
SPECIAL ISSUE

An efficient low-cost FPGA implementation of a configurable
motion estimation for H.264 video coding

Wajdi Elhamzi • Julien Dubois • Johel Miteran •

Mohamed Atri

Received: 28 March 2012 / Accepted: 14 August 2012 / Published online: 5 September 2012

� Springer-Verlag 2012

Abstract Despite the diversity of video compression

standard, the motion estimation still remains a key process

which is used in most of them. Moreover, the required

coding performances (bit-rate, PSNR, image spatial reso-

lution,etc.) depend obviously of the application, the envi-

ronment and the network communication. The motion

estimation can therefore be adapted to fit with these per-

formances. Meanwhile, the real time encoding is required

in many applications. To reach this goal, we propose in this

paper a flexible hardware implementation of the motion

estimator which enables the integer motion search algo-

rithms to be modified and the fractional search as well as

variable block size to be selected and adjusted. Hence, this

novel architecture, especially designed for FPGA targets,

proposes high-speed processing for a configuration which

supports the variable size blocks and quarter-pel refine-

ment, as described in H.264. The proposed low-cost

architecture based on Virtex 6 FPGA can process integer

motion estimation on 1080 HD video streams, respectively,

at 13 fps using full search strategy (108k Macroblocks/s)

and up to 223 fps using diamond search (1.8M Macro-

blocks/s). Moreover subpel refinement in quarter-pel mode

is performed at 232k Macroblocks/s.

Keywords Configurable motion estimation � H.264 �
IME � FME � Video coding performances

1 Introduction

Video coding has been the subject of many research works

in last decades. A large number of coding solutions have

been described to fit with the diversity of the compression

standards and the requested coding performances, which

are correlated to the constraints defined by the user or fixed

by the environment (i.e. networks used for data transmis-

sion and the target receiver setup). Consequently, a large

number of video codec has been developed. Despite this

diversity, some particular processing stages, such as motion

estimation [1], are implemented in most of the proposed

solutions. The motion estimation is well known to be the

most computation-intensive stage of video coding process.

Any improvement on this stage has therefore impact on the

whole video codecs performances. From another point of

view, the motion estimation configuration can be adjusted

to fit the applications constraints (image spatial resolution,

frame-rate, bit-rate, PSNR). For instance the motion esti-

mation stage, described in the recent standards such as

H.264 video or VP8, is highly efficient as well as highly

sophisticated and complex. Meanwhile, different configu-

rations can be defined to optimize coding performances.

According to our analysis and as depicted in Fig. 1, the key

features of motion estimation to be adjusted in current

standard as H.264 are:

W. Elhamzi (&) � J. Dubois � J. Miteran

Laboratory Le2i, University of Burgundy,

UMR CNRS 6063,

21000 Dijon, France

e-mail: Wajdi.Elhamzi@u-bourgogne.fr

J. Dubois

e-mail: julien.duboisi@u-bourgogne.fr

J. Miteran

e-mail: johel.miteran@u-bourgogne.fr

M. Atri

Laboratory of ElE-LAB-IT-06,

Faculty of Sciences of Monastir,

University of Monastir, Monastir, Tunisia

e-mail: Mohamed.Atri@fsm.rnu.tn

123

J Real-Time Image Proc (2014) 9:19–30

DOI 10.1007/s11554-012-0274-5



– The format of input data (i.e. the size of the blocks to

match),

– The integer search method,

– The optional fractional search.

Software solutions can easily support any configuration,

nevertheless they may struggle to match the application’s

requirements. Indeed, for high-quality applications, the

computational cost often exceeds the available resources of

a standard computer. Meanwhile, it is still nowadays a

challenge to define an efficient hardware accelerator which

supports such flexibility as well as high coding perfor-

mances. Therefore, we propose in this paper, a motion

estimation accelerator, fully compatible with H.264, which

supports different configurations especially modifications

on the three key features previously identified.

The main contributions of this paper are (1) the defini-

tion of an architecture allowing flexibility, since the user

can select the variable block size, the type of search

method (full or fast search), the type of the accuracy

(integer or fractional search), (2) some new particular

hardware optimizations of the architecture of the motion

estimation allowing to improve the performance (comput-

ing time or hardware resources) compared to the state of

the art. Indeed, the motion estimator’s architecture has

been designed and optimized to propose an efficient FPGA

implementation in respect with the complexity and the

regularity of the integer search and the fractional search.

The paper is structured as follows. In the Sect. 2, we

review the basic principles of the motion estimation. We

study the impact of the search strategy, recalling and

comparing several integer search algorithms. The impact of

the Variable Block Size Motion Estimation (VBSME) and

the fractional search on the coding performances (PSNR,

processing-time) are discussed. In Sect. 3, we propose an

analysis of the integer motion estimation (IME). The

common parts of the studied algorithms are then bringing

out to prove that a generic structure can be proposed. The

hardware implementation results, in terms of required

hardware resources and processing time are finally pre-

sented and discussed in Sect. 4.

