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Abstract Retinex is an image restoration approach used

to restore the original appearance of an image. Among

various methods, a center/surround retinex algorithm is

favorable for parallelization because it uses the convolution

operations with large-scale sizes to achieve dynamic range

compression and color/lightness rendition. This paper

presents a GPURetinex algorithm, which is a data parallel

algorithm accelerating a modified center/surround retinex

with GPGPU/CUDA. The GPURetinex algorithm exploits

the massively parallel threading and heterogeneous mem-

ory hierarchy of a GPGPU to improve efficiency. Two

challenging problems, irregular memory access and block

size for data partition, are analyzed mathematically. The

proposed mathematical models help optimally choose

memory spaces and block sizes for maximal parallelization

performance. The mathematical analyses are applied to

three parallelization issues existing in the retinex problem:

block-wise, pixel-wise, and serial operations. The experi-

mental results conducted on GT200 GPU and CUDA 3.2

showed that the GPURetinex can gain 74 times accelera-

tion, compared with an SSE-optimized single-threaded

implementation on Core2 Duo for the images with

4,096 9 4,096 resolution. The proposed method also out-

performs the parallel retinex implemented with the nVidia

Performance Primitives library. Our experimental results

indicate that careful design of memory access and mul-

tithreading patterns for CUDA devices should acquire great

performance acceleration for real-time processing of image

restoration.

Keywords Center/surround retinex � GPGPU � CUDA �
Parallelization � Image restoration

1 Introduction

Retinex is an effective method for removing environmental

light interference and has been used as a preprocessing step

in many image and video applications, such as video

compression [1], high dynamic range imaging [2], face

recognition [3], and multisensor image fusion [4]. Retinex

is a nonlinear mechanism that can achieve color constancy

by simulating human color perception, which can adapt to

varying light conditions and improve the visual quality of a

perceived image. Land [5, 6] first proposed a model of the

lightness and color perception of human vision. Various

extensions of retinex have been developed and can be

categorized into three classes: path-based algorithms,

recursive algorithms, and center/surround algorithms.

Among the three classes, the center/surround retinex

algorithm has no iterative process and is suitable for par-

allelization. The single-scale retinex (SSR) [7] algorithm is

the first proposed center/surround algorithm that can either

achieve dynamic range compression or color/lightness

rendition, but not both. Both dynamic range compression

and color/lightness rendition are achieved by multiscale

retinex (MSR) [8] and multiscale retinex with color res-

toration (MSRCR) [9, 10] algorithms by combining small

and large center/surround information. The computation of

these retinex algorithms includes center/surround infor-

mation extraction and log-domain processing, which have

high time complexity.

The computation of image processing such as the center/

surround retinex is intensive and time-consuming. Tradi-

tional sequential processing methods are often unable to
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gain real-time performance. The multicore CPU, digital

signal processor (DSP), field programmable gate array

(FPGA), and general-purpose graphics processing unit

(GPGPU) are hardware solutions to improve the performance

of parallel processing. Using a multicore CPU involves

applying large-core technologies with pipelines and hyper-

threads to achieve instruction-level parallelism, but multicore

CPU architecture is inappropriate for demanding computa-

tion applications. DSP programs, which are also parallelized

at the instruction level, are effective for portable and

mobile multimedia applications because of the low power

consumption of DSPs; however, the level of their giga

floating-point operations per second (Gflops) performance is

inadequate for highly demanding applications. The FPGA

involves adopting a customized hardware circuit to achieve

superior parallelism, higher efficiency, and greater Gflops

performance, compared to using multicore CPUs and DSPs.

Graphics processing units (GPUs) have traditionally been

used to execute only graphics applications, and developing

parallel processing algorithms on this platform is extremely

difficult. In recent years, GPUs have evolved into GPGPUs

and have been used as sources of massive computing power.

The multithreads of GPGPUs and many-core processors are

especially well suited for data parallel computation [11]. The

power consumption and Gflops performance of GPGCUs are

comparable with those of the FPGA. Cope et al. [12] sys-

tematically compared the FPGA and GPGPUs, finding that

the FPGA outperforms GPGPUs for algorithms requiring

large numbers of regular memory access, whereas GPGPUs

are superior for algorithms with variable data reuse. Compute

Unified Device Architecture (CUDA) is a software platform

that can be used to achieve fine-grained parallelism in a

GPGPU using Single Instruction Multiple Threads (SIMT).

Developing GPGPU programs becomes more flexible and

efficient because of their easy programmability when accel-

erating image processing in program-level parallelism.

However, designing parallel algorithms on GPGPUs for

image processing is still challenging, especially in organiz-

ing thread hierarchy and using memory hierarchy to effi-

ciently compute image tasks such as pixel- and block-wise

operations. A GPGPU can accommodate hundreds or even

thousands of threads being executed in parallel, but a mas-

sive multithreading pattern designed without considering

constraints and latency degrades performance. In addition,

register, cache, and global memory spaces in a GPGPU

constituting a heterogeneous memory subsystem are

exposed to program access for the flexibility of data parallel

design. The performance of a parallelized image processing

task is highly sensitive to the irregularity in access patterns

of the heterogeneous memory subsystem, because memory

access can be serialized if massive threads attempt to issue

reads or writes without optimized memory access

organization.

This paper proposes a data parallel algorithm,

GPURetinex, to parallelize an improved MSRCR on a

GPGPU. The GPURetinex includes a parallel contrast

stretching method to the MSRCR for enhancing more

challenging images with a high dynamic range, low key,

and uneven illumination. The proposed method entails

three stages: a Gaussian blur for center/surround informa-

tion extraction, log-domain processing for color rendition

and dynamic range compression, and alpha-trimmed con-

trast stretching to enhance contrast.

The three stages present three types of concerns for data-

parallel design: block-wise, pixel-wise, and serial opera-

tions. A large convolution function in the Gaussian blur is

necessary for extracting center/surround information,

which is a block-wise operation and is extremely time

consuming. Computing of the Gaussian blur is therefore

approximated by separable convolution functions to reduce

computing load and internal data transfer. The log-domain

processing stage performs pixel-wise operations, which are

inherently parallel problems that are easy to be parallel-

ized. The serial calculation of histograms in the alpha-

trimmed contrast stretching stage is inappropriate for

GPGPU multithreading. A parallel reduction method [13]

using a shared memory model is adopted.

This study proposes mathematical models of memory

access patterns and multithreading patterns for the three

types of operations to optimize the GPURetinex algorithm.

Five different memory spaces in a GPGPU, including

global memory, shared memory, texture cache, constant

cache, and registers, are all exploited to place processing

data appropriately, based on the distinct characteristics of

each memory space and memory access pattern of the

algorithm. The multithreading pattern of the GPURetinex,

designed by considering SIMT characteristics and memory

constraints of CUDA devices, is developed to improve the

efficiency of parallelization.

