorted point:

CnðxuÞ� 2xu 2yu zu þ
ffi

z2u � 4nðx2u þ y2uÞ
q

� �T

: ð2Þ

Assuming that the 3D point X is represented in the camera

reference frame, P�ðI3�3 03�1Þ and therefore we can

compute the distorted image coordinates of an undistorted

image point x0u (in pixels) by:

Fðx0uÞ�KCnðK�1
y x0uÞ: ð3Þ

where K�1
y maps the undistorted image point x0u into a

canonical plane, specifying certain desired characteristics

of the undistorted image (e.g., center, resolution) [13].

The camera calibration changes during operation

because the doctor rotates the lens scope with respect to the

CCD head. As discussed in [13], the problem can be solved

by considering an adaptive projection model that takes into

account this relative rotation. The authors devised an effi-

cient algorithm for extracting the image boundary and

detecting the lens mark (Fig. 2) that relies on the extraction

Fig. 1 Proposed system scheme. The video feed is captured directly

from the video output of the acquisition device, processed in our

heterogeneous system, and then sent back into the existing visuali-

zation system

84 J Real-Time Image Proc (2016) 11:83–91

123

of boundary contour points on the GPU, as well as standard

methods implemented on the CPU (such as RANSAC [16]

and Kalman filtering [17]) to deliver a robust estimation of

the rotation parameters. With this new adaptive projection

model, the intrinsics matrix is updated by a rotation around

the lens rotation center q and the distortion mapping of

Eq. 3 becomes:

Fðx0uÞ�KiCnðR�ai;q
00
i
K�1
y x0uÞ: ð4Þ

where Ki �Rai;qiK is the intrinsics matrix updated

according to the lens rotation a at time i and R�ai;q00i
is a

rotation matrix that rotates the warping result back to the

original orientation.

Figures 2 and 3 show the results of the RD correction in

different environments using the mapping function in

Eq. 3, where the effects of the distortion are easily noticed.

3 Proposed system

GPUs have emerged as powerful processors in the last few

years. The recent introduction of the CUDA interface [18]

has enabled the scientific community to parallelize com-

putationally intensive algorithms and to achieve faster

execution times [19]. The Nvidia GF100 and subsequent

architectures (also known as Fermi) introduced significant

improvements in memory accesses and a drastic increase in

compute capability when compared with the previous G80

and GT200 families. In Sect. 4, we perform experiments

using both older architectures (G80 and GT200) and the

more recent Fermi family.

The proposed system consists of a regular workstation

equipped with a GPU and an HD acquisition board. The

HD video feed is captured through the acquisition board

and the image is transferred to the GPU that performs part

of the processing. At the end, the resulting corrected image

is displayed onto the visualization system through the

OpenGL buffer. Figure 4 illustrates the processing steps

for each frame of the video feed.

The system runs in a heterogeneous environment with

one POSIX thread [20] handling the GPU device calls and

the other performing the serialized CPU processing nec-

essary to extract the meaningful region boundary of the

image mentioned in Sect. 2.

The system is divided into four main processing blocks:

• Colorspace conversion: After transferring the image

into the GPU (in YUV422 format), a colorspace and

grayscale conversion is performed. Each RGB channel

plus the grayscale value are written to the global

memory and later bound to the texture memory space of

the GPU.

• Boundary detection: Using the grayscale image and the

previous boundary estimation parameters from the CPU

thread, the boundary contour points are extracted using

the procedure described in [13] and the result is passed

to the CPU to compute the boundary for the next

iteration.

• RD correction: Using the R, G and B channel textures

and the previous boundary estimation parameters, the

RD is corrected on the GPU and the result is written to

the OpenGL global memory buffer for visualization.

