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Abstract We present a stereo algorithm that is capable of

estimating scene depth information with high accuracy and

in real time. The key idea is to employ an adaptive cost-

volume filtering stage in a dynamic programming optimi-

zation framework. The per-pixel matching costs are

aggregated via a separable implementation of the bilateral

filtering technique. Our separable approximation offers

comparable edge-preserving filtering capability and leads

to a significant reduction in computational complexity

compared to the traditional 2D filter. This cost aggregation

step resolves the disparity inconsistency between scanlines,

which are the typical problem for conventional dynamic

programming based stereo approaches. Our algorithm is

driven by two design goals: real-time performance and

high accuracy depth estimation. For computational

efficiency, we utilize the vector processing capability and

parallelism in commodity graphics hardware to speed up

this aggregation process over two orders of magnitude.

Over 90 million disparity evaluations per second [the

number of disparity evaluations per seconds (MDE/s)

corresponds to the product of the number of pixels and the

disparity range and the obtained frame rate and, therefore,

captures the performance of a stereo algorithm in a single

number] are achieved in our current implementation. In

terms of quality, quantitative evaluation using data sets

with ground truth disparities shows that our approach is

one of the state-of-the-art real-time stereo algorithms.

Keywords Real-time stereo � Cost aggregation �
Bilateral filtering � Dynamic programming �
Disparity map � Stereo video

1 Introduction

Stereo is one of the most actively researched topics in

computer vision. Thanks to the Middlebury benchmark

evaluation system [35], recent stereo research in this area

has significantly advanced the state-of-the-art in terms of

accuracy. However, in terms of speed, the best stereo

algorithms typically take several seconds or minutes to

compute a disparity map, limiting their applications to off-

line processing. There are many interesting applications,

such as robot navigation, automatic driving and augmented

reality, in which high-quality depth estimation at video

frame rate is crucial. For real-time online stereo processing,

the options are rather limited that, in general, only local

correlation-based approaches [14] and scanline-based

optimizations [11] are feasible. Most local approaches,

although being fast, are quite fragile and prone to have
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difficulties within textureless regions or near occlusion

boundaries. Scanline-based optimization utilizes dynamic

programming (DP) to produce better quality depth esti-

mation. Unfortunately, as each scanline is optimized

independently, erroneous horizontal strokes, i.e., the

‘‘streaking’’ artifacts, often arise in the resultant disparity

maps.

This work is inspired by the idea of cost-volume filtering

via edge-preserving filters, started from the work of Yoon

and Kweon [51], which introduces cost aggregation

schemes that use a fix-sized window with per-pixel varying

support weights. The support weights are computed based

on the color similarity and geometric distance to the center

pixel of interest. In fact, taking both proximity and simi-

larity into account to construct the filter kernel is the key

idea of bilateral filtering [41]. Although bilateral filter-

based aggregation methods have proven to be effective,

their applications in real-time stereo are limited by their

speed. It is nonlinear, and its computational complexity

grows quadratically with the kernel size. Brute-force

implementations are on the order of minutes for generating

a small depth map [51].

In this paper, we attempt to reformulate Yoon and

Kweon’s [51] aggregation algorithm using a fast separable

implementation of the bilateral filter. In the first pass, the

raw cost-volume is bilaterally filtered in the horizontal

direction using a 1D kernel and the intermediate matching

costs are bilaterally filtered subsequently in the vertical

direction. This two-pass separable approximation reduces

the complexity of the aggregation approach from OðjIjN‘2Þ
to OðjIjN‘Þ, where jIj and N are the image size and dis-

parity search range, respectively and ‘ is the kernel width

of a square window. Our approximation leads to fast cost-

volume filtering and satisfactory results. Motivated by its

suitability for hardware acceleration, we propose a GPU

implementation which further improves the speed by one

or two orders of magnitude compared to the CPU

implementation.

In addition to the GPU-based local ‘‘winner-takes-all’’

(WTA) solution, we further incorporate our two-pass

aggregation scheme into a scanline optimization frame-

work for improved reconstruction accuracy. We found that

changing the window shape from conventional square to

vertical rectangle allows robust performance near depth

discontinuities and effectively alleviates DP’s scanline

inconsistency problem. The smoothed cost-volume is

transferred back from the GPU to the CPU memory for DP

optimization. Thus, our approach not only makes use of

both CPU and GPU in parallel, but also makes each part do

what it is best for: the graphics hardware performs cost

aggregation in massive parallelism, and the CPU carries

out DP that requires more flexible looping and branching

capability. The current implementation is capable of run-

ning at video frame rate. Quantitative evaluation using data

sets with ground truth disparities shows that our approach

is among the state-of-the-art real-time stereo algorithms.

Combined with its high speed capability, our algorithm is

suitable for many real-time applications that require high-

quality depth estimates. This stereo formulation that was

built on fast approximated bilateral cost-volume smoothing

and dynamic programming optimization is the main con-

tribution of this work.

This paper builds upon and extends our previous

work [45], with an amended stereo model, detailed

description of the algorithm, implementation details, and

new experimental comparisons. The rest of paper is orga-

nized as follows: after reviewing the related work and

background materials of bilateral filtering in Sects. 1.1

and 1.2, we present our stereo algorithmin in Sect. 2.

Implementation details of our GPU acceleration scheme

are reported in Sect. 3. In Sect. 4, we report experimental

results and finally conclude in Sect. 5.