The rest of this paper is organized as follows: Sect. 2

reviews recent works of parallel image processing that

have used GPGPU and center/surround retinex algorithms.

Section 3 presents the computational model of the pro-

posed GPURetinex method. The data-parallel design with

mathematical models of memory access patterns and

massive multithreading is explained in Sects. 4 and 5.

Section 6 provides implementation details of the

GPURetinex algorithm based on the mathematical models.

Experimental results are reported and discussed in Sect. 7.

Finally, the conclusion of this study is provided in Sect. 8.

2 Related work

Two topics are reviewed in this section. The characteris-

tics, advantages, and status of GPGPUs for improving
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image processing algorithms are first presented. A unified

view of current center/surround retinex methods is then

provided.

2.1 Parallel image processing by GPU and GPGPU

There were many earlier works on GPU computing for

image processing and computer vision before the born of

GPGPU/CUDA. A fragment shader was used by Moreland

and Angel [14] to compute fast Fourier transform on GPU

and they gained 4 times faster, compared to CPU imple-

mentation. Strzodka and Garbe [15] presented a motion

estimation algorithm with optical flow and achieved 2.8

times acceleration on a GeForce 5800 Ultra GPU than on

an optimized CPU version. Shen et al. [16] implemented

color space conversion for MPEG video encoding on GPU

using DirectX to achieve 2–3 times acceleration. Many

parallel algorithms for computer vision have been studied

in GPU4Vision [17], such as real-time optical flow and

total variation-based image segmentation.

Because a GPU is not a general-purpose and easily

programmed platform, some open source libraries have

been developed to aid the development of GPU algorithms.

OpenVidia [18] provided a framework for video input and

display. In addition, the implementation of feature detec-

tion and tracking, skin tone tracking, and real-time blink

detection was also provided in OpenVidia. GpuCV [19]

was designed to provide GPU acceleration with OpenCV

interfaces. Another open source library called MinGPU

[20] provided a set of useful image processing and com-

puter vision functionalities.

GPGPU has been recently developed to enable devel-

oping data parallel algorithms for general-purpose appli-

cations. CUDA is a programming framework developed for

nVidia GPGPUs. Because of its ease in programmability,

GPGPU/CUDA has been increasingly adopted recently to

accelerate computationally intensive tasks in image pro-

cessing and computer vision domains. This study con-

ducted a literature review of GPGPU parallelization in

image processing and computer vision. Owens et al. [21]

conducted a broad survey of general-purpose computation

on graphics hardware. A parallel Canny edge detector

under CUDA was demonstrated [22], including all algo-

rithm stages. They achieved 3.8 times acceleration on the

images of 3,936 9 3,936 resolution compared to an opti-

mized OpenCV version running on a PC. A real-time 3D

visual tracker with efficient Sparse-Template-based parti-

cle filtering was implemented by Lozano and Otsuka [23].

Their implementation can achieve 10 times performance

improvements, compared to a similar CPU-only tracker.

Accelerated wavelet-based image denoising was demon-

strated by [24] with a speed improvement of 7.9 times.

Parallelizing the boosting algorithm for object detection

was proposed by [25], and it can outperform an optimized

Core2 Duo CPU of 2.6 GHz by approximately 6–89. A

hybrid system sharing workloads between a CPU and a

GPGPU was proposed by [26] for stereo vision and optical

flow, and achieved a speed of up to 90 times.

Most previous implementations have not achieved

superior acceleration because the parallel design of image

processing requires exploiting hardware support for the

principle of locality, and expresses the algorithm in a

highly parallel fashion. A CUDA device is a GPGPU

consisting of a set of multicore processors, referred to as

streaming multiprocessors (SMs). Streaming processors

(SPs) within a SM work in a single-instruction multiple

data (SIMD) fashion. Although hundreds of cores in a

GPGPU can run in parallel to improve the performance of

the algorithm, a hierarchical memory structure with

memory nearly as fast as a multiprocessor has to be

exploited to exhibit spatial and temporal locality in par-

ticular programs. Off-chip memory has a much slower

bandwidth but a larger capacity than that of on-chip

memory. High-performance algorithms must exploit the

characteristics of the non-uniform memory subsystem

using as much fast memory and as little slow-access

memory as possible.

Five memory spaces exist in CUDA: global, texture,

constant, shared, and register memory. Global memory

space, which is off-chip memory with a large capacity, has

a high latency, typically two orders of magnitude greater

than the accesses to on-chip memory. Despite its usage

being the most flexible, its performance varies substantially

depending on the associated memory access pattern. Data

with a locality property accessed by global memory are

expensive because the memory is not cached. Using global

memory should be restricted to fully coalesced access.

Coalescing groups of reads or writes of multiple data items

into one operation improves memory bandwidth and

reduces overhead.

Cache memory spaces including texture and constant

caches store a copy of recently used data, removing the

need for a fetch from off-chip if those data are required

again. They are programmable using CUDA programs.

Accessing constant and texture memory spaces is as fast as

accessing registers on cache hits. Both types of cache

memory space are read-only, and provide highly efficient

memory accesses with locality properties. Constant cache

can only accommodate a small number of constants for

non-modifiable input data, but texture cache has plenty of

capacity (as much as global memory) because it is bound to

global memory.

Shared memory and register memory are types of

on-chip memory. Accessing shared memory is as fast as

accessing registers, as long as no bank conflict exists.

Placing data in shared memory can improve the
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performance significantly, especially when the data exhibit

locality. Registers are on-chip resources that are equally

divided across active threads in each multiprocessor. Each

multiprocessor has a fixed number of registers, and

excessive use of registers in a kernel limits the number of

threads that can run simultaneously, thus exposing memory

latency.

The parallel design in CUDA is based on the SIMT

model. Three levels of parallel granularity are in CUDA:

thread, warp, and thread block. A thread processes a single

datum of a data stream, such as an image pixel. The SIMT

simultaneously executes 32 parallel threads called ‘‘warps,’’

which are batched in groups called ‘‘blocks.’’ A thread block

can be executed only on a single SM. However, time slicing

enables a single SM to execute multiple blocks simulta-

neously. Each thread is executed independently with its own

instruction address and register state. Threads within a block

can be executed simultaneously and communicate with one

another through shared memory space.

The warp is the fundamental unit of instruction dispatch

within a single SM. When a multiprocessor is given one or

more thread blocks to execute, it partitions them into warps

and each warp is scheduled by a warp scheduler for exe-

cution. Warps of a block are concurrently executed by time

slicing. Each SM manages a pool of warps, totaling thou-

sands of threads. Individual threads composing a warp are

of the same type and begin simultaneously at the same

program address, but they are otherwise free to branch and

be executed independently.