• CPU thread: The CPU thread is responsible for robustly

estimating the boundary contour from a set of contour

points extracted on the GPU. This procedure involves a

RANSAC [16], low pass, and EKF [17] to robustly fit

Fig. 2 RD correction of an imaged chessboard pattern. In order to

adapt the projection model to the lens rotation, we have to determine

the meaningful region boundary X; the triangular mark that indicates

the relative rotation a between the camera head and the lens, and the

lens rotation center coordinates q in the image

Fig. 3 Result of the RD correction in different environments. The left

column shows the original image and the right column the image after

distortion correction

J Real-Time Image Proc (2016) 11:83–91 85

123

an ellipse to the boundary contour and estimate the lens

rotation parameters.

Figure 5 shows the processing blocks execution

sequence each time a frame arrives from the video stream,

where we can observe the concurrent execution on the CPU

and GPU. Note that the execution is perfectly balanced

between CPU and GPU when the boundary detection -

CPU time approaches the RD correction ? result image

display ? image acquisition ? colorspace conversion

time.

3.1 Image acquisition

The video feed is captured directly from the endoscope’s

control unit video output using the YUV422 transmission

format. Taking human perception into account for chro-

minance components, the YUV422 format encodes 2 RGB

pixels into a single YUV quadruple. This is of great

importance when implementing real-time systems since

this video format significantly reduces the necessary

bandwidth for transmission and, consequently, the latency

of the video stream without compromising the image

quality. Moreover, as shown in Fig. 6, the memory align-

ment of the YUV422 image is perfectly suited to fulfil the

GPU’s optimized memory access patterns presented in this

article.

3.2 Heterogeneous processing

As opposed to previous works [4–6, 8–12], where only the

problem of RD correction using a static projection model is

solved, we address the RD correction under projection

model changes due to the possible endoscopic probe rota-

tion. The update of the projection model requires additional

computation for determining the boundary contour of the

meaningful region of the image and the relative lens

rotation [13]. To achieve higher processing performance,

we execute both GPU and CPU code concurrently. As

shown in Figs. 4 and 5, we split the processing into two

POSIX threads: (1) Pthread 1 is responsible for acquiring

the image and performing the CUDA API calls for con-

verting the image colorspace, extracting the boundary

contour points, and correcting the RD; (2) Pthread 2 is

responsible for performing the serial part of the boundary

contour estimation. This includes a RANSAC, low pass,

and EKF operations that are detailed in [13]. The high

processing frame rate of the system (more than 250 fps, as

depicted in Sect. 4) allows the RD correction of the current

frame (at time t) based on the boundary parameters of the

Fig. 4 Processing stages of the RD correction system. The system

runs in two POSIX threads. Pthread 1 is responsible for the

acquisition and processing of the acquired frame on the GPU.

Pthread 2 is responsible for the serial parts of the algorithm running

on the CPU. The threads are synchronized trough conditional

variables placed at the red horizontal dashed lines. Pthread 2 is

launched at t1 and delivers the previous boundary estimation Xt�1 as

well as the rotation parameters (a, q) to Pthread 1 that waits at t2. In

this way, the system processes the current frame based on the

previous boundary estimation

Fig. 5 Image-processing time-

line sequence for a generic

video stream

86 J Real-Time Image Proc (2016) 11:83–91

123

previous frame (at time t - 1) without compromising the

accuracy of the correction. By using both the CPU and

GPU concurrently, we are able to hide the serialized CPU

processing workload, as shown in the results of Sect. 4, and

therefore substantially increase the system’s performance.

3.3 Efficient GPU memory accesses

The GPU section of the system presented in Fig. 4 carries

most of the workload for correcting an HD frame. Since the

RD correction problem is mainly memory bound, we

devised efficient memory accesses to/from the slow devi-

ce’s global memory to hide data accesses’ latency. The

optimization of the device’s global memory accesses is

based on a specific memory alignment procedure, known as

coalescence that allows reducing the global number of

memory accesses. In this way, threads that are processed

simultaneously in batches of 16 (known as half warps) by

one multiprocessor can perform the corresponding memory

accesses during the same clock cycle.