1.1 Related work

A large number of algorithms have been published to

address the depth from stereo problem. For the scope of

this paper, of particular interest are real-time and bilateral

filtering-based algorithms. Interested readers are referred to

an excellent survey and evaluation [36] for more detailed

taxonomies of dense stereo matching algorithms.

In general, stereo algorithms can be categorized into two

major classes: local and global methods. Local methods

establish pixel correspondences by measuring the similarity

between image regions and usually have fast implementa-

tions [13, 42]. Representative early real-time local methods

are described elsewhere [21, 24, 31, 49, 50]. The central

problem of local correlation-based algorithms is how to

determine the size and shape of the aggregation window.

For accurate depth estimation, a window must be large

enough to cover sufficient intensity variations, while small

enough to avoid crossing depth discontinuities. An impro-

per window causes problems such as incorrect disparities in

textureless regions and blurred occlusion boundaries. In

order to resolve these dilemmas, there has been work on

varying window size and shape [3, 17, 20, 22, 43]. The key

idea is to evaluate a variety of windows and select the one

with the optimal cost. Although performing better than

fixed window methods, variable window methods are, in

general, less accurate than global methods, which make

explicit smoothness assumptions about the scene and min-

imize certain cost functions [4, 40].

More recently, Yoon and Kweon [51] present a corre-

spondence search algorithm that yields high-quality results
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comparable to those obtained by global methods. The

success of Yoon and Kweon’s work [51] lies in the use of

joint bilateral filter for cost-volume filtering. The most

attractive property of their approach [51] is that a large

window can be used to aggregate information without

over-blurring occlusion boundaries. On the other hand, the

approach used by these authors [51] is computationally

demanding. Its execution time is comparable to that

required by global methods, diminishing the efficiency

advantage of local approaches. For this reason, several

adaptive weights-based approaches have been proposed,

aiming at improving Yoon and Kweon’s [51] speed per-

formance. Mattoccia et al. [27] present a block-based

aggregation strategy that can obtain a disparity map in a

few seconds. Gupta and Cho [16] introduce an adaptive

binary window approach. While strong results are dem-

onstrated, their algorithm takes 0.46 s for a 384 9 288

image with 16 disparity candidates. Yu et al. [52] develop

a high performance stereo system using exponential step

size adaptive weight (ESAW) technique. Their approach

demonstrates high data parallelism and can be mapped to a

GPU platform. Richardt et al. [33] present an approxi-

mated but real-time implementation of the bilateral filter-

ing aggregation method. However, due to the large amount

of memory required for processing full-color images, the

support weights are computed using grayscale intensities

rather than three-channel color vectors, giving poor results

near object boundaries. Rhemann et al. [32] present a filter

framework which achieves fast and high-quality disparity

estimation. Their approach is based on the recently pro-

posed guided filter [19], which has the edge-preserving

property and a runtime independent of the filter size.

Besides from local methods, efficient global stereo

algorithms have also been studied. Among the various

energy minimization methods, DP is of particular interest

for real-time applications due to its low computational

complexity. Sun [39] proposes an early DP-based stereo

algorithm that executes near real-time. The image is divi-

ded into nonuniform rectangular subregions to reduce the

disparity search range. Gong and Yang [15] present a

stereo algorithm based on reliability-based DP. Their

algorithm can be implemented on the GPU and yields near

real-time performance. By using a coarse-to-fine scheme

and MMX instructions, Forstmann et al. [11] present an

accelerated DP algorithm whose implementation achieves

about 100 MDE/s on an AMD Athlon XP 2800? 2.2G

processor. Traditional DP algorithms optimize the disparity

assignments on a scanline by scanline basis and the inter-

scanline consistency is not enforced. A number of

approaches have been proposed to address this limita-

tion [18, 23, 26, 44]. For example, Kim et al. [23] intro-

duce a two-pass DP scheme that performs optimization

both along and across the scanline; Lei et al. [26] optimize

a global energy function defined on a 2D tree structure

whose nodes are over-segmented image regions. Unfortu-

nately, these advanced approaches, in general, involve

more computational cost and are typically slow. In addition

to DP, Yang et al. [48] propose a near real-time GPU

implementation of the hierarchical belief propagation (BP)

algorithm [10]. It produces better accuracy than fast DP-

based algorithms but runs slower at about 17 MDE/s. Yu

et al. [52] propose a real-time ‘‘exponential step size

message propagation (ESMP)’’ algorithm. As an extension

of the ESAW method mentioned earlier, by incorporating

the smoothness prior, ESMP improves the accuracy at the

cost of lower speed in comparison with ESAW.

1.2 Bilateral filter and its application in cost

aggregation

Before describing our proposed stereo algorithm, we start

with a brief review of bilateral filtering and Yoon and

Kweon’s adaptive weights stereo algorithm [51].

The bilateral filter is a filtering technique to smooth an

image while preserving edges [41]. One of its variants, the

joint bilateral filter [25], smoothes an image with respect to

edges in a different image. Its basic formulation is very

similar to Gaussian convolution: each pixel is replaced by a

weighted average of its neighbors. The core difference is

that the bilateral filter takes into account the dissimilarity in

pixel values with the neighbors when constructing the blur

kernel. More formally, given an image I and a central pixel

p (we use the notation Ip for the pixel value at position p),

the support weight w (p, q) of p’s neighbor q is written as:

wðp; qÞ ¼ exp �kIp � Iqk
rc

� kp� qk
rg

� �
; ð1Þ

where kIp � Iqk and kp� qk represent the color

dissimilarity (Euclidean distance between pixel values)

and the spatial distance between p and q, respectively. The

bilateral filter is controlled by two parameters rc and rg.