Application acceleration is highly dependent on being

able to improve memory bandwidth and simultaneously

ensure that all cores within the multiprocessors are busy.

Enhancing the memory efficiency of applications on data-

parallel architectures requires analyzing the characteriza-

tion of memory access patterns in nested loops of the

algorithm. Massive multithreading can maximize the use of

all cores within the multiprocessors. However, resource

constraints are the barrier to the increase of threading,

because more threads may decrease performance because

of resource contention. The algorithmic memory selection

method in [27] can optimize the use of the non-uniform

memory subsystem on nVidia GPGPUs mathematically.

2.2 A unified view of center/surround retinex

algorithms

The path-based retinex algorithms are based on the multi-

plication of ratios between pixel values along a set of random

paths in an image. Brainard and Wandell [28] examined the

convergence properties, and a further development using

Brownian motion [29] introduced a randomly distributed

path. The primary drawbacks of path-based algorithms are

high computational complexity, and too many parameters

necessary to achieve satisfactory image restoration results.

However, computational dependency in the path geometry

causes it to become an inherently serial algorithm.

The recursive retinex algorithm, first developed by

Frankle and McCann [30], is a 2D extension of the path-

based version and replaces the path computation by per-

forming a recursive matrix comparison [30–32]. The

recursive retinex algorithm computes the ratios and prod-

ucts with long-distance iterations between pixels first, and

then progressively moves to short-distance interactions.

This algorithm is computationally more efficient than the

path-based class. However, the recursive approach must be

executed serially and cannot be parallelized.

Land [33] first proposed the center/surround retinex

algorithm. Contrary to the sequential and iterative manners

of the two classes, this new technique allows each pixel to

be treated separately. New pixel values are obtained by

computing the ratio between each treated pixel and a

weighted average of its surrounding area. This new imple-

mentation suggests that the center/surround information can

be computed from a blurred version of the input image.

Thus, Rahman et al. [7] proposed the SSR that uses a

Gaussian blur operation to compute the center/surround

information. The MSR [8] is an extension of SSR and

combines dynamic range compression and color/lightness

rendition by weighting three SSRs of different spatial scales.

In [9, 10], the MSRCR was proposed to compensate for the

inherent loss of color using a color restoration factor.

The center/surround retinex algorithms are faster than

those that are path-based, and the amount of parameters is

greatly reduced. It has lower computational cost and

overcomes the deficiency of the recursive retinex algo-

rithm. In addition, the retinex algorithms of the path and

recursive classes cannot be parallelized effectively because

of the algorithmic characteristics of high data dependency

among sequential steps, whereas the retinex algorithm of

the center/surround class can be greatly parallelized.

Therefore, the center/surround retinex algorithm is favor-

able for GPGPU/CUDA implementation.

The three center/surround algorithms are explained in a

unified view. The MSRCR algorithm combines small

center/surround information and large center/surround

information. In addition, it adopts a color adaptation

mechanism to improve color/lightness rendition of images

that contain gray-world violations. The basic form of

MSRCR is given in (1).

Riðx; yÞ ¼ Ciðx; yÞ �
XZ

z¼1

Wzðlog Iiðx; yÞ

�log ½Fzðm; nÞIiðx; yÞ�Þ; i 2 fR;G;Bg; ð1Þ

where Ri(x,y) is the MSRCR output at the coordinates (x, y)

in the ith spectral band of RGB color images, Ii(x, y) the
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original image, Fz the zth center/surround function, Wz the

weight of Fz, Z the number of center/surround functions,

and ‘‘�’’ denotes a convolution operation. The center/

surround function Fz (m, n) is given in (2).

Fzðm; nÞ ¼ Ke
�ðm2þn2Þ

vz ð2Þ

where vz is the scale of the zth Gaussian center/surround

function, and K is a constant satisfying the constraintRR
Fðm; nÞ dmdn ¼ 1. A smaller value of vz leads to nar-

rower surround, and a larger value of vz leads to wider

surround. Small scale plays a role in dynamic range com-

pression, whereas large scale contributes to color/lightness

rendition. The large scale can approach to the image size

and is computationally intensive.

Equation (1) uses multiple center/surrounds and differ-

ent weights to achieve a graceful balance between dynamic

range compression and tonal rendition. A combination of

three scales (i.e., Z = 3, representing narrow, medium, and

wide center/surrounds) is usually adopted to achieve both

dynamic range compression and tonal rendition simulta-

neously. The color restoration factor Ci(x, y) in (1) is

considered to offer color constancy and is given in (3).

Ciðx; yÞ ¼ b� log c� Iiðx; yÞP
i2fR;G;Bg Iiðx; yÞ

 !
ð3Þ

where Ci(x, y) is the color restoration coefficient in the ith

spectral band, b is a gain constant, and c controls the

strength of nonlinearity. The MSRCR can provide syn-

thesized color constancy, dynamic range compression,

enhancement of contrast and lightness, and favorable color

rendition.

The Ri(x, y) becomes an MSR output if the color res-

toration factor Ci(x, y) is not considered. The MSR can

combine the dynamic range compression and color rendi-

tion, but it has drawbacks for color images [34]. Further-

more, if not only Ci(x, y) is not considered but also the

number of center/surround function n is 1, then (1)

degenerates to be SSR. The SSR can only provide dynamic

range compression on a smaller scale that makes the edge

information become obvious. Conversely, when the larger

scale is adopted, the SSR can only provide color rendition

that increases color information. The SSR cannot simul-

taneously retain edge and color information.

The MSRCR is computationally the most intensive of

the three center/surround retinex algorithms because it

usually adopts three Gaussian blur convolutions on a large

scale to compute the center/surround information in each

spectral band.

The recent development of retinex has been devoted to

the real-time improvement of performance. [35, 36] imple-

mented the McCann and MSR algorithms using CUDA and

obtained 5.4 times improvement. Our preliminary studies

[37, 38] demonstrated the feasibility of high-performance

throughput for the computing of MSRCR using GPGPU.

However, the two implementation papers reported neither

mathematical analysis nor exhaustive experiments for the

results. This paper presents the theoretical design and

complete experimental results for the GPURetinex.

3 Computational model of the algorithm

This section presents the proposed GPURetinex algorithm,

which is an algorithmic improvement of MSRCR with a

data-parallel design. The GPURetinex algorithm involves

using the Gaussian convolution with a large kernel size to

obtain the center/surround information. The 2D Gaussian

filter is circularly symmetric, and can be approximated and

separated into two 1D Gaussian filters: row filter rz and

column filter cz. That is, Fz = rz � cz. To convolve an

image with separable filters, we first convolve each row of

the image using cz, resulting in an intermediate image. We

then convolve each column of this intermediate image

using rz. The resulting image approximates the direct

convolution of the original image and the 2D filter. Benefit

of adopting the separable filters is the reduction of com-

putation time. The convolution of an M 9 M image using

an N 9 N filter kernel requires a time proportional to

M2N2. However, the separable convolution only requires a

time proportional to M2N.