In the colorspace conversion kernel of Fig. 4, each

thread of a half warp accesses the global memory data as a

16-byte aligned array corresponding to four YUV422

quadruplets (Fig. 6). Each quadruplet is decomposed into

two RGB pixels and the data are packed into 8-byte words

for writing in global memory (each channel and the gray-

scale value are stored into different memory locations). In

this way, the 16 threads of a half warp read a total amount

of 16 9 16 = 256 byte data and write 16 9 8 = 128 byte

for each image channel plus the grayscale image into the

global memory. Since data are perfectly aligned, the global

memory read/writes are totally coalesced into single

memory load/store accesses.

In the RD correction kernel, each thread of a half warp

fetches four texture values from the texture memory of the

GPU and interpolates the result using the built-in bilinear

interpolation hardware. The retrieved values are interlaced

into 4 RGBA quadruplets and therefore the write opera-

tions requested from the 16 threads of a half warp are

coalesced into a single 256-byte memory transaction

(Fig. 7).

4 Experimental results

4.1 Experimental setup

Since the heaviest workload is distributed on the GPU, we

conducted a series of experiments using different GPUs

and different HD resolution inputs. We performed experi-

mental tests on four Nvidia GPUs belonging to three dis-

tinct architectures: (1) a GTX580 (Fermi architecture) with

16 multiprocessors and a total of 512 CUDA cores running

at a clock speed of 1,544 MHz; (2) a high-end C2050

(Fermi architecture) with 14 multiprocessors and a total of

448 CUDA cores running at a clock speed of 1,150 MHz;

(3) a 9800GT (G80 architecture) with 14 multiprocessors

and 112 CUDA cores running at 1,500 MHz; and (4) a

GTX260M (GT200 architecture) with 14 multiprocessors

and 112 CUDA cores at 1,375 MHz. For each different

hardware, we tested the code using the uncoalesced

accesses to the GPU’s global memory implementation and

Fig. 6 Memory access pattern per thread for the colorspace conver-

sion kernel. Each thread in a half warp accesses a 16-byte word from

the global memory (four YUV422 quadruples). For each YUV422

quadruple, the thread computes the two corresponding R, G, B and

grayscale values and packs them into 8-byte words that are written to

the corresponding global memory location. Since the data are aligned,

the 16 threads of a half warp read a total amount of 16 9

16 = 256 byte and write 16 9 8 = 128 byte for each image channel

plus the gray scale using single memory load/store instructions

Fig. 7 Memory access pattern per thread for the RD correction

kernel. For each group of 4 RGBA pixels, the radial distortion kernel

thread computes the corresponding locations in the distorted space.

As the resulting coordinates do not necessarily fall into the regular

lattice of the input image, the data are retrieved through 2D texture

memory fetches that, through the built-in interpolation hardware,

perform the bilinear interpolation of the value. Each thread in a half

warp fetches four elements of each channel texture and the result is

packed into a 16-byte word (consisting of 4 RGBA pixels) and written

to the global memory (that is mapped to an OpenGL buffer). The data

to be written into the global memory by the 16 threads of a half warp

is perfectly aligned and therefore the operation is coalesced into a

single memory write instruction

J Real-Time Image Proc (2016) 11:83–91 87

123

also the optimized coalesced version on a sequence of 450

frames. The code is written in C?? using CUDA 4.0.

4.2 Time profiling

Figure 8 compares the processing time of four different

implementations of our distortion correction algorithm: (1)

a naive purely CPU based solution; (2) a hypothetical CPU

version using OpenMP1 directives [21]; (3) our heteroge-

neous approach using a GTX580 GPU without efficient

memory accesses; and (4) our heterogeneous approach

using a GTX580 GPU and efficient memory access pat-

terns. The CPU used in the experiment is an

IntelrCoreTM2 Quad CPU running at 2.40 GHz. The

comparison given in Fig. 8 shows that the CPU is not able

to handle the distortion correction in HD images even when

parallelizing the code throughout the multiple CPU cores.