These two values respectively control the influence from

similarity and proximity. An image filtered by a bilateral

filter BFð�Þ is defined by

BFðIÞp ¼
P

q2Xp
wðp; qÞ � IqP

q2Xp
wðp; qÞ ; ð2Þ

where Xp denotes the set of all pixels in the support region

and the normalization factor
P

q2Xp
wðp; qÞ ensures support

weights sum to one. More interesting properties, imple-

mentation details, and applications of bilateral filtering can

be found in Ref. [29].

Yoon and Kweon [51] utilize the bilateral filtering as an

aid in local stereo. Given a pair of stereo images fI; I0g, the

raw matching cost between pixels is written as eCðp; dÞ
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where p represents the pixel location in the reference view I,

and d is a disparity hypothesis. In [51], the final cost-volume

is computed as a weighted average of raw matching costs

Cðp; dÞ ¼
P

q2Xp;q02X0p wðp; qÞwðp0; q0ÞeCðq; dÞP
q2Xp;q02X0p wðp; qÞwðp0; q0Þ ; ð3Þ

where p0 ¼ p� d represents p0s corresponding pixel in I0

given disparity d.

It is worth noting that unlike the conventional bilateral

filtering, equation (3) takes into account the support

weights in both images. According to the authors’ expla-

nation and our experimental observations, employing the

support weights in both windows helps to improve corre-

spondence search, especially for pixels near occlusion

boundaries. A direct implementation of the proposed

method, however, is computationally more expensive than

other window-based methods. The reported running time

for the benchmark ‘‘Tsukuba’’ image with a 35 9 35

support window is about 1 min on an AMD AthlonXP

2700? 2.17G processor [51].

Several approaches have been proposed to accelerate the

bilateral filtering [5, 8, 28, 46]. They all rely on approxi-

mations that yield various degrees of speed–accuracy

trade-off. Among the existing approaches, to compute a

joint bilateral filter for real-time stereo, the bilateral grid

approach proposed in Refs. [5, 8] is feasible because it

achieves high-quality outputs and real-time performances

even on high-resolution images. For instance, Richardt

et al. [33]’s work discussed earlier is built upon the bilat-

eral grid technique.

2 Algorithm description

In this section, we present the proposed stereo formulation.

Given multiple images taken from different viewpoints, the

goal of a stereo algorithm is to establish pixel correspon-

dences across images. For the scope of this paper, we focus

on dense two-frame stereo and assume the input stereo

images fI; I0g are rectified, i.e., the epipolar lines are

aligned with corresponding scanlines. In this case, the

correspondence can be expressed as a disparity value d,

i.e., if pðx; yÞ and p0ðx0; y0Þ are corresponding pixels in the

left and right images, respectively, then the disparity

between p and p0 is defined as the difference of their hor-

izontal image coordinates as d ¼ x� x0. Note that y ¼ y0

since corresponding pixels must be on the same scanline

for rectified images. The output of a stereo algorithm is a

disparity map D that stores the disparity value for every

pixel in the reference image. In the following, when there is

no confusion, we will omit ðx; yÞ and write d ¼ p� p0 for

conciseness and notation clarity.

Following the taxonomy in [36], our algorithm consists

of three major steps: (1) matching cost computation; (2)

adaptive cost-volume filtering; and (3) disparity optimiza-

tion via DP. Details about each module are presented below.

Besides from these key components, in all experiments, a

3 9 3 median filter-based disparity refinement step is

employed to remove isolated noises from disparity maps.

2.1 Matching cost computation

The matching cost computation step initializes the cost-

volume eCðp; dÞ by computing raw pixel-wise matching

costs. In this paper, we use the simple absolute difference

(AD) dissimilarity function to measure the difference

between two pixels as

eCðp; dÞ ¼ min

P
c2fR;G;Bg jIc

p � Ic
p�dj

3
;Cmax

� �
; ð4Þ

where Ic is the intensity of the color band c, and the

parameter Cmax (0\Cmax� 255) is a truncation value. The

truncation is necessary to make the matching costs robust

to occlusion and non-lambertian objects that violate the

brightness constancy assumption. For every pixel

pðx; yÞ 2 I, we loop through all disparity hypotheses to

calculate their matching costs using equation (4). In the

end, we obtain the initial cost volume eC , which is a three-

dimensional array that can be indexed by x, y, and d.

2.2 Fast cost-volume smoothing

We modify Yoon and Kweon’s [51] approach as our base-

line cost aggregation algorithm. Two minor changes are: (1)

In Yoon and Kweon’s work, the similarity between two

pixels within the support window is measured in the CIELab

color space. Our approach instead measures the color

proximity in the RGB color space for simplicity and effi-

ciency; (2) Inspired by [33], we reformulate equation (1) as

wðp; qÞ ¼ exp �kIp � Iqk
rc

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp �kp� qk

rg

� �s
; ð5Þ

where the square root is applied to the proximity weight, so

that wðp; qÞ � wðp0; q0Þ in equation (3) involves the prox-

imity weight only once. In our baseline implementation, we

employ a 35 9 35 support window. The running time for

the ‘‘Tsukuba’’ sequence is about 25 s on an Intel

2.66 GHz processor with our not fully optimized

implementation.