Equation (1) is decomposed into two operations because

there are two types of computations: block-wise and pixel-

wise. The two operations, Gaussian blur and log-domain

processing, are therefore rewritten as follows:

Gizðx; yÞ ¼ Fzðm; nÞIiðx; yÞ ffi rzðm; nÞczðm; nÞIiðx; yÞ; ð4Þ

Riðx;yÞ¼Ciðx;yÞ�
XZ

z¼1

WzðlogIiðx;yÞ� logGi;zðx;yÞÞ; ð5Þ

However, the retinex output Ri(x, y) may not improve

the best color/lightness rendition and contrast, especially

for images of high dynamic range, low-key, and uneven

illumination. A statistically robust method, alpha-trimmed

contrast stretching, is followed to improve its result:

Oiðx; yÞ ¼ TðRiðx; yÞÞ;

TðaÞ ¼
0; if a� âmin

ða� âminÞ � 255
âmax�âmin

; if âmin\a\âmax

255; if a	 âmin

8
><

>:
ð6Þ

The contrast stretching uses the histogram of Ri(x, y) to

find the two extreme values âmin and âmax in a statistically

robust manner before stretching is adopted. Let h(i) and

H(i) be the histogram and cumulative histogram of Ri(x, y)

and be defined as follows:
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hðiÞ ¼ 1

N

X

x;y

dðRðx; yÞ; iÞ; 0� i� L� 1; ð7Þ

HðiÞ ¼
XI

J¼1

hðjÞ; ð8Þ

where N is the number of pixels in Ri x; yð Þ, d(�,�) is the

Kronecker delta function, and L is the number of

quantization levels. Then âmin is statistically obtained by

a predefined quantile alow that is defined as the percentage

of pixels with gray levels less than âmin. âmax is also defined

similarly with a quantile ahigh. The values âmin and âmax are

obtained as shown in (9) and (10):

âmin ¼ minfijHðiÞ	N � alowg; ð9Þ
âmax ¼ maxfijHðiÞ�N � ð1� ahighÞg; ð10Þ

where 0 B alow, ahigh B 1, and alow ? ahigh B 1. The

upper and lower quantiles can be set to the same value (i.e.,

alow = ahigh = a) with a [ [0.005, 0.015].

An illustration of the algorithm is shown in Fig. 1. The

example image presents a low-key image of an indoor

scene with non-uniform illumination at night. The low-key

image contains a high dynamic range and a considerably

dark region. One person is standing in the dark region, and

it is not easy to perceive this person. Fig. 1c, e show the

enhancement images of MSRCR and the modified MSRCR

accompanied by alpha-trimmed contrast stretching. The

person in the dark region becomes visible, and the details

of the person are discernible in Fig. 1e.

The computational model provides the algorithmic

aspect of the modified retinex. Equations (4)–(10) can be

divided into three stages: Gaussian blur, log-domain pro-

cessing, and alpha-trimmed contrast stretching. Equation

(4) performs Gaussian blur and includes two convolution

steps: row filtering and column filtering. The second stage

log-domain processing is described in (5). The contrast

stretching defined by (6)–(10) contains histogramming and

stretching steps. A data-parallel design for the modified

retinex algorithm, the GPURetinex algorithm, is proposed

to improve its performance using GPGPU.

Additional analyses on the parallelization of (4) and (5)

are necessary because the two stages cost 98.4 % of the

execution time of the modified retinex. Gaussian blur and

log-domain processing constitute an inherently parallel

problem. Operations in these two stages can be parallelized

at a fine-grained level and run as the SIMT kernels on

CUDA. They are parallelized by distributing image data

among concurrent threads, and then each thread runs the

same kernel on its share of the data. However, the distri-

bution of image and processing data to various CUDA

memory spaces should greatly affect the performance

because data transfer between low-speed memory and a

multiprocessor costs time. Carefully designing data place-

ment according to memory and algorithmic characteristics

(i.e., a memory access pattern) is necessary. The multith-

reading pattern of these two stages is another performance

obstacle to be considered. Although massive threading with

thousands of threads in a multiprocessor is permissible in

CUDA, a higher threading size may degrade the use of

computing. Multithreading pattern according to hardware

constraints in warp, register, and shared memory must be

analyzed. The next two sections provide additional details

of the data-parallel design of the algorithm according to the

maximal use of memory access and multithreading

patterns.

4 Analysis of memory access pattern

The memory access patterns of the three stages are ana-

lyzed using nested loop and array access. Array access in a

specific nested loop exhibits one or many of six access

patterns: linear, coalescing, temporal reuse, same-address-

read, and chunkable. Proper selection of memory spaces

for each data array can be achieved by analyzing its access

patterns. We adopt the mathematical models and memory

selection algorithm presented in [27] to map our data arrays

to the most appropriate memory spaces in the CUDA

device.

Although many nested loops are in (3)–(11), we ana-

lyzed only the most critical loops from (4), (5), and (7).

Their loop structures are shown in Table 1. Equation (4)

performs block-wise operations. The two filtering steps

shown in Table 1a, b exhibit a loop structure of Depth 3.

Their memory access patterns are analyzed individually

because the two nested loops show different access char-

acteristics for data arrays of I, I0, r, and c. Table 1c includes

a loop structure of Depth 3 for the pixel-wise operation in

log-domain processing. The data arrays of W, I, G, R, and

C correspond to the Wz, Ii, Giz, Ri, and Ci in (5). They must

be placed on difference memory spaces. The sequential

loop operation of histogramming in listed Table 1d is a

loop of Depth 2 and reveals the data dependency of array

access and an irregular access pattern on the data array h,

which is defined in (7). Data racing occurs when the two

concurrent threads. The loops in the remaining equations

are not analyzed because they are pixel-wise operations

and have the same loop structure using (5).

The mathematical definition of an access pattern is

described here. Assume that a loop of depth D accesses a

P-dimensional array. We define the memory access pattern

of the array in the loop as a memory access vector p
*
; which

can be decomposed into the affine form: p
* ¼ P i

*

þ o
*
;

where P is a memory access matrix of size PxD, i
*

is an
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Fig. 1 Image enhancement using the two algorithms with Wz = 1/3,

1/3, 1/3, vz = 14, 69, 210, and a = 0.015 for the image size of

4,096 9 4,096. a, b The source image and its histogram, c, d MSRCR

result and its histogram, e, f GPURetinex result and its histogram,

g transfer function in the alpha-trimmed contrast stretching
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iterator vector of size D iterating from the outermost to

innermost loop, and o
*

is an offset vector that is a column

vector of size P that determines the starting point in a

particular array.