Figure 9 and Table 1 show the mean time needed to

process each frame of the input video stream at different

resolutions using the four GPUs mentioned above. The

times were computed by correcting a sequence of 450

endoscopic video frames and computing the mean time per

frame for each resolution used. It can be seen that the

system can handle full HD resolution at frame rates above

60 Hz when using the efficient global memory access

patterns. The best processing time for a 1,920 9 1,080

video resolution is achieved with the coalesced imple-

mentation in the GTX580 GPU. With this setup, the system

is capable of correcting the RD of endoscopic images at a

frame rate of approximately 250 fps (500 Mpixels/s

throughput).

Figure 11 shows the temporal profile of each part of the

system individually. It can be seen that, as expected, the

use of efficient memory access patterns significantly

decreases the processing time of the colorspace conversion

and RD correction kernels. Note that the boundary detec-

tion on the CPU (textured bar) is overlapped because it

runs concurrently with the GPU code (see Figs. 4 and 5).

4.3 Scalability

Concerning the computation on the GPU presented in

Fig. 11 and Table 2, we expect a lower gain in perfor-

mance when applying our efficient memory access patterns

on the C2050 and GTX580 GPUs, since Fermi architec-

tures perform intrinsic memory access optimizations when

accessing misaligned data from the global memory space.

By coalescing data accesses to global memory, we obtain

gains of 6.6 and 3.7 % in the kernel execution time for the

C2050 and GTX580 GPUs, respectively, and approxi-

mately 25 % for the older GPUs. This represents a 7 and

63 % reduction in the total computation time for the Fermi

and G80/GT200 architectures, respectively.

The graphic of Fig. 10 shows the performance of our

solution as a function of the number of processing cores in

the GPU. It can be seen that, by using a GTX580 GPU with

512 CUDA cores, we achieved a processing time 19.5 %

inferior to the time of the system equipped with a C2050

GPU (448 CUDA cores). Figure 10 shows that the pro-

posed solution is scalable and that it should suit future

requirements of this type of medical imaging systems that

expectedly will consist of higher HD image resolutions and

frame rates.

576p 720p 1080p
10

0

10
1

10
2

10
3

Resolution

E
xe

cu
ti

o
n

 t
im

e
(m

s)

Total time CPU
Total time CPU with OpenMP
Total time GPU no coalesced
Total time GPU coalesced

Fig. 8 Comparing CPU and GPU execution times for correcting the

radial distortion of HD images. The times represent the mean time

needed to correct each frame of the video stream at different

resolutions

576p 720p 1080p
0

5

10

15

20

25

30

35

Resolution

T
im

e
(m

s)

120fps

60fps

30fps

GTX580 coalesced
GTX580 uncoalesced
C2050 coalesced
C2050 uncoalesced
9800GT coalesced
9800GT uncoalesced
GTX260M coalesced
GTX260M uncoalesced

Fig. 9 Mean total time per frame of the system for different GPUs at

different resolutions. Both implementations using coalesced and

uncoalesced memory accesses are compared. The resulting output

frame size of the system is equal to the input resolution. All four

devices can process 1080p video resolution at 60 fps when using

coalesced accesses to global memory

1 OpenMP can be used for shared-memory architectures, such as

conventional commercially available off-the-shelf many-core CPUs

of the x86 family. As the workstation CPU has four processor cores,

OpenMP can be used to parallelize the serial code into all the cores

[21]. Doing so would allow achieving a theoretical maximum speedup

of 4x relatively to the current CPU code (although the speedup

achieved with this kind of parallelization usually does not reach those

theoretical maximum values).

88 J Real-Time Image Proc (2016) 11:83–91

123

4.4 Discussion

Table 2 shows the difference in GPU occupancy while

using the efficient memory access patterns proposed. We

can observe that, since the coalesced accesses to the

memory significantly reduce the transfer times, the overall

time is decreased and the GPU occupancy is more balanced

across data transfers and kernel executions.