2 Motion estimation technique

The motion estimation (ME) is an effective stage to detect

temporal redundancies between successive frames in a

video sequence. Therefore, it has become a crucial part of

many video compression standards. The motion estimation

aims to predict, as accurately as possible, the next frame

from the current frame. The frame is split into fixed size

macro-blocks, currently 16� 16 pixels. The prediction is

processed for each macro-block of the current frame. As

the motion estimation algorithm is not fixed by the video

standard, many solutions have been proposed. The most

popular is the Block-Matching Algorithm (BMA). The

basic idea is to localize a reference block within the search

area in the previous frame. A matching criterion is used to

estimate similarities between two blocks. The applied

BMA is performed using the sum of absolute differences

(SAD) matching criterion given by:

SADðu; vÞ ¼
Xi¼K

i¼1

Xj¼K

j¼1

jSðiþ u; jþ vÞ � Rði; jÞj

SADmin ¼ minðSADðu; vÞÞ

where K is the block width and height, Rði; jÞ is a pixel in

current (reference) frame and Sðiþ u; jþ vÞ is a pixel in

previous frame with an offset of ðu; vÞ. This approach is

known as the integer motion search as only integer dis-

placements of the reference macroblock into the search

window are performed.

To improve the precision of the estimation of the motion

vector, some sub-pixel refinement can be processed. The

Fractional Motion Estimation (FME) is usually done for

half-pel and quarter-pel accuracy [2].

The VBSME [3] is another major refinement which is

included in recent standards. This approach is based on the

BMA, combined with a dynamic selection of the blocks

size. The macro-block is split into smaller blocks and the

estimation is performed on each sub-blocks. The VBS

Fig. 1 H.264 motion estimation key features

20 J Real-Time Image Proc (2014) 9:19–30

123



motion estimation can be processed at both integer and

fractional levels. The motion estimation performances are,

therefore, highly correlated not only to the selected integer

search algorithm but also to the optional refinement stages

VBSME and FME. Therefore, the following sections dis-

cuss the impact of the integer search algorithms as well as

the VBSME and the FME algorithms on the quality of

image and other encoder’s requirements.

2.1 Impact of the search strategy—related work

Many ME algorithms have been described in the literature.

The most accurate strategy is the Full Search (FS) algo-

rithm, which by exhaustively comparing all positions in the

search window, gives the most accurate motion vector

which causes SAD to be minimum. On the other hand, fast

but sub-optimal algorithms compute the best matching

candidate by guiding the search procedure using predefined

search patterns. For instance, square-shaped or hexagon-

shaped or diamond-shaped search patterns with different

sizes are employed in several fast motion algorithms such

as, Three-Step-Search (TSS) [4], the New Three Step

Search (NTSS) [5], the Four Step Search (4SS) [6], the

Hexagon-Based Search (HEXBS) [7], the Diamond Search

(DS) [8], the Cross-Diamond Search (CDS) [9], and the

Block-Based Gradient Descent Search (BBGDS) [10]

algorithms. Referring to these previous works, it is possible

to note that these algorithms performed well in relatively

small search range and low-resolution video sequences.

Using these algorithms impact the global coding per-

formances (i.e. bit-rate, image quality and processing

time). Improving the bit-rate or the quality of image is

achieved by finding the best possible motion vectors, which

means motion vectors that generate the smallest residual

difference during the motion compensation. Meanwhile,

reducing the total search time is achieved by selecting the

proper fast motion estimation, which consists to reduce the

number of points per block (NSP) to be checked. Never-

theless, the bit-rate and the image quality can be decreased

compared with a FS approach. For instance, the mentioned

fast search algorithms are evaluated in [11] regarding the

output PSNR. For low and medium motion activity video

sequences (Carphone, Foreman, and Mobile), the degra-

dation of PSNR is slightly or negligible but the speed-up is

much improved. The situation is changed for the high-

motion activity video sequences (Tennis Table, Football):

the PSNR significantly decreases and the degradation of

image quality is then visible. Despite, DS and BBGDS

algorithms provide better PSNR performances than other

fast algorithms while maintaining nearly the same search

speed for the sequences Table tennis and Football.

An enhanced efficient DS algorithm, named Modified

Diamond Search (MDS), is proposed and compared with

other fast approach and FS method in [12]. The proposed

method as well as the other fast search methods DS, 4SS

and N3SS achieves significant speed-up compared to FS.

Hence the processing time, respectively, decreases of 99,

94, 73 and 65 % for high motion video sequence (Foot-

ball). A negligible degradation in both PSNR and bit-rate is

observed. The low complexity of DS approach family

induces that this kind of algorithms can be considered for

hardware implementation. The FS algorithm is suitable to

high-speed motion and/or high texture variation.

2.2 Impact of VBSME and FME—related work

H.264 introduces two new features to ME, the VBSME and

the sub-pixel accuracy motion estimation. The VBSME is

carried out in two phases: integer motion estimation (IME)

and fractional motion estimation (FME). In H.264, VP8

and other video codec, a 16�16 sized macro-block can be

further partitioned into 16� 8, 8� 16, 8� 8, 8� 4, 4� 8

and 4� 4 sub-blocks as shown in Fig. 2.