The loops in Table 1(a), (b), and (c) display the nested

loops of D = 3 for P = 1 and 2, as well as the nested loop

in Table 1(d) of D = 2 for P = 1 and 2. Table 2 shows the

access patterns and memory selections of the four loops.

The first column in Table 2 shows the name of CUDA

kernels corresponding to the four loops shown in Table 1.

The second column presents the affine form of each data

array, which is directly obtained by applying the mathe-

matical definition to Table 1. Extracted from the affine

form of each array, a pair of ðP; o*Þ can represent the

memory access pattern of the array.

For example, the input image I in row filtering has the

affine form mI
*

and the memory access pattern

ðPI ; o
*

IÞ ¼
1 0 0

0 1 1

� �
;

0

0

� �� �
. The first two columns of

PI exhibit an inter-thread pattern and the third column

intra-thread pattern. The inter-thread pattern
1 0

0 1

� �

shows a linear memory access, which is a necessary con-

dition for coalesced access in global memory. The intra-

thread pattern
0

0

� �
reveals temporal reuse; that is, a tem-

poral locality property that is appropriate for selecting

cache and shared memory spaces. The zero vector o
*

I means

that no shifted access is in the array. Based on these

properties combined with the knowledge that the image I is

read-only and is of a large size, the memory selection

algorithm in [27] suggests choosing texture memory for

optimal performance. Therefore, access patterns of arrays

can be directly obtained from the ðP; o*Þ pair. From these

characteristics, the proper selection of memory spaces can

be achieved.
The third column of Table 2 shows the memory selec-

tion results for all arrays in Table 1. The three arrays, I in

row filtering, I0 in column filtering, and G in log-domain

processing, are placed in texture memory because their

patterns exhibit read-only and linear access with temporal

locality. The three arrays, r in row filtering, c in column

filtering, and W in log-domain processing, are placed in

constant memory because they show the pattern of read-

only, small, and same-address-read access. Global memory

is chosen for six arrays because these arrays are either

output data or linearly coalesced data with single access.

Finally, shared memory is applied to the histogram array

h because it exhibits a non-coalesced random access

pattern.
In the parallel Gaussian blur operation, the texture

memory and constant memory are used to improve effi-

ciency because the readings of read-only data, including

images Ii, I0, and Gaussian blur functions rz and cz, obey the

principle of temporal locality. Although both cache and

Table 1 Pseudo codes of nested loops of (a) row filtering: I0 = I � r, (b) column filtering: G = I0 � c, (c) log-domain processing,

(d) histogramming

(a) (b)

(c) (d)

The image size is M 9 M and filter size is s
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shared memory spaces can provide the same shared access

mechanism, cache memory is selected because of its

optimization for read-only operation. Moreover, the access

patterns of I and I0 are different. Despite both having

temporal reuse, I exhibits a linear access but I0 non-unit

stride access. The results of Gaussian blur Giz are stored in

global memory because of the capacity limitation of shared

memory. For parallel log-domain processing, Ii, Giz, and Ri

are all read from and written to global memory using a

coalescing technique. In the final step of parallel contrast

stretching, global memory and shared memory are used to

complete the computation of parallel histogramming.

The optimality of the memory selection results is dem-

onstrated by conducting an experiment on row filtering

with all possible combinations of memory selections. The

memory space of output data array I0 is fixed to global

memory. The source image I can be placed on global or

texture memory, but not shared and constant memory

because of capacity limitation. The memory space of row

filter r is flexible and has four choices. A combination of

eight memory selections is tested for a 4,096 9 4,096 color

image to obtain the execution time of the eight selections,

as shown in Fig. 2. The experiment is performed on the

Tesla 1060 GPGPU platform.

The experimental results in Fig. 2 show that the most

favorable memory spaces for the I and r in row filtering are

texture and constant caches, which matches the mathe-

matical analysis presented in Table 2. The worst selection

is global memory for both I and r. The improvement ratio

is 5.45 for the worst case over the best. It means that the

careful design of memory spaces can achieve more than

five times improvement in the same GPGPU platform. The

group of I being texture memory performs more favorably

than the group of I being global memory. The result is

reasonable because of the temporal reuse of source image

pixels, and texture memory has the most effective support

for the access of locality. Storing both I and r in texture

memory could be a simple scheme with low execution

time, but the experiment showed that execution time is

improved when the convolution data r are stored in con-

stant memory. This is mainly because the image is stored in

texturing memory and is heavily accessed; therefore, off-

loading the access of the convolution data to constant

memory relieves a bottleneck of the system.

5 Multithreading pattern design

Maximizing the use of the computing power in GPGPU

requires increasing as much thread-level parallelism as

possible and efficiently mapping this parallelism to multi-

processors to keep them busy. It is critical to parallelize

threads and blocks with balanced computing applications

across the multiprocessor that maximizes hardware use.

Block size is defined as the number of threads within a

Table 2 Summary of memory access patterns and memory selection

results

Kernel Affine forms Memory

selections

Row filtering
pI
* ¼ 1 0 0

0 1 1

� �
i
*

þ 0

0

� �
I: Texture

pI0
* ¼ 1 0 0

0 1 0

� �
i
*

þ 0

0

� �
I’: Global

pr
* ¼ 0 0 1½ � i

*

þ 0½ � r: Constant

Column filtering
pI0
* ¼ 0 1 1

1 0 0

� �
i
*

þ 0

0

� �
I’: Texture

pG
* ¼ 1 0 0

0 1 0

� �
i
*

þ 0

0

� �
G: Global

pC
* ¼ 0 0 1½ � i

*

þ 0½ � c: Constant

Log-domain

processing
pI
* ¼ 1 0 0

0 1 0

� �
i
*

þ 0

0

� �
I: Global

pG
* ¼

1 0 0

0 1 0

0 0 1

2
4

3
5 i

*

þ
0

0

0

2
4
3
5

G: Texture

pC
* ¼ 1 0 0

0 1 0

� �
i
*

þ 0

0

� �
C: Global

pR
* ¼ 1 0 0

0 1 0

� �
i
*

þ 0

0

� �
R: Global

pW
* ¼ 0 0 1½ � i

*

þ 0½ � W: Constant

Histogramming
pR
* ¼ 1 0

0 1

� �
x

y

� �
þ 0

0

� �
R: Global

ph
* ¼ e e½ � x

y

� �
þ 0½ � h: Shared

The iteration vector i
*

represents [xyz]T. e is a random number
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Fig. 2 Execution times of eight combinations of memory selections

for row filtering
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thread block. A large block size indicates that more threads

are parallelized to maximize the use of computing power,

but is inefficient when massive threads are serialized

because of the limited capacity of register and shared

memory. Block size is therefore a crucial parameter for

multithreading design, and it can be derived using an index

called ‘‘warp occupancy.’’