As can be seen, the full-kernel implementation of the

bilateral cost-volume filtering is computationally expensive

because the support weights need to be recomputed for

every pixel. Unfortunately, unlike box and Gaussian filters

which have very fast separable implementations, bilateral
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filter is not separable in theory due to the color-dependent

term in equation (5). Nevertheless, in order to address the

speed issue, Pham and Van Vliet [30] attempt to approxi-

mate the full-kernel bilateral filter using two separate 1D

kernels. Their separable implementation is applied to video

enhancement and compression. Ansar et al. [1] first apply

bilateral filtering to stereo and conclude that a separable

approximation is adequate. However, their work addresses

the pre-processing of input imagery rather than cost

aggregation. Bilateral filtering is used to smooth the stereo

images instead of the cost-volume.

In this paper, we revisit the separable approximation and

attempt to speed up the bilateral aggregation process using

a two-pass implementation: a 1D bilateral filter is applied

to smooth the cost-volume along the first dimension (either

horizontal or vertical) and the intermediate results are fil-

tered in the subsequent dimension. In essence, this sim-

plified approach reformulates equation (3) as

Ctmpðp; dÞ ¼

Pu¼xþ‘
2

u¼x�‘
2

w½pðx; yÞ; qðu; yÞ�wðp0; q0ÞeCðq; dÞ
Pu¼xþ‘

2

u¼x�‘
2

w½pðx; yÞ; qðu; yÞ�wðp0; q0Þ
ð6Þ

Cðp; dÞ ¼

Pv¼yþ‘
2

v¼y�‘
2

w½pðx; yÞ; qðx; vÞ�wðp0; q0ÞCtmpðq; dÞ
Pv¼yþ‘

2

v¼y�‘
2

w½pðx; yÞ; qðx; vÞ�wðp0; q0Þ
ð7Þ

where Ctmp is a temporary buffer to store the matching

costs obtained from the first pass.

As mentioned above, this separable implementation

does not produce exactly the same results as the full-kernel

filtering because of the non-separability of wð�; �Þ in

equation (3). Figure 1 shows both the original and

approximated support weights for several selected pixels in

the ‘‘Tsukuba’’ image. In most cases, especially for uni-

form areas and axis-aligned edges, the original support

weights are very similar to their approximated counter-

parts. For the rightmost patch which contains two diagonal

line structures, our approach still tends to assign higher

weights to pixels that are closer or with similar color, but

spatially the support weights attenuate much faster com-

pared to the original 2D kernel. In this scenario where there

are thin diagonal structures, two-pass approximation is

similar to a full-kernel with a smaller support region.

In Fig. 2, we further provide visual and quantitative

comparisons of the disparity maps. Compared to the full-

kernel filtering, the separable approximation still performs

edge-preserving cost-volume smoothing. While visually

similar disparity maps can be obtained, as expected,

quantitative evaluation with ground truth data confirms that

the two-pass approximation yields slightly less accurate

results, especially for textured regions. It is worth noting

that neither implementation achieves the accuracy numbers

as reported elsewhere [51]. We believe the difference is

Fig. 1 A comparison of full-

kernel with approximated

support weights. Top row close-

up views at several pixel

locations in the ‘‘Tsukuba’’

image. The blue square marks

the center pixel of interest.

Second row the original 35� 35

support weights. Third row the

corresponding support weights

computed using our two-pass

approximation
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mainly due to the left–right consistency check and occlu-

sion filling post-processing steps employed in [51]. Similar

observation and conclusion can also be found in [33]. In

terms of speed, this two-pass acceleration dramatically

speeds up the computation, reducing the complexity per

disparity estimation from Oð‘2Þ to Oð‘Þ. For instance, for

the ‘‘Tsukuba’’ image, our result is generated in 1.9 s while

the full-kernel approach takes about 32 s (kernel width

‘ ¼ 35). On the other hand, the downside of this approxi-

mation is that its resultant disparity maps are less smooth

than the brute-force implementation and there is no formal

characterization of their differences in accuracy. As a

consequence, this two-pass aggregation scheme produces

an interesting trade-off between accuracy and speed.

2.3 Disparity optimization via DP

In this section, DP is performed for disparity optimization.

As an early framework introduced for the stereo corre-

spondence problem, DP is still one of the most popular

techniques for its 1D optimization capability and high

efficiency.

DP-based algorithms formulate stereo correspondence

as a least-cost path finding problem. Given an image

scanline Sy ¼ fpð�; yÞg, DP finds an optimal path through a

2D slice Cð�; y; �Þ of the 3D cost-volume. The optimal path

is equivalent to a disparity assignment function f ðpÞ that

minimizes the global cost function

Eðf Þ ¼ Edataðf Þ þ Esmoothðf Þ; ð8Þ

where the first term, the data term,

Edataðf Þ ¼
X
p2Sy

C½p; f ðpÞ� ð9Þ

penalizes disparity assignments that are inconsistent with

the observed image data, whereas the smoothness term

encourages neighboring pixels to have similar disparities

based on the assumption that the scene is piecewise

smooth. In this work, Esmoothðf Þ is defined as

Esmoothðf Þ ¼ ks �
X
p2Sy

X
q2np

max exp � jIp � Iqj2

rs

 !
; �

" #
�

min½jf ðpÞ � f ðqÞj; s�; ð10Þ

where ks is the rate of increase in the smoothness cost;

npðx;yÞ = {p(x - 1, y), p (x ? 1, y)} and expð�jIp �
Iqj2=rsÞ is a monotonically decreasing function of intensity

differences that lowers smoothness penalty costs at high

intensity gradients; parameters rs and � control the

sharpness and lower bound of the exponential function,

respectively. In order to allow for sharp depth edges, the

smoothness cost stops growing after the disparity dif-

ference becomes large. Parameter s controls the upper

bound of discontinuity penalty between neighboring

pixels.