When all sub-blocks are in uniform motion, all sub-

block motion vectors will be the same as the motion vector

for the entire macro-block. Nevertheless, when sub-blocks

partitions are moving in different directions, sub-block

motion vectors can differ significantly from each other and

from the motion vector of the macro-block. Consequently,

the ME unit must be able to generate a separate motion

vector for each of the sub-blocks.

The advantages of a large block size are (1) simplicity

and (2) the limited number of vectors that must be encoded

and transmitted. However, in areas of complex spatial

structures and motion, better performance can be achieved

with the smaller block size. Usually, the motion of blocks

does not match exactly in the integer positions. So, to find

best matches, fractional position accuracy is used. If the

best motion vector is a fractional position, an interpolation

is needed to predict the current block. According to [4] and

[13], FME upgrades rate distortion efficiency by ?4 dB in

peak signal-to-noise ratio (PSNR) and requests 45 % of the

inter-prediction processing time. In [14], four sequences

with different characteristics are used for the experiment.

Fig. 2 Variable block size partitions

J Real-Time Image Proc (2014) 9:19–30 21

123



Foreman stands for medium motions, Soccer sequence for

high motions. Mobile and Optis have complex textures.

Clearly using half or quarter-pel increases image quality.

The accuracy of motion compensation is in quarter-pel

resolution for H.264/AVC, which can provide significantly

better compression performance, especially for images

with complex texture.

As shown in the state of the art analysis, the three key

features which are the data block sizes (defined with

VBSME), the IME strategy and the optional FME have

high impact on the video codec’s performances. Therefore,

an efficient hardware implementation of a configurable

motion estimator which supports modification on these

three features can be considered as a significant

contribution.

3 A flexible motion estimation architecture

3.1 Overview of the proposed architecture

Using a full search strategy, the motion detection process is

regular. All possible positions of the pattern in the search

window are scanned contrary to fast search approach. All

the search strategies are intended to converge to the right

motion vector with a regular process and can eventually be

initialized by previous information (such as the vectors

previously computed). Therefore, using fast or reduced

search strategies enable the number of matching to be

reduced, decreasing the processing time. As mentioned

previously, even if the number of matching is reduced, it is

possible to achieve optimal coding results using appropri-

ate (for the video application) reduced search algorithms.

According to our analysis, for a majority of IME algo-

rithms, a list of matching positions is processed during each

Integer Motion Search Phase (IMEP). As shown in Fig. 3,

after the reception of the list of positions and the number of

matching, each matching is processed until all positions

have been considered. Finally, the best vector and,

optionally, all the resulting vectors are available. All the

resulting vectors may be used to generate the next set of

matching positions. The iterative phase IMEP is depicted in

Fig. 3. Hence, we propose an architecture which supports

the iterative processing of lists of positions.

For all configurations, the address generation unit is

described using a scheduler. This description could be

regular and very simple for a Full Search algorithm or more

complex and irregular for more complex algorithms. For

instance, the Diamond Search has several phases of address

generation. The full-search strategy is obviously supported

in this scheme. Note that in this case, all possible addresses

of the reference block in the search window are then

transmitted to the operating part, and therefore a unique

phase is required to determine the best motion vector.

These FS and DS methods are both implemented in our

design. Other kind of fast search, based on the iterative

principles [5, 7], may be eventually implemented instead of

the DS mode.

Finally, depending on the user configuration, the

optional fractional motion estimation (FME) can be per-

formed with half-pel or quarter-pel accuracy. The half-pel

stage is processed systematically before the quarter-pel

refinement, to reduce the search area and therefore to

reduce memory requirement. Indeed, the sub-pel refine-

ment and especially the interpolation phase are costly in

terms of hardware resources [4, 13, 14]. Note that using

fast search strategy decreases significantly IME processing

time. Consequently, FME becomes the slower stage of the

motion estimation. Therefore, an optimized and efficient

architecture should be proposed for the FME unit. The

architecture proposed is depicted in Fig. 4. The addresses

of all matching are provided by the external address gen-

eration unit to the cache memory unit and to the row

extraction unit. As a trade-off between the efficiency and

the required resources, one matching is processed in sev-

eral stages. A full parallel approach would require a large

cache memory, to avoid important bottlenecks on the

external memory, and extremely large processing resources

for real-time implementation. We propose a trade-off

between the complexity and performances with a matching

done row-by-row.

So as to guarantee the random access to any position of

a search window, the search window pixels have to be

accessible to the matching engine and need to be stored in

Fig. 3 Proposed algorithm with interative interger search and

fractional search

22 J Real-Time Image Proc (2014) 9:19–30

123



the FPGA to reduce the number of access to the external

memory, so as not to exceed the available bandwidth. The

cache memory permits access of two rows, one extracted

from the block and the corresponding one in the search

window. The architecture allows to access any row in one

clock cycle. Consecutive pattern matching evaluations do

not need to be adjacent in terms of memory locations. The

cache memory is obtained with dual-port memory blocks

available into FPGA component. Our architecture enables

an efficient random access, without any latency to be

obtained. Moreover, any search-window width can be set

according to the available processing.