A warp is the fundamental scheduling unit of concur-

rency in GPGPUs because all threads within a warp exe-

cute concurrently. The multiprocessor becomes idle if a

warp is not ready to execute its next instruction because the

instructional input operands are not yet available or the

warp is waiting at a memory fence or synchronization

point. Having multiple resident warps and blocks per

multiprocessor can help reduce idling in this case because

warps from different blocks do not need to wait for each

other at synchronization points. Usage is therefore directly

related to the number of resident warps. The number of

clock cycles required for a warp to be ready to execute its

next instruction is called the ‘‘latency,’’ and full usage is

achieved when all warp schedulers always have an

instruction to issue for some warp at every clock cycle

during that latency period, which is also called ‘‘latency

hiding.’’ Executing other warps when one warp is paused

or stalled is the only way to hide latencies and keep the

hardware busy. The occupancy metric related to the num-

ber of active warps on a multiprocessor is, therefore, cru-

cial in determining how effectively the hardware is kept

busy.

Warp occupancy is the ratio of the number of active

warps per multiprocessor to the maximal number of warps.

Higher occupancy represents a higher chance of latency

hiding. However, occupancy is subject to resource avail-

ability; that is, it should be determined by the tradeoff

between the thread block size and on-chip memory usage.

Threads consuming hardware resources (i.e., registers and

shared memory) limit the number of threads that can be

efficiently executed in a block.

Register availability is one constraint that determines

warp occupancy. Register storage enables threads to keep

local variables nearby for low-latency access. However,

the set of registers is a limited commodity that all threads

resident on a multiprocessor must share. Registers are

allocated to an entire block simultaneously. Therefore, if

each thread block uses many registers, the number of

thread blocks that can be resident on a multiprocessor is

reduced, thereby lowering the occupancy of the multi-

processor. Shared memory also acts as a constraint on

warp occupancy. In many cases, the amount of shared

memory required by a kernel is related to the chosen

block size. In particular, each multiprocessor has a set of

shared memory that is partitioned among the thread

blocks.

Warp occupancy depends on the number of active warps

per multiprocessor, which is implicitly determined

according to block size along with resource (register and

shared memory) constraints. Choosing a proper block size

requires striking a balance between latency hiding (occu-

pancy) and resource use.

The number of blocks and warps that can reside and be

processed together on the multiprocessor depends on the

amount of registers and shared memory used by the kernel

and the amount of registers and shared memory available

on the multiprocessor. There are also a maximal number of

resident blocks and a maximal number of resident warps

per multiprocessor. These limits, in addition to the amounts

of register and shared memory available on the multipro-

cessor, are a function of the computing capability of the

device.

We define a mathematical model of these criteria for the

decision of block size based on resource constraints. The

optimal block size B̂ is determined according to maximal

warp occupancy OðB; r; s;KwÞ; which is a function of block

size B, register number per thread r, bytes of shared

memory per block s, and maximal number of warps Kw.

B̂ ¼ maxBOðB; r; s;KwÞ ¼ max
B

min ðWB;Wr;WsÞ
Kw

ð11Þ

where WB, Wr and Ws represent three numbers of possible

active warps within a multiprocessor determined according

to assigned block size B and memory usages of r and s.

This minimal function presents the constraints that active

warp number is restricted to register usage and shared

memory usage.

The three possible warp numbers are decided according

to seven hardware parameters of CUDA devices,

T ¼ fK0;Ki;Giji 2 fw; r; sgg. K0 is the warp size (i.e.,

number of threads per warp). Kw;Kr; and Ks are the max-

imal number of warps, registers, and shared memory per

multiprocessor, respectively. Gw;Gr; and Gs are the allo-

cation granularity of warps, registers, and shared memory

per block, respectively. For a given block size B, which is a

multiple of K0, and preassigned design parameters using r

and s, we can derive WB;Wr; and Ws as follows:

WB ¼ n 
 Kw=X n;Gwð Þb c; ð12Þ
Wr ¼ n 
 Kr=X r 
 B;Grð Þb c; ð13Þ

Ws ¼ n 
 Ks=X s;Gsð Þb c; ð14Þ

where n = B/K0 is the number of warps within a block, X
(X, Y) is equal to the roundup of X to the nearest multiple of

Y, and Z is a floor operation that obtains the maximal

integer less than Z.

For example, on a Tesla 1060 device, there are a max-

imum of 16K registers and shared memory per multipro-

cessor ðKr ¼ 16 KB;Ks ¼ 16 KBÞ; and a maximum of
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1,024 simultaneous residing threads (32 warps 9 32

threads per warp, Kw = 32, K0 = 32). Warp allocations are

rounded to the nearest two multiples ðGw ¼ 2Þ; register

allocations are rounded to the nearest 512 registers per

block ðGs ¼ 512Þ; and shared memory is rounded to 512

words per block ðGr ¼ 512Þ: A kernel with 128-thread

blocks (B = 128) using 12 registers per thread ðr ¼ 12Þ
and 40 bytes of shared memory ðs ¼ 40Þ results in an

occupancy of 100 % because O = min (32, 40, 128)/

32 = 1.0. Whereas a kernel with 192-thread blocks

(B = 192) using the same r ¼ 12 and s ¼ 40 brings about

an occupancy of 94 %, because O = min (30, 36, 192)/

32 = 0.94.

The formulation is applied to the GPURetinex for the

selection of block size. Consider row filtering and Tesla

1060 as examples. The design of the row filtering must use

20 registers ðr ¼ 20Þ and 40 bytes of shared memory ðs ¼
40Þ: The occupancy function OðB; r; sÞ reduces to

O(B) = min (32, 3B/32, B)/32 and is plotted in Fig. 3a.

An experiment exploring the execution times corre-

sponding to B of the row filtering is conducted to verify

O (B) in Fig. 3a. The GPURetinex is executed using fixed

B for all steps except that B of the row filtering is adjust-

able. The results are shown in Fig. 3b. The two graphs in

Fig. 3 match each other perfectly because higher occu-

pancy relates to lower execution time. However, peak

values in Fig. 3a are not necessary the chosen block sizes.

Higher occupancy may not demonstrate higher perfor-

mance when O [ 0.6, because latency hiding is satisfied

when enough warps are running. We conclude that the

range of block sizes from 128 to 384 is favorable for row

filtering.

6 Implementation

We apply the analyses of memory access pattern and

multithreading pattern to every step of the GPURetinex.