As shown in Fig. 5, as long as the boundary detection on

the CPU (running on Pthread 2) does not exceed the sum of

the image acquisition, colorspace conversion, RD correc-

tion, and image display processing times (running on

Pthread 1), the CPU computation of the boundary is

entirely hidden by the GPU processing. For example,

observing Fig. 11d, at 576p resolution for a GTX580 GPU,

we can see that the CPU time (grey bar) is higher than the

concurrent GPU stages execution time (image acquisi-

tion ? colorspace conversion ? RD correction ? image

display). In this case, the CPU is the bottleneck of the

proposed system performance. On the other hand, in most

of the remaining setups, the GPU execution is always

higher than the CPU execution. The implementation of a

heterogeneous system significantly increased the overall

performance of the system, truly balancing the workload

distribution between CPU and GPU.

5 Conclusion and future work

In this article, we proposed a software-based system for

correcting the RD in endoscopic images that is capable of

correcting 1080p HD images at 250 fps. The proposed

solution is based on a heterogeneous parallel computing

architecture that uses both the CPU and the GPU con-

currently to process the HD video feed, and not only

corrects the RD but also adapts the projection model

according to the endoscopic lens rotation. Moreover, we

perform memory access optimizations on the GPU that

turn out to be fundamental for achieving higher process-

ing frame rates and real-time execution on both new and

older GPU architectures. With this work, we proved that a

careful and efficient usage of conventional hardware

outperforms current software-based solutions and com-

petes with dedicated hardware-based and heterogeneous

cell implementations of the RD correction in wide angle

lens. Our solution is scalable and will support GPUs with

even more processing cores, reducing the video process-

ing times and potentially supporting upcoming video

systems, such as 4kUHD (3,840 9 2,160) or 8kUHD

(7,680 9 4,320).

The presented HD image-processing pipeline can be

extended for purposes other than RD correction, such as

stereo reconstruction or visual SLAM for computer-assisted

Table 1 Mean total time per frame in milliseconds for the different hardwares tested at the resolutions used in Fig. 9

CPU GTX260M 9800GT C2050 GTX580

u. c. u. c. u. c. u. c.

576p 106.75 13.15 6.56 10.44 5.01 3.48 3.23 3.02 2.97

720p 221.72 16.12 9.40 12.87 6.11 3.65 3.39 3.35 3.26

1080p 476.72 (2 fps) 30.98 12.84 (77 fps) 24.18 9.35 (106 fps) 5.20 4.84 (206 fps) 4.18 3.90 (256 fps)

The bold values highlight the processing time of our optimized solution at the higher resolution available

Table 2 GPU occupation percentage for host–device transfers (H-

D), device–device transfers (D-D), and kernel executions for the

colorspace conversion, boundary detection and RD correction (Ker-

nels) in the different GPUs

H-D (%) D-D (%) Kernels (%) Total GPU (ms)

GTX580 u. 20.8 27.6 26.3 3.37

GTX580 c. 22.5 30.8 22.6 3.07

C2050 u. 21.2 29.8 40.3 4.2

C2050 c. 24.7 32.6 33.7 3.8

9800GT u. 5.0 9.0 85.3 23.2

9800GT c. 13.8 22.2 59.6 8.3

GTX260M u. 4.7 10.0 78.9 29.8

GTX260M c. 12.1 21.4 51.1 11.6

The bold values highlight the kernels’ occupancy dropdown when

using optimized memory acceses

112 192 448 512
3

4

5

6

7

8

9

10

CUDA cores

F
ra

m
e

P
ro

ce
ss

in
g

 T
im

e
(m

s)

Fig. 10 Execution time per frame of our system processing a 1080p

video stream as a function of the number of cores available on the

GPU

J Real-Time Image Proc (2016) 11:83–91 89

123

surgery. As future work, we will port the code to many-core

systems (multiple CPUs/GPUs, for example) to increase the

computational capabilities of the system and support more

complex image processing in the pipeline.