The Address Generator Unit (AGU) is in charge of

address generation for all configurations. The AGU allows

selecting one row into the search window and one into the

current block. The extraction unit enables the right amount

of pixels to be selected into the search window row

according to the selected position and the motion estima-

tion to be processed. Hence, for IME, 16 pixels (128 bits)

are systematically extracted from the 16� 16 macro-block

and all possible sub-blocks can be processed in parallel.

For FME, an interpolation phase is required, using a set of

six-tap filters. Therefore, the region to be extracted is

slightly larger than the block width. The pixel number

extracted also depends on the selected mode (16� 16,

16� 8, 8� 8, 8� 4, 4� 4, etc.). For blocks width equal to

16, 8 and 4 pixels, respectively, 22, 14 and 10 pixels should

be extracted.

3.2 Proposed integer motion estimator

The architecture of the Processing Unit is a key point of the

integer motion estimation, in terms of hardware resources

and processing time. Several architectures have been pro-

posed in the literature, some implementing Fixed Block

Size Motion Estimation (FBSME) based on the FS algo-

rithm, and some implementing VBSME, as the Propagate

Partial SAD [3, 15], the SAD Tree [16], and the Parallel

Sub-Tree [17].

Since the regularity of data dependency of full search

motion estimation, 1D and 2D systolic arrays are generally

used for efficient implementation of VBSME. One of the

first 1D-systolic PEs-array implementations of VBSME

was presented by Yap and McCanny [3], and later

improved upon by Song et al. [15] and Fatemi et al. [18]. In

[19], Lee uses 1-D dimensional array architecture with 64

PEs to process all 41 motion vectors within 1,027 or 4,099

clock cycles, respectively, for 16� 16 or 32� 32 search

range. Two dimension array architectures [20, 21] have

also been proposed for high-end application domains, such

as HDTV. All these structures support only FS strategy.

Other related works support DS strategy, but the originality

of the unified PU architecture that we propose in the next

section is to support several strategies and VBSME.

3.2.1 PE unit architecture

The IME phase is highly regular. As shown in Fig. 4, the

overall structure of the Processing Unit architecture is

based on the Propagate Partial SAD architecture [3, 15, 18,

21]. Four kinds of operators are therefore required: abso-

lute difference, adder, accumulator and comparators. The

16 differences are added with a six-stage pipelined struc-

ture. The 16 accumulators, which are included in this

structure, enable all 40 sub-blocks defined in VBSME to be

processed. Each matching is operated row-by-row. At each

cycle, the SAD operation is performed on the two rows,

one extracted from the reference macroblock and the cor-

responding row in the search window. The full macro-

block matching is obtained by accumulation of each row

comparison. The SAD results can be re-used and accu-

mulated to compute values for several block sizes. For

instance, the results of two 4� 4 sub-block computations

can be combined to derive results for a 4� 8 or 8� 4 or

4� 8 computation, and so on. All SAD values are passed

through accumulator operators (labelled A in Fig. 5). One

accumulator can be used several times, for instance four

times for a 4� 4 accumulator. A matching can be per-

formed every 16 cycles. The 41 motion vectors are avail-

able at comparator output, 6 cycles after the transfer of the

16th macro-block’s row. The comparator unit is constituted

of 41 comparing units: one for each sub-block. The origi-

nalities of this architecture are (1) the parallel use of

accumulators, allowing to save one clock cycle during the

VBS process (2) several matching can be processed

sequentially without any latency.

3.2.2 User search impact: study case using FS and DS

methods

The described structure enables a matching to be processed

sequentially, row-by-row, in 16 cycles. This architecture is

fixed for any search strategy without any processing time

Fig. 4 Top-level view of the proposed motion estimation architecture

J Real-Time Image Proc (2014) 9:19–30 23

123



overhead. Indeed, two random matching can be checked

without any latency. We have implemented two search

strategies to check flexibility of the proposed architecture:

Full Search (FS) and Diamond Search (DS). As described

previously, an external module, called AG, is in charge of

address generation. In our implementation, a state machine

has been used to generate the list of addresses. The Dia-

mond Search is a regular and not complex algorithm

therefore the implementation is low cost in terms of

hardware resources. Moreover, for each Diamond Search

phase, this description enables all addresses (i.e. maximum

nine addresses as shown in Fig. 6 to be generated in par-

allel at 438 MHz. Therefore, higher frequency can be

achieved compared to a sequential micro-processor based

solution (embedded in the FPGA, limited to 300 MHz for

our selected component). A micro-processor represents a

flexible solution as described in [22], nevertheless it only

processes a maximum of one address per cycle. For FS

method, all possible addresses should be considered and

are generated sequentially. The set of addresses is pre-

dictable and depends on the search region size. For

instance for N �M search area and P� P macroblock size,

there are Nofm ¼ ðN � Pþ 1Þ � ðM � Pþ 1Þ possible

matching. Therefore, 16 Nofm addresses are required. The

row data are transferred row-by-row to the proposed

structure. As illustrated in Fig. 7, the data are transferred

without interruption. The result is obtained six cycles after

the last row transferred.