Energy functions with the form defined in equation (8) can

be minimized by DP. For each scanline Sy in the reference

view, we construct a cost matrix M and an ancestor matrix A.

Both M and A have N 9 W entries, where N and W represent

the disparity range and image width, respectively. Each entry

is a potential place along the path. We traverse M from left-to-

right updating the entries in M and A. The complexity of the

Fig. 2 Disparity maps for the Middlebury benchmark data generated

from (top row) full-kernel (35 9 35) bilateral cost aggregation and

(bottom row) the separable two-pass approximation, respectively.

Identical parameter settings are used to generate these results. Error

disparity percentages are measured in non-occluded areas.
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brute-force implementation is OðWN2Þ per-scanline since

updating Mðd; xÞ requires considering N previous entries

Mð0; x� 1Þ. . .MðN � 1; x� 1Þ. Inspired by others’ work [2,

6], we impose the common occlusion and monotonic ordering

constraints [12] and employ the three-state (horizontal

match, diagonal occlusion, and vertical occlusion states)

scanline optimization algorithm as outlined in Algorithm 1 to

construct the optimum path. By assuming the ordering rule,

three instead of N potential moves need to be considered,

which significantly reduce the complexity of the pathfinding

problem. After the rightmost column is filled, the optimum

path can be extracted via back-tracking [6]. This DP process

is repeated over all the scanlines to generate a dense disparity

map.

DP’s scanline-independent computational structure

allows us to easily take advantage of the multi-core

architectures that are ubiquitous in today’s CPUs. In our

DP implementation, the reference image is evenly divided

into K sub-regions, where K 2 f1; 2; . . .g and the region

size is W � dH=Ke (H represents the image height). At

runtime, multiple threads are evoked with each thread

assigned to a region and there is no data interchange

between regions during the energy minimization process.

As will be later reported in Sect. 4, exploiting thread-level

parallelism enables a significant speed performance

improvement without any loss in accuracy.

2.4 Vertical aggregation

Global approaches usually use the raw pixel-based

matching costs and skip the aggregation step. In this paper,

we instead combine the strengths of the edge-preserving

cost-volume smoothing and the DP optimization frame-

work to achieve high accuracy depth estimation. Motivated

by DP’s well-known difficulty of enforcing inter-scanline

consistency (resulting in horizontal ‘‘streaks’’ in the esti-

mated disparity maps), we enforce vertical smoothness by

constructing the data term with an approximated ‘y � ‘x

rectangular bilateral filter (aggregation window), where

‘y� ‘x guarantees that the dominant aggregation direction

is orthogonal to image scanlines. After vertical aggrega-

tion, pixels between scanlines are likely to have a more

consistent cost if they are sharing the same color (and

therefore, more likely to belong to the same surface). The

inter-scanline consistency of DP can be better enforced in

the final disparity map.

Figure 3 illustrates the results of combining vertical

smoothing and DP optimization. With a 5 9 1 Gaussian

filter, noise and ‘‘streaking’’ artifacts are reduced compared

to performing DP alone (no cost aggregation step applied).

However, pixels near occlusion boundaries tend to be

blurred and thin structures are not well preserved (e.g.,

lamp bar in Fig. 3b). Similar observation is reported

(a) (b) (c) (d)

Fig. 3 Comparison of cost-volume smoothing with Gaussian and

bilateral filtering. Disparity maps are computed using DP after the

aggregation step. Top row (a)–(c): disparity maps from ‘� 1 support

window with Gaussian weights, where (a) ‘ ¼ 1, (b) ‘ ¼ 5, and (c)

‘ ¼ 17, respectively. Disparity (d) is obtained from 35� 1 bilateral

filtering aggregation. Quantitative error rates in non-occluded regions

(bad pixels labeled in black) are given in the bottom row.
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in [11], in which the costs from the previous scanline is

aggregated. With a large 17 9 1 Gaussian kernel, the

disparity map is smoothed at the cost of occlusion

boundaries being substantially blurred. In contrast, using a

17 9 1 bilateral filter can preserve sharp object boundaries,

suppress noise, and enforce inter-scanline consistency.

3 Acceleration using graphics hardware

To achieve real-time performance, we take advantage of

GPU’s massively data parallel architectures and implement

the matching cost computation and cost-volume smoothing

steps on graphics hardware to improve the computation

speed of our algorithm.

In the matching cost computation stage, the input stereo

images are stored as two textures. For each disparity

hypothesis d, we draw a 2D rectangle aligned with two

input textures, one of them being shifted horizontally by d

pixels. We use the pixel shader, a programmable unit in the

graphics hardware, to compute the per-pixel absolute dif-

ference and the results are written to an output texture.