Acknowledgments This work was supported by the Portuguese

Agency for Innovation (ADI) through the QREN co-promotion pro-

ject 2009/003512 sponsored by the Operational Program ‘‘Factores de

Competitividade’’ and the European Fund for Regional Development.

References

1. Soper, N.J.: Mastery of Endoscopic and Laparoscopic Surgery.

Lippincott reverend and adventurer, Dhaka (2008)

2. Pierre, S.A., Ferrandino, M.N., Simmons, W.N., Fernandez, C.,

Zhong, P., Albala, D.M., Preminger, G.M.: High definition lap-

aroscopy: objective assessment of performance characteristics

and comparison with standard laparoscopy. J. Endourol. 23(3),
523–528 (2009)

3. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Com-

puter Vision, 2nd edn. Cambridge University Press, Cambridge

(2004). ISBN 0521540518

4. Asari, K., Kumar, S., Radhakrishnan, D.: A new approach for

nonlinear distortion correction in endoscopic images based on least

squares estimation. IEEE Trans. Med. Imaging 18, 345–354 (1999)
5. Vogt, F., Krüger, S., Niemann, H., Schick, C.H.: A system for

real-time endoscopic image enhancement. MICCAI, LNCS 2879,

pp. 356–363 (2003)

6. Hartley, R., Kang, S.B.: Parameter-free radial distortion correc-

tion with centre of distortion estimation. In: ICCV, vol. 2,

pp. 1834–1841 (2005)

7. Jeught, S.V., Buytaert, J., Dirckx, J.: Real-time geometric lens

distortion correction using a graphics processing unit. Opt. Eng.

51, 1–5 (2012)

8. Asari, K.V.: Design of an efficient VLSI architecture for non-

linear spatial warping of wide-angle camera images. J. Syst.

Archit. 50(12), 743–755 (2004)

9. Ngo, H.T., Asari, V.K.: A pipelined architecture for real-time

correction of barrel distortion in wide-angle camera images. IEEE

Trans. Circuits Syst. Video Technol. 15(3), 436–444 (2005)

10. Chen, P.-Y., Huang, C.-C., Shiau, Y.-H., Chen, Y.-T.: A VLSI

implementation of barrel distortion correction for wide-angle

camera images. Trans. Circuits Syst. 56, 51–55 (2009)

11. Chen, S.-L., Huang, H.-Y., Luo, C.-H.: Time multiplexed VLSI

architecture for real-time barrel distortion correction in video-

endoscopic images. IEEE Trans. Circuits Syst. Video Technol.

21(11), 1612–1621 (2011)

576p 720p 1080p
0

5

10

15

20

25

30

35

Resolution

T
im

e
(m

s)

Result image display (GPU)
RD correction (GPU)
Boundary detection (GPU)
Colorspace conversion(GPU)
Image Aquisition (capt. board)
Boundary detection (CPU)

576p 720p 1080p
0

5

10

15

20

25

30

Resolution

T
im

e
(m

s)

576p 720p 1080p
0

1

2

3

4

5

6

Resolution

T
im

e
(m

s)

576p 720p 1080p
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Resolution

T
im

e
(m

s)

576p 720p 1080p
0

5

10

15

20

25

30

35

Resolution

T
im

e
(m

s)

576p 720p 1080p
0

5

10

15

20

25

30

Resolution

T
im

e
(m

s)

576p 720p 1080p
0

1

2

3

4

5

6

Resolution

T
im

e
(m

s)

576p 720p 1080p
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Resolution

T
im

e
(m

s)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11 Time profile of the processing stages for the system using coalesced (c.) and uncoalesced (u.) memory accesses to the GPU’s global

memory. The colorspace conversion time also includes the transfer of the input image from the host to the device (GPU)

90 J Real-Time Image Proc (2016) 11:83–91

123

12. Daloukas, K., Antonopoulos, C.D., Bellas, N., Chai, S.M.: Fish-

eye lens distortion correction on multicore and hardware accel-

erator platforms. In: IEEE International Symposium on Parallel

Distributed Processing (IPDPS), pp. 1 –10 (2010)

13. Melo, R., Barreto, J.P., Falcao, G.: A new solution for camera

calibration and real-time image distortion correction in medical

endoscopy: initial technical evaluation. IEEE Trans. Biomed.