The Diamond search has several phases of address

generation. At first, a Large Diamond Search Pattern

(LDSP) step is applied in this case and required nine

matching as shown in Fig. 6a. LDSP is repeated until the

step in which the minimum block distortion (MBD) occurs

is at the center point. A Small Diamond Search Pattern

(SDSP) step is then achieved. The number of matching in a

LDSP depends on the best matching obtained in the pre-

vious LDSP. As presented in Fig. 6b and c, three and five

matching are required when LDSP is, respectively, per-

formed on an edge or corner point. The SDSP is processed

with four matching. Pixels are diffused from the cache

memory unit to the Raw Extraction unit. The SAD module

starts the processing for each macro-block to return the best

score associated with the address and its position into the

diamond pattern. This position enables the generation of

the new addresses for the next step. For instance, an

example of LDSP phases and a final SDSP phase is pre-

sented in Fig. 6d. Contrary to the FS method, several sets of

matching addresses are required. All matching of current

phase should be performed to enable the next set of

addresses to be processed: the position of best matching is

obviously crucial. After a LDSP, the next set of addresses

is fixed for DS method, and performed by the external AG

unit in two cycles. The process row-by-row enables a low-

cost architecture to be proposed. Note that for each

matching 16 rows need to be transferred. Nevertheless,

high speed performances can be achieved as all sub-blocks

defined by VBSME method can be processed

Fig. 5 IME processing unit with VBSME supported

Fig. 6 a DS pattern large, b DS along a corner point, c DS along an

edge point , d DS pattern small

24 J Real-Time Image Proc (2014) 9:19–30

123



simultaneously. Moreover, a set of matching can be pro-

cessed without any latency despite the fact that the

matching positions are not adjacent in terms of memory

locations. Several sets of matching can be processed which

enables multi-phase based fast search algorithms to be

implemented.

3.3 Proposed fractional motion estimator

As discussed in Sect. 2.1, an optional step can be added to

IME: the sub-pel refinement can be performed to increase

coding performances. Using DS mode, high throughput

(1800k macro-blocks/s) can be reached. As the DS output

is the input of FME stage, and as the FME is a complex

algorithm (all sub-blocks have to be refined), it is therefore

crucial to optimise the FME implementation.

3.3.1 FME architecture

After the best integer motion vector is estimated, the

fractional motion estimation accuracy can start. The half-

pel refinements of the surrounding eight half-search posi-

tions are computed, and then the quarter-pel refinements of

eight quarter-search positions surrounding the best half-

search position are computed. In the MPEG-4/AVC H.264

standard, the quarter-pel accuracy luminance picture is

interpolated with two successive filtering operations. The

half-pel refinement is more complex than the quarter-pel

one and requires 6-tap separable FIR filters with coeffi-

cients [1, �5, 20, 20, �5, 1] instead of bilinear filters. As

shown in Fig. 8a, each half-pel value is calculated from six

adjacent pixels horizontally or vertically. The horizontal

value h1;1 is computed from the six adjacent integer pixel

samples located at horizontal direction according to the

following equation :

h1;1 ¼ i1;�1 � 5i1;0 þ 20i1;1 þ 20i1;2 � 5i1;3 þ i1;4 ð1Þ

In a similar way, the vertical half-pel value v1;1 is

performed using the six adjacent pixel values located in

the vertical direction as:

v1;1 ¼ i�1;1 � 5i0;1 þ 20i1;1 þ 20i2;1 � 5i3;1 þ i4;1 ð2Þ

The diagonal half-pel value d1;1 is obtained from the six

adjacent horizontal values hi or alternatively, verticals

values vi;j according to:

d1;1 ¼ v1;�1 � 5v1;0 þ 20v1;1 þ 20v1;2 � 5v1;3 þ v1;4

d1;1 ¼ h�1;1 � 5h0;1 þ 20h1;1 þ 20h2;1 � 5h3;1 þ h4;1

ð3Þ

Once half-pel samples are available, the pixel values at

quarter-pel locations are processed with basic bilinear

weighting of the values at half-pel and integer-pel posi-

tions. Nevertheless, the quarter-pel processing is less reg-

ular. As shown in Fig. 8b, the orientation of the pixels is

considered, and 12 different kinds of processing, which

generate the quarter-pel positions, can be observed.