Since the graphics hardware is most efficient at processing

four-channel (RGB ? alpha) color images, we compute

four disparity hypotheses at a time and store the absolute-

difference images in different channels. To search over N

disparity hypothesis, dN=4e rendering passes are needed.

Similar to existing real-time stereo GPU implementa-

tions [14, 15], the matching costs obtained are stored as

8-bit integers in GPU memory instead of floating points for

lower computational overhead. Representing matching

costs with 8 bits makes accurate disparity estimation more

challenging since small cost differences cannot be pre-

sented due to the limited precision. In our GPU imple-

mentation, the matching costs in equation (4) are truncated

and scaled to make better use of the range of a single byte as

eCðp; dÞ ¼ min

P
c2fR;G;Bg jIc

p � Ic
p�dj

3
;Cmax

� �
� 255

Cmax

:

ð11Þ

After truncating and scaling, the resultant 3D cost-volume

is stored as a stack of 2D images. Four adjacent disparity

hypotheses are packed into one color image to utilize the

vector processing capacity of GPUs. The color images are

tiled together to form a large matching cost texture. An

example is shown in Fig. 4.

For the cost aggregation step, we first compute the per-

pixel adaptive weights for both images. Similar to the cost

computation process, we shift the image over itself to

compute the pixel-wise weights according to equation (1)

and store them in textures. The 1D kernel width is always

set to a multiple of four to facilitate the four-vector pro-

cessing capability on GPU. After computing the weights

for bilateral filters, we can step through the cost-volume to

compute the weighted average. A fairly complex pixel

shader program is implemented to index into both the

matching cost textures and weighting textures to calculate

the final cost. Aggregating over N disparity hypotheses

with an approximated ‘y � ‘x bilateral filtering kernel

requires dN � ð‘y þ ‘xÞ=16e rendering passes in our

implementation.

The advantage of using graphics hardware mainly

comes from the parallelism inherent in today’s GPU. Both

cost computation and aggregation are regular per-pixel

operations that can benefit most from GPU’s parallel

architecture. The smoothed cost-volume can be used by a

WTA selection scheme on GPU (as in [14]), or it can be

read back to CPU memory for CPU processing using DP. It

should be noted that it is possible to implement the entire

DP optimization process on GPU. However, as reported

[15], a GPU-based DP implementation is actually slower

than its CPU counterpart. This is mainly due to the sig-

nificant number of rendering passes needed and the lack of

true branching capability on GPU [15]. Therefore, we

adopted a co-operative approach, using the GPU to com-

pute the cost volume and the CPU to carry out DP. With

the new PCI-Express interface between CPU and GPU, the

communication bandwidth is huge, removing a long-

existing bottleneck between GPU and CPU. Our approach

not only makes use of both CPU and GPU in parallel, but

also makes each part do what it is best at: the GPU per-

forms image warping and aggregation in massive paral-

lelism while the CPU carries out DP which requires more

flexible looping and branching capability.

Fig. 4 The texture used to store matching costs. The four-color channels of a single pixel in the texture store the matching costs of a pixel under

four different disparity hypotheses.
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4 Experiments

4.1 Static images

In this section, we verify the effectiveness of the proposed

algorithm and report experimental results. Our experi-

ments were conducted on a 4� Intel Xeon(R) 2.67 Ghz

CPU with a GeForce GTX 580 GPU from NVIDIA. To

enable a quantitative evaluation of different algorithms,

we adopted the widely used stereo data sets with ground

truth disparity maps available [36, 37] (as shown in

Fig. 5). The reconstruction accuracy is measured by the

percentages of bad matching (where the absolute disparity

error is greater than 1 pixel) via the Middlebury evalua-

tion system.

The main parameters in our algorithm can be divided

into three sets: (1) truncation value fCmaxg for matching

cost computation; (2) four parameters frc; rg; ‘x; ‘yg for

cost aggregation; and (3) frs; �; ks; sg for disparity selec-

tion using DP. Following the experimental observations

in [14], Cmax is set to 25 throughout. Parameters rc and rg

are color and spatial bandwidths for the bilateral filtering,

respectively. Figure 6a shows the performance of two-pass

aggregation for the ‘‘Tsukuba’’ and ‘‘Teddy’’ images as a

function of rc. In this experiment, we keep the width of the

support window and rg constant, ‘x ¼ ‘y ¼ 35, rg ¼ 17:5

(radius of the support window), and use WTA to select the

disparities. Note that besides from error rates in non-

occluded areas, we also plot error percentages for pixels

near depth discontinuities to assess the parameter’s edge-

Fig. 5 Reference images of ‘‘Tsukuba’’, ‘‘Venus’’, ‘‘Teddy’’ and ‘‘Cones’’ stereo pairs and their ground truth disparities.
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Fig. 6 a Error rate with respect to the color bandwidth rc for bilateral

filtering (Eq. 1). Statistics in non-occluded regions (nonocc) and areas

near depth discontinuity boundaries (disk) are both reported. Disparity

maps are generated using WTA and two-pass (35� 35) bilateral

aggregation; b error rate as a function of the smoothness penalty cost

ks (Eq. 10). Disparity maps are generated using DP and vertical

(35� 1) bilateral aggregation
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preserving capability. In this paper, rc is set to 20 for all

test images according to the results learned from this plot.