Eng. 59(3), 634–644 (2012)

14. Barreto, J., Roquette, J., Sturm, P., Fonseca, F.: Automatic

camera calibration applied to medical endoscopy. In: BMVC,

London (2009)

15. Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view

geometry and lens distortion. In: CVPR, vol. 1, pp.125–132 (2001)

16. Fischler, M.A., Bolles, R.C.: Random sample consensus: a par-

adigm for model fitting with applications to image analysis and

automated cartography. Commun. ACM 24, 381–395 (1981)

17. Bozic, S.M.: Digital and Kalman Filtering. Edward Arnold,

London (1979)

18. NVIDIA.: CUDA Programming Guide 4.0, June 2011. Rev 1

19. Kirk, D., Hwu, W.: Programming Massively Parallel Processors:

A Hands-on Approach. Morgan Kaufmann, San Francisco (2010)

20. Butenhof, D.R.: Programming with POSIX Threads. Addison-

Wesley Longman Publishing Co. Inc., Boston (1997)

21. Chapman, B., Jost, G., Van Der Pass, R.: Using OpenMP: Portable

SharedMemory Parallel Programming (ScientificComputation and

Engineering Series). The MIT Press, Cambridge (2008)

Author Biographies

Rui Melo received the Inte-

grated Master’s degree

(BSc ? MSc) in Electrical and

Computers Engineering from the

University of Coimbra, Coimbra,

Portugal, in 2009. Since 2009 he

is a computer vision researcher at

the Institute for Systems and

Robotics, Coimbra. He is cur-

rently a Ph.D. student at the

University of Coimbra, Portugal.

His main research interests are

computer vision and parallel

programming.

Gabriel Falcao graduated at the

University of Porto (FEUP),

Portugal, where he also con-

cluded a MSc. degree in the area

of digital signal processing in

2002. In 2010 he received a

Ph.D. in Electrical and Com-

puter Engineering from the

Faculty of Science and Tech-

nology of the University of

Coimbra (FCTUC), Portugal,

where he is currently an Assis-

tant Professor. In 2011 he

became a Visiting Professor at

EPFL, in Switzerland. He is also

a Researcher at the Instituto de Telecomunicações and his scientific

interests include high-performance and parallel computing, hybrid

computation on heterogeneous systems and digital signal processing

algorithms, namely those related with biomedical engineering. Gab-

riel is a Member of the IEEE and IEEE Signal Processing Society.

João P. Barreto (M’99)

received the ’’Licenciatura’’ and

Ph.D. degrees from the Univer-

sity of Coimbra, Coimbra, Por-

tugal, in 1997 and 2004,

respectively. From 2003 to

2004, he was a Postdoctoral

Researcher with the University

of Pennsylvania, Philadelphia.

He has been an Assistant Pro-

fessor with the University of

Coimbra, since 2004, where he

is also a Senior Researcher with

the Institute for Systems and

Robotics. His current research

interests include different topics in computer vision, with a special

emphasis in geometry problems and applications in robotics and

medicine. He is the author of more than 30 peer-reviewed publica-

tions. He is also regular reviewer for several conferences and journals,

having received 4 Outstanding Reviewer Awards in the last few years.

J Real-Time Image Proc (2016) 11:83–91 91

123

	Real-time HD image distortion correction in heterogeneous parallel computing systems using efficient memory access patterns
	Abstract
	Introduction
	Radial distortion correction in clinical endoscopy
	Proposed system
	Image acquisition
	Heterogeneous processing
	Efficient GPU memory accesses

	Experimental results
	Experimental setup
	Time profiling
	Scalability
	Discussion

	Conclusion and future work
	Acknowledgments
	References