Therefore, we propose a novel architecture using four

different memory banks for half-pel processing and 12

banks for the quarter-pel refinement. For instance for half-

pel refinement, the original pixel named i and three kinds

of interpolated pixel are stored, respectively, in I, H, V and

D memory banks. This approach has been proposed by

Ruiz [23] only for half-pel refinement, we propose in this

paper to apply it also to quarter-pel refinement. This

architecture is highly efficient in terms of data broadcast-

ing, therefore the processing time decreases. Nevertheless,

the number of small cache memory is increased. Each bank

is implemented with dual port memory embedded into the

FPGA component. Only two memory blocks are required

to store the reduced number of each class of interpolated

pixels. Therefore, the used hardware resources are still low

and suitable for FPGA implementation. For instance, the

32 memory blocks represent less than 8 % of Virtex

6vlx240 FPGA.

The Fig. 9 depicts the overall block diagram of the

proposed architecture of FME. It consists of two processors

used in pipeline: half-pel and quarter-pel processors which

are interpolation-based units, processors units, memory

unit and comparator unit. The architecture of processor and

comparator unit is the same for both half-pel and quarter-

pel. In each refinement stage, eight candidates around the

refinement center are evaluated simultaneously.

Fig. 7 Data transfer and task

scheduling for Diamond Search

and Full Search algorithms

J Real-Time Image Proc (2014) 9:19–30 25

123



Our half-pel interpolation unit is based on the well-

known Yang’s solution [13], which processes a row 16-

pixel interpolation unit. Indeed, a problem related to

Chen’s 4-pixel interpolation unit [2] is the redundant

interpolating operations which appear in the overlapping

area of the adjacent interpolation window. To overcome

this problem, a new architecture based on 16-pixel inter-

polation unit with nine or eighteen 16� 16 processing

units is proposed by Yang’s which removes all the

redundancies. Our design, as Yang’s, adopts a short-

latency 16-pixel wide interpolator to increase throughput

and eliminate redundant interpolation. Moreover, all sizes

of blocks are processed by 16� 16 processing units.

Therefore, the hardware utilization is low when processing

small size blocks (4� 4 and 4� 8). When 4� 8 and 4� 4

blocks are processed in parallel, the processing units

require simultaneous accesses to two memory areas.

Indeed, the integer motion vector could be different for

each sub-block. Hence, the memory banks should be

doubled for reading the reference pixels in parallel. Yang’s

architecture enables higher processing performance to be

obtained than Chen’s implementation. We used Yang’s

architecture principles for our solution, nevertheless we

reduced the number of processors and the memory

resources thanks to our memory organization as discussed

in Sect. 4.

3.3.2 Scheduling dataflow

The interpolation is different for half-pel and quarter-pel

refinement as explained previously in this section, never-

theless the task scheduling is absolutely identical for both

sub-pel Processing Unit Matrix (PUM). Each matrix

Fig. 8 a Half-pel pixel values,

b Quarter-pel pixel values

Fig. 9 Overall fractional

motion estimation architecture

26 J Real-Time Image Proc (2014) 9:19–30

123



consists of eight PE. As explained before eight positions

are considered for half-pel as well as quarter-pel refine-

ment. Hence, each of processor is responsible for one

search position. Therefore, the performances are identical

for both modes. As both task scheduling are identical only

half-pel mode is described in this subsection.

For one search position, one sort of interpolated pixel is

involved: i, h, v or d. The interpolated pixel is compared

with the pattern values, noted P. As each of processor is

responsible for only one search position, the eight proces-

sors are connected as depicted in Fig. 10. This processor

network enables the task scheduling to be improved com-

pared to Ruiz’s solution [23]. A eight sub-pel positions can

be processed in 8 cycles instead of 12 cycles in Ruiz’s

architecture. The Table 1 presented the task scheduling for

a half-pel FME. To simplify the data flow explanation only

a 4� 4 sub-block is considered. As depicted in Fig. 9, for

this 4� 4 sub-block, 5� 4 horizontal samples {h}, 4� 5

vertical samples {v} and 5� 5 diagonal samples {d} are

processed. The interpolated pixels are transferred row by

row by the interpolation unit. The h pixels are available at

output of the interpolation unit one cycle before d and v

samples. At each cycle, each PE enables a 4-pixel macro-

block row to be compared with one 4-pixel row of the

interpolated pixels. For instance, the pattern row pð0;jÞ,

j ¼ 0::3, is constituted of the following four pixels {p0;0,

p0;1, p0;2, p0;3}. For h and d samples, the 5-pixel row is split

in two 4-pixels, for instance h0;j�1 and h0;j , which are,

respectively, constituted of {h0;�1, h0;0, h0;1, h0;2} and

{h0;0, h0;1, h0;2, h0;3}. The two 4-pixel rows enable two

positions to be processed simultaneously. To minimize data

access to pattern memory, the pattern row is used for h

pixels then transferred for the comparison with d and v

pixels. As depicted in Fig. 10, the P data are transferred

from the pattern memory to processors PE1 and PE2 then

through delay elements Dff, to PE3, PE4, PE5 and finally

to PE6, PE7 and PE8. The p, h, d, and v data are inputted at

each cycle. At cycle 0, only p and h are available, PE1 and

PE2 processors are activated. hð0;j�1Þ and hð0;jÞ are avail-

able, respectively, to PE1 and PE2. pð0;jÞ is broadcasted to

processors PE3-4-5. The h, v and d pixels are available

from cycle 1, five processors can then be activated. At

cycle 2, three extra search positions can be considered with

v and d samples, therefore all eight processors perform.