We adopt the memory selection result in Table 2 for

implementation, and the block size of 256 threads is chosen

for all steps because the chosen block size achieves occu-

pancy by more than 0.6 for all steps. The Gaussian blur

stage includes the two convolution steps: row and column

filtering. Each thread block contains 256 threads corre-

sponding to each row. The convolutions of row and column

filters use texture and constant caches to improve effi-

ciency. Data are fetched from caches with higher memory

bandwidth because spatial locality is fully exploited when

threads in the same warp access nearby pixels in the image

data, and temporal locality for the repetitions of reading the

same data.

Moreover, an additional advantage of selecting texture

memory to accommodate source and intermediate images

in the parallel Gaussian blur stage is that addressing cal-

culation of boundary condition outside the images is

improved using dedicated hardware units. Texture memory

provides an advantageous capability that is useful for

block-wise image processing. It provides four addressing

modes: mirror, clamp, wrap, and border, to handle coor-

dinates that are out of range. The automatic handling of

boundary cases refers to how a texture coordinate is

resolved when it falls outside the valid addressing range.

We adopt the automatic mirror addressing mode to reduce

the overhead of handling out-of-range boundary using

software. An opaque memory layout for texture memory,

called the ‘‘CUDA array,’’ optimized for texture fetching

and supporting four out-of-boundary extrapolations, is also

adopted.

This texturing technique differs from our prior previ-

ously proposed approach [38], in that transposing an image

is performed before column filtering to prevent non-unit

stride access. However, the transpose step is unnecessary

Fig. 3 Multithreading analysis taking the row filtering step as an

example. a Relationship between block size and occupancy, b execu-

tion times versus block size
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for texture cache because texture cache provides excellent

bandwidth for 2D locality.

The parallel computing of log-domain processing includes

subtractions, multiplication of weights and color restoration

factor, and summation, as indicated in (5). These computa-

tions can be performed in parallel at a pixel-wise level with a

thread block size of 256. Because each Ri(x, y) value is cal-

culated independently, data decomposition does not influence

performance. The same horizontal stripe distribution and

threading mechanism with a Gaussian blur is adopted here for

simplicity. All data, including Gk,i(x, y), Ii(x, y), and Ri(x, y),

are read from and written to global memory because of the

capacity limitation of international memory.

Alpha-trimmed contrast stretching includes the histo-

gramming in (7) and the stretching in (6), which are two

parallelization issues in this stage. Although the stretching

step is an inherently parallel problem, the histogramming

step is not. Histogramming fills a set of bins according to the

occurrence of pixel values obtained from Ri(x, y). Although

histogramming is trivial to sequential processing, its com-

putation on parallel processors is not straightforward.

Parallel histogramming usually adopts the reduction

technique [39–41] to maximize the use of GPU hardware

resources in both memory constraint and multithreading

capability. To reduce a large vector of image values to a

smaller bin vector serially using the sum operator, we must

render buffers called ‘‘partial histograms’’ that are the

histogram of a subimage. We then combine these partial

histograms into the final histogram. Histogramming can be

divided into two steps. The first step is to count the pixels

of N(x, y) in parallel into a partial histogram. Each warp of

a thread block has its local histogram in shared memory.

Each thread of a warp uses the atomic addition function of

shared memory to sum the local histogram. The second

step of parallel histogramming is to merge the partial his-

togram into a global histogram. In this step, the thread

block size is 256, and each thread block sums a bin of a

global histogram from the partial histogram. The reads of

each thread block are uncoalesced, but this step requires

only a fraction of total processing time. When a thread

block writes all values of a bin in the partial histogram into

its shared memory, recursive doubling procedures [13] are

executed to merge all values of a bin into one.

Finally, for the cumulative histogram H(i), âmin and âmax

are computed sequentially from the small data array h(i),

and the stretching in (6) is performed in parallel at a pixel-

wise level.

7 Experimental results

The performance of the GPURetinex has been tested on

Tesla C1060 and CUDA 3.2. The GPGPU is combined

with an Intel Core2 Duo of 3.0 GHz. The GPGPU has 240

streaming processors (SPs). In total, 240 color images were

tested in these experiments to verify the enhancement and

acceleration results of the GPURetinex.

There are four implementations of the method for

experimental comparison. GPURetinex represents the

proposed method presented in Sects. 3–6, that is, a parallel

MSRCR with the parallel alpha-trimmed contrast stretch-

ing. There are two variants of the GPURetinex: GPURet-

inex_N and GPURetinex_NPP. GPURetinex_N is the

GPURetinex without alpha-trimmed contrast stretching, or

parallel MSRCR, which has been presented in [33].

GPURetinex_NPP [34] is the GPURetinex replacing the

proposed convolution filter according to the functions in

the NPP (nVidia Performance Primitive) 4.0 library [42]

(functions nppiFilterRow_8u_C1R and nppiFilterCol-

umn_8u_C1R). The fourth is a serial implementation of the

proposed algorithm presented in Sect. 3 (i.e., CPURetinex),

developed and run using a single thread on one core of the

CPU. Gaussian blur filtering in the CPU version adopts the

optimized SSE implementation using OpenCV.

7.1 Image enhancement test

The GPURetinex enhancement results with and without the

alpha-trimmed contrast stretching (i.e., GPURetinex vs.

MSRCR) are compared. Selective examples with chal-

lenging issues are chosen to demonstrate the enhancement

results. Figure 4a, d, g is three original images. The first

image is an outdoor scene of a non-uniform illumination

problem that loses the color and detail in the tinted window

on truck. The second image is the scene of low-key with

loss of color and detail in the shadow. The third image is a

low-contrast image with poor visibility condition caused by

smoke. It is not easy to identify the objects in the scene.

Figure 4b, e, h shows the enhanced results of MSRCR,

and Fig. 4c, f, i shows the enhanced results of GPURetinex.

Figure 4c shows superior color/lightness rendition and

contrast to that of MSRCR. The details of the tinted win-

dow on the truck have been enhanced. The lightness and

contrast are improved in Fig. 4f. In Fig. 4i, dramatic

improvements in overall visibility over the directly

observed scene are apparent. The objects can be identified

easily. The alpha-trimmed contrast stretching method can

greatly improve color/lightness rendition and contrast.

7.2 Performance analysis

We next compare the execution time of the GPURetinex

method with other algorithms on image resolutions

M 9 M, from 256 9 256 to 4,096 9 4,096. Three Gauss-

ian filters of scales vz = 17, 83, and 253 are adopted to

compute the center/surround information in these
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experiments. The total execution time includes the com-

putational times of (3)–(10). The time of every image

resolution is a time average of 240 color images.