Among the four-DP parameters, rs, � and s are less

sensitive and we empirically set rs ¼ 400, � ¼ 0:4 and

s ¼ 2. To determine ks, namely the rate of increase in the

smoothness cost, we set ‘y ¼ 35, ‘x ¼ 1 and plot the error

rates with respect to ks in Fig. 6b. Note that we use trun-

cated and scaled matching costs in equation (11) for these

experiments. As can been seen, the optimal ks varies for

different images. Fortunately, ks 2 ½40; 60� typically gen-

erates good results. For Middlebury quantitative evalua-

tion, we fix ks ¼ 60.

Finally, we evaluate the effects of cost aggregation

using windows with different sizes. In Fig. 7, we fix kernel

height ‘y ¼ 35 and plot the error rates as a function of

width ‘x. It is worth noticing that since DP performs hor-

izontal optimization, we let ‘y� ‘x to ensure the dominant

aggregation direction is orthogonal to image scanlines.

Figure 7 suggests that increasing the width of the support

window, in general, tends to marginally improve the

accuracy. When 1\‘x� 35 in three of the four data sets,

approximated bilateral filtering achieves better (or com-

parable) results compared to the 1D vertical smoothing.

And for the ‘‘Venus’’ sequence, the increase in error is

mainly caused by the constant parameter setting ks ¼ 60

used in our experiments, which is considered to be too

large for ‘‘Venus’’. On the other hand, it also reveals the

risk of over-smoothing the results when performing both

2D aggregation and DP optimization.

Using the Middlebury online system at [35], we com-

pare our method against other relevant stereo algorithms

listed in the evaluation table and summarize the results in

Table 1. With DP optimization, the vertical aggregation

window is set to 35 9 1 for the CPU implementation

(VAggCPU?DP) or 32 9 1 for the GPU counterpart

(VAggGPU?DP). For two-pass bilateral aggregation with

WTA disparity selection, 35 9 35 and 32 9 32 windows

are used by CPU (2PassAggCPU) and GPU (2PassAg-

gGPU) implementations, respectively. The average percent

of bad pixels in non-occluded regions in the second column

is used as the metric by which the table is sorted. Corre-

sponding disparity maps from our approach are shown in

Fig. 8. In addition to quantitative error percentage, run

time in MDE/s is also reported to provide readers with a

more clear picture of the compared algorithms1. We pro-

vided more details on runtime analysis in Section 4.2.

The VAggGPU?DP algorithm outperforms other DP-

based real-time or near real-time solutions [15, 34, 44, 45]

in terms of both matching accuracy and speed. There are

two DP-based approaches [7, 26] (not listed in Table 1)

that yield better accuracy than ours. However, they both

require color segmentation and are typically slow for real-

time applications. In comparison with [48] which per-

forms full-frame optimization via BP, our proposed

algorithm can achieve much higher throughput at com-

parable accuracy. Another near real-time BP-based algo-

rithm [47] relies on color segmentation and plane fitting.

Even through with the segmentation and BP implemented

on a GPU, it is much slower than our approach. Com-

pared to most edge-preserving filter-based local meth-

ods [16, 27, 33, 52, 53], our proposed algorithm achieves

better trade-off between accuracy and efficiency. Our

accuracy falls behind a GPU local method [32]. Note

that Rhemann et al. [32] refines the final disparity maps

by employing advanced post-processing steps such as

mutual consistency check [9] (required to compute both

left and right disparity maps) and hole filling. For results

reported in this paper, only a 3 9 3 median filtering is

applied to refine the disparity maps. Incorporating effec-

tive and efficient disparity refinement step into our

existing stereo framework is a future research direction.

The approximated 2PassAggGPU approach can produce

reasonably accurate disparity maps in real-time. Com-

pared to VAggGPU?DP, although being less accurate, it

has the advantage that the computations are completely

carried out by the GPU, leaving the CPU free to handle

other tasks.

Our GPU implementation of the bilateral aggregation

attains an average speed-up factor of 245 compared to its

CPU counterpart, with some sacrifice in accuracy. The

principal source of accuracy loss is our choice of GPU

precision. Although the pixel shader performs computation

in 32-bit floating point numbers, we store the filtered
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Fig. 7 Error rate with respect to different aggregation window sizes.

Disparity maps are generated using DP

1 It is important to note that some previous methods are not

implemented on the same processors. The MDE/s numbers reported

in this table do not reflect a fair comparison across different

platforms, but only a reference for the readers.
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matching costs in 8-bit textures for lower computational

and read-back overhead. Although this precision problem

can be addressed by truncating-then-scaling the original

matching costs obtained, the resulting algorithms are more

sensitive to the selection of the truncation value than the

corresponding CPU implementations. And also note that

the parameters are tuned for the CPU implementations only

and may not be optimal for their GPU counterparts.