Each PE requires six cycles to complete the 4� 4 match-

ing. The first SAD scores, resulting from PE1 and PE2 are

then available at cycle 5. At cycle 8, all the SAD values are

available at comparison unit level. The half-pel refinement

of the next block can start at cycle 5. We use Yang’s

architecture principles, therefore the FME can be applied

on a 16� 16 block or any sub-blocks (4� 4, 4� 8).

Table 1 Scheduling diagram for 4� 4 block processing

Cycle P H D V PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 SAD

0 p0;j h0;j�1h0;j jh0;j�1–

p0;jj
jh0;j–

p0;jj
– – – Previous

block

1 p1;j h1;j�1h1;j d�1;j�1d�1;j V�1;j jh1;j�1–

p1;jj
jh1;j–

p1;jj
jd�1;j�1–

p0;jj
jv�1;j–

p0;jj
jd�1;j–

p0;jj
– – –

2 p2;j h2;j�1h2;j d0;j�1d0;j V0;j jh2;j�1–

p2;jj
jh2;j–

p2;jj
jd0;j�1–

p1;jj
jV0;j–

p1;jj
jd0;j–

p1;jj
jd0;j�1–p0;jj jV0;j–

p0;jj
jd0;j–

p0;jj
3 p3;j h3;j�1h3;j d1;j�1d1;j V1;j jh3;j�1–

p3;jj
jh3;j–

p3;jj
jd1;j�1–

p2;jj
jV1;j–

p2;jj
jd1;j–

p2;jj
jd1;j�1–p1;jj jV1;j–

p1;jj
jd1;j–

p1;jj
–

4 – – d2;j�1d2;j V2;j – – jd2;j�1–

p3;jj
jV2;j–

p3;jj
jd2;j–

p3;jj
jd2;j�1–p2;jj jV2;j–

p2;jj
jd2;j–

p2;jj
–

5 d3;j�1d3;j V3;j – – – jd3;j�1–p3;jj jV3;j–

p3;jj
jd3;j–

p3;jj
PE1 PE2

6 Next block – – – PE3 PE4

PE5

7 PE6 PE7

PE8

8 –

Fig. 10 Network routing data for half-pel processor matrix

J Real-Time Image Proc (2014) 9:19–30 27

123



4 Implementation results and discussion

The proposed architecture can be considered as a low-cost

implementation of a motion estimator. The hardware

resources requested for our implementation are presented

in Table 2. The implementation has been done on a Virtex6

FPGA target (6vlx240tff784-3). The integer and fractional

estimators are regrouped in this table. Note that only two

search strategies are currently implemented: FS and DS.

The Table 3 shows the comparison between our pro-

posed architecture of IME based on Virtex 6 FPGA and

previously published ASIC- and FPGA-based processors of

VBSME [3, 15, 18–20]. The first three selected architec-

tures enable a matching to be processed row-by-row.

Therefore, the number of PEs as well as the data bandwidth

is reduced compared to the resources required by solutions

which process a matching in once. For these three low-cost

architectures, the 41 possible motion vectors are carried out

by a common pipelined structured constituted of 16 PEs

which enables a matching to be processed in 16 cycles. A

16� 16 search range can therefore be processed in 4,096

cycles. The architecture described in [18] is original as a

32� 32 searching range can be performed, keeping low the

number of PEs. High clock frequency range can be reached

due to the 16 PEs pipelined structure and a pixel truncation

technique. Nevertheless, the process still required 26,624

cycles due to the large searching range and the higher

number of sub-blocks to be performed. The architectures

described in [19] and [20] enable also large search ranges

to be processed, respectively, 32� 32 and 65� 65, nev-

ertheless the number of processing elements is, respec-

tively, extended to 64 and 256 PE. The required hardware

resources is therefore higher.

The originality of our approach is to propose an archi-

tecture, which enables several search strategies to be

implemented (i.e FS and DS). The FS mode enables higher

accuracy to be obtained as described in Sect. 2.1, mean-

while the DS mode provides higher performances in terms

of throughput. These two methods are both implemented in

our design. The user can change on the fly the search mode

according to context (i.e. the required Quality of Service or

event detected in the video scene). Moreover, we are

investigating on the implementation of other fast motion

algorithm instead of DS mode to extend user’s choice. A

main challenge was to provide the input data without

latency even for two matching with non-consecutive access

in the cache memory. In term of frequency we overcome

all designs with 438 MHz, as we use more recent tech-

nology (40 nm), which enables a matching to be processed

in 36 ns. Then our architecture processes 1=ð256� 36e�
9Þ ¼ 108; 5k macro-blocks/s. In a FS mode and using a

16� 16 search window, 720� 576 (resp. 1;920� 1;080)

video streams can be processed at 67 (resp. 13) fps . The

architecture proposed by Su-Jin in [19] is faster (151,9k

macro-blocks/s), but our structure allows to obtain better

results using a DS method, considering a realistic average

range of 15–30 matching per macro-blocks. In this case, a

1080 HD video stream can be processed between 223 and

111 fps.