Figure 5 shows the total execution times between the

GPURetinex and CPURetinex. The total execution time of

both CPU and GPU versions increases proportionally

according to image dimensions. The total execution times

of the GPU versions are much less than those of CPU-

based implementation. As the image size increases, the

difference is more obvious. No difference exists between

GPURetinex and GPURetinex_N because the additional

alpha-trimmed contrast stretching stage required extremely

little time. The GPURetinex is 1.7 times faster than

GPURetinex_NPP on average, showing that our convolu-

tion filtering is more efficient than the convolution filtering

performed using the GPGPU standard library.

Figure 6 shows the accelerations of the GPURetinex

compared to the CPURetinex. Acceleration is measured

Fig. 4 The three sets of original and enhanced images. a An uneven

illumination image with high dynamic range, d a low-key image, g a

smoky image, b, e, h the results of MSRCR, c, f, i the results of

GPURetinex. The retinex parameters for a is Wz = 0.1, 0.2, 0.7,

vz = 5, 80, 1,040, and a = 0.006. The retinex parameters for b is

Wz = 0.2, 0.3, 0.5, vz = 15, 80, 800, and a = 0.015. The retinex

parameters for c is Wz = 1/3, 1/3, 1/3, vz = 15, 80, 250, and

a = 0.003

Fig. 5 Total execution time with different image sizes between the

GPU and CPU versions
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using the total execution time that does not include the cost

of memory management and data transfer between the

GPU and CPU. Relative acceleration is also linear

according to the increase of image dimensions, thus indi-

cating that the GPU implementation is memory bound

rather than operationally bound. For the image of

4,096 9 4,096 resolution, the GPURetinex can gain 749

acceleration when compared with CPURetinex, and is

twice as fast as GPURetinex_NPP. The experimental

results demonstrate an excellent speed boost.

We further investigate the performance of the GPURet-

inex according to Gflops. The Gflops of the GPURetinex is

defined as (O/T) 9 10-9, where T is the total execution time

of GPURetinex (s), and O is the number of floating-point

operations in the modified retinex algorithm. As shown in

Fig. 7, the performance converges to 95 Gflops when image

sizes increase. It is 1/10 of theoretical peak Gflops of this

GPGPU device because of the parallel overhead in the

convolution stage. Furthermore, the access ratio and the

bandwidth of global memory can affect the Gflops [43].

We illustrate the execution times of each operation in

the modified retinex algorithm. The execution times of the

four steps, including the Gaussian blur, log-domain pro-

cessing, histogramming, and stretching steps, are compared

according to image size. We first show the execution times

for CPURetinex in Fig. 8a. The execution times of all steps

increase in proportion to image sizes and the Gaussian blur

always consumes the most processing time. The percent-

ages of computational loading are 80.1 % for Gaussian

blur, 18.4 % for log-domain processing, and 1.5 % for

histogramming and stretching. Figure 8b shows the exe-

cution times for GPURetinex. The Gaussian blur still

Fig. 6 The accelerations of the GPU algorithms over CPU versions
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Fig. 7 The Gflops of GPURetinex

Fig. 8 The execution times of various steps for a CPURetinex,

b GPURetinex
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consumes the most processing time. The execution times

do not increase proportionally to small image sizes, pos-

sibly because the memory transfer of small image data

corresponding to the high memory bandwidth of global

memory exhibits a nonlinear effect.

7.3 Parallel histogramming

The performance of parallel histogramming can vary

according to image characteristics, and it is further evalu-

ated using as many as 240 test images. These images are

Fig. 9 Selective samples of test images. a The uneven illumination class, b low-key class, c high dynamic range class, d low-contrast class,

e high noise class, f uneven illumination/color shift class, g even illumination/color shift class
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Fig. 10 Typical histograms of the seven classes. a Uneven illumination, b low-key, c high dynamic range, d low-contrast, e high noise, f uneven

illumination/color shift, g even illumination/color shift
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classified into seven classes: uneven illumination, low-key,

high dynamic range, low contrast, high noise, uneven color

shift, and even color shift. Selected samples of each image

class are shown in Fig. 9.

The execution times of parallel histogramming are not the

same for all of the images because the atomic operation

adopted to avoid race condition can perform serially. If a bin

of the histogram has more pixels, racing to access the same

element is frequent, which induces more serialization

operations and degrade the performance. Figure 10 shows

the typical histograms of the seven classes. These unquali-

fied images usually have a non-equalized histogram.

Figure 11 shows the average execution times of parallel

histogramming for some of the test images that have a

resolution of 4,096 9 4,096. The average execution times

of the seven classes vary greatly. The high dynamic range

class has the highest execution time because too many

serial calculations occur to the pixels of the two relatively

high peaks, as shown in Fig. 10c. Histogramming requires

less than 1.5 % execution time and contributes an unno-

ticeable effect on the performance of the GPURetinex.

8 Conclusion

This paper presents a GPU-accelerated data parallel algo-

rithm for the proposed retinex algorithm. In addition to the

large-kernel-size convolution and log-domain operations,

alpha-trimmed contrast stretching is devised to improve

color rendition and contrast. The three popular types of

image processing tasks: block-wise, pixel-wise, and seri-

alized, all exist in the proposed retinex algorithm and the

involved parallelization is challenging. The GPURetinex

adopts a horizontal stripe data distribution to decompose

the image data for parallelization, optimize memory usage

and data alignment, and fully use hardware support. The

GPURetinex gained 74 times acceleration when compared

with CPU-based implementation on images with

4,096 9 4,096 resolution. The experimental results dem-

onstrate that the performance advances of center/surround

using retinex by GPGPU are definitely feasible.

The acceleration of the GPURetinex is attained by

mathematically analyzing memory access and multith-

reading patterns. Parallel design and CUDA implementa-

tion of the algorithm are examined closely by the

parallelism concurrently operating on multiple data ele-

ments. Our experience shows that using CUDA enables

moving complex image processing algorithms to a GPGPU

with a significant acceleration against serialized imple-

mentation on a CPU. However, a complete understanding

of the memory hierarchy and multithreading model is

essential for parallelization. High processor occupancy is

also critical for maximal performance on the GPGPU.

Moreover, the data distribution for each thread block and

data allocation in the memory hierarchy merits consider-

able attention.

Although the two mathematical models are validated on

GT200 GPU and CUDA 3.2, the models can be universally

applied to all the nVidia GPGPUs. However, selecting

memory spaces and block sizes for a specific GPGPU is

achieved in this paper manually before implementation, but

not automatically within implementation. An algorithmic

method realizing the mathematical models could be

developed in the future to automate the selection of

memory spaces and block sizes.

The efficiency of the proposed GPURetinex could be

further enhanced. Further acceleration is possible using the

data parallel techniques that are more sophisticated.

Moreover, because the performance bottleneck is domi-

nated by the Gaussian convolution, algorithms that are

more efficient, such as the recursive Gaussian filter, can be

studied further.
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