Table 1 Accuracy and speed comparison of related stereo algorithms in the Middlebury online evaluation system [35]

Algorithm Non-occ error % Avg. error % MDE/s

Tsukuba Venus Teddy Cones

CostFilter [32] 1.51 0.20 6.16 2.71 2.65 145.7

PlaneFitBP [47] 0.97 0.17 6.65 4.17 2.99 9.4

VAggCPU1DP 1.57 1.53 6.79 5.53 3.86 2.62

RealtimeBP [48] 1.49 0.77 8.72 4.61 3.90 20.9

FastBilateral [27] 2.38 0.34 9.83 3.10 3.91 0.3

VAggGPU1DP 1.57 1.47 6.93 6.07 4.01 155.7

OptimizedDP [34] 1.97 3.33 6.53 5.17 4.25 19.0

RealtimeABW [16] 1.26 0.33 10.7 4.81 4.28 3.9

RealtimeGPU [45] 2.05 1.92 7.23 6.41 4.40 52.8

2PassAggCPU 1.47 1.40 9.48 5.27 4.41 1.43

ESAW [52] 1.92 1.03 8.48 6.56 4.50 194.8

RealtimeBFV [53] 1.71 0.55 9.90 6.66 4.71 106.9

2PassAggGPU 1.66 1.86 10.3 5.47 4.82 350.1

DCBGrid [33] 5.90 1.35 10.5 5.34 5.77 133.6

ReliabilityDP [15] 1.36 2.35 9.82 12.9 6.61 20.0

Note that our DP implementation uses two threads to process the upper and lower part of the image, respectively in parallel

VAggCPU?DP, dynamic programming with CPU-based vertical bilateral aggregation (35 9 1); VAggGPU?DP, dynamic programming with

GPU-based vertical bilateral aggregation (32 9 1); 2PassAggCPU, two-pass CPU-based approximated bilateral aggregation (35 9 35); 2Pas-

sAggGPU, two-pass GPU-based approximated bilateral aggregation (32 9 32)

Fig. 8 Disparity maps for the Middlebury benchmark data generated

from full-kernel (35 9 35) bilateral cost aggregation (top row) and

the separable two-pass approximation (bottom row). Identical

parameter settings are used to generate these results. Error disparity

percentages are measured in non-occluded areas.
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4.2 Video sequences of dynamic scenes

In addition to performing well on static stereo images, we

have applied our method to stereo videos of dynamic

scenes. Even though the videos are processed on a frame by

frame basis without incorporating temporal smoothness

constraints, Fig. 9 shows that combining vertical bilateral

aggregation and DP yields more temporally coherent depth

estimation than using either edge-preserving filtering [51]

or DP optimization [2].

Fig. 9 Selected disparity maps for a stereo video of dynamic scene

(this data set was publicized by [38]). First row reference frames 1–4

of the stereo video. Second row results obtained using our

implementation of Yoon and Kweon’s bilateral aggregation algo-

rithm [51]. Third row results from the three-state DP algorithm

similar to [2]. Last row results from vertical bilateral aggregation

(32 9 1) and DP optimization. A 3 9 3 median filter is applied to

refine the disparity maps for all three approaches. Note the improved

spatial and temporal consistency from our algorithm.

Table 2 Real-time performance

Image Size # of Disp. Runtime MDE/s

CPU GPU VAggGPU?DP

2PassAggCPU VAggCPU?DP 2PassAggGPU 1 Core 2 Cores 4 Cores

320 9 240 16 1.38 2.59 292.1 90.4 147.5 235.9

32 1.56 2.90 326.9 99.4 164.2 253.6

640 9 480 16 1.28 2.42 353.9 97.6 158.8 248.2

32 1.48 2.55 427.6 102.8 173.8 270.0

The test system is a 49 Intel Xeon(R) 2.67 Ghz processor with a GeForce GTX 580 graphics card from NVIDIA.
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We also integrated our algorithm into a stereo system

with live video input. The input images are rectified with

lens distortion removed. This preprocessing is imple-

mented on the graphics hardware using texture mapping

functions. Figure 10 shows some live images from our

system. Notice the fine structures and clean object

boundaries that our approach is able to produce. The speed

performance with respect to different image resolutions

and disparity ranges is summarized in Table 2. Our GPU-

accelerated version is two orders of magnitude faster than

its CPU counterpart. Exploiting thread-level parallelism is

a simple yet effective way to speed-up DP and we point out

that multi-thread technique could also be coupled with

data-level parallelism (i.e., executing the same operation

on multiple data using the SIMD instructions), currently

supported by most off-the-shelf processors, so as to obtain

further (2-3 times) speed up.

5 Conclusion and future work

In this paper, we present a stereo framework that operates

at real-time while still estimating high-quality depth

information for live stereo video sequences. Our proposed

algorithm combines edge-preserving cost-volume filtering

and DP optimization. The use of a color and distance-

weighted cost aggregation window in the vertical direction

significantly reduces DP’s ‘‘streaking’’ artifacts. Experi-

mental results show that it is among the best performing

real-time stereo algorithms in terms of both disparity esti-

mation accuracy and efficiency. In addition, an

approximation for the 2D bilateral aggregation is devel-

oped, which leads to a fully GPU-accelerated implemen-

tation to achieve two orders of speed-up compared to the

original approach in [51]. This simplified approach can

produce reasonably accurate disparity maps in real time.

Looking into the future, optimizing DP using SIMD

instructions (as in [11]) will further improve the speed

performance. We would also like to investigate the preci-

sion issue on the graphics hardware. Current graphics

hardware does provide limited support for high-precision

texture maps, at the cost of significant performance deg-

radation (the hardware is optimized to work with 8-bit

textures). From an algorithmic standpoint, our DP imple-

mentation enforces the ordering constraint for speed con-

sideration. Very fine 3D structures (e.g., the flower stem in

Fig. 10) may disappear if it is far away from the back-

ground objects. We plan to investigate the use of scanline

optimization [36], which enforces the smoothness con-

straint directly without employing the ordering constraint.

Another interesting venue to explore is to enforce the

temporal consistency in the video to reduce the flickering

artifacts in the final disparity maps.
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