The Table 4 shows the comparison of the FME designs

implemented in similar technology (0.18 lm) and our

implementation based on FPGA (6vlx240tff784-3). Our

implementation can be considered as a low-cost FME

architecture based on Yang’s design. In this architecture,

we use a 16-pixel interpolation unit allowing speed-up

interpolation step against Chen’s design. Moreover, all

blocks are performed sequentially. So all 41 MV are

refined in 1,062 cycles. As expected and detailed in Sect.

3.3, the very low-cost architecture proposed by Chen’s is

less performing than Yang’s. Our architecture proposes

very competitive performances and similar results to

Yang’s one. Comparing the two architectures, our solution

reduces by two the memory size and decreases by 8

(instead of 18) the processor number for each sub-pel

refinement. Nevertheless, it doubles the processing time for

4� 8 and 4� 4 blocks. Our solution proposes competitive

performances with state of the art. Meanwhile, a current

investigation aims to present a high performance archi-

tecture based on two concatenated 8-pixel interpolation

unit which operate in parallel. The structure requires a

double number of memory banks and PEs. Using the

principles detailed in Sect. 3.3, the number of cycles could

be reduced not only for 4-pixel wide blocks but also 8-pixel

wide blocks. In this configuration, the number of proces-

sors would reach 16 processors for half-pel accelerator as

well as the quarter-pel one. This optimized architecture

Table 2 Motion estimation

implementation results for IME

and FME modes

Motion estimation (device:6v1x240tff784-3)

Logic ulilization Used (IME/FME) Available Utilization (IME/FME) (%)

Number of slice register 1,168 11,944 301,440 [1 3

Number of slice LUTs 1,281 17,426 150,720 [1 11

Number of BRAMs/FIFOs 1 32 416 [1 8

Maximum frequency Frequency IME: 438 MHz Frequency FME: 253 MHz

28 J Real-Time Image Proc (2014) 9:19–30

123



allows processing two sub-blocks simultaneously when

width is 8 or 4. Preliminary results of our modified archi-

tecture, so it achieves all 41 refinement sub-blocks in 610

cycles. Yang’s architecture has been implemented with a

0.18 lm technology. It can process 1080 HD video streams

at a frame rate of 30 fps when running at 200 MHz. The

very low-cost version architecture, using the 40 nm tech-

nology available on Virtex 6 FPGA, can process this video

stream at frame rate of 29 fps at 250 MHz (around 232k

macro-blocks/s).

5 Conclusion

We proposed in this paper, a flexible motion estimator

which enables the integer search strategy to be adjusted and

the optional VBSME and sub-pel refinements to be pro-

cessed. This low-cost implementation, based on Virtex

FPGA enables to reach high-speed performances. Hence

for IME, 1080 HD video streams can be processed up to

223 fps using fast search strategy (around 1800k macro-

blocks/s). Moreover for FME mode, the same video

streams can be processed at frame rate of 29 fps at

250 MHz (around 232k macro-blocks/s). Current devel-

opments aim to improve these performances, specially the

sub-pel interpolation units. This solution can, therefore,

represents an efficient adaptative solution for many video

coding applications. Finally, the use of FPGA technology

enables the Dynamic Partial Reconfiguration (DPR) to be

considered. Therefore, the ME accelerators could be even

more scalable and can be dynamically adjusted according

to the events happening in the video scene or some envi-

ronment modifications (as a network bandwidth reduction).

Obviously, a modification of the architecture would impact

power consumption, and therefore can be investigated for

power saving for mobile devices.

References

1. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Over-

view of the H.264/AVC video coding standard. IEEE Trans.

Circuits Syst. Video Technol. 13(7), 560–576 (2003)

2. Chen, T.C., Huang, Y.W., Chen, L.G.: Fully utilized and reusable

architecture for fractional motion estimation of H.264/AVC. In:

IEEE ICASSP, pp. 9–12 (2004)

3. Swee, YYa., McCanny, J.V.: A VLSI architecture for variable

block size video motion estimation. IEEE Trans. Circuits Syst.

Video Technol. 51(7), 384–389 (2004)

4. Koga, T., Ilinuma, K., Hirano, A., Iijima, Y., Ishiguro, T.: Motion

compensated interframe coding for video conferencing. In: Proc.

Nat. Telecommun Conf, pp. G5.3.1–G5.3.5, New Orleans (1981)

5. Li, R., Zeng, B., Liou, L.M.: A new three-step search algorithm

for fast motion estimation. IEEE Trans. Circuits Syst. Video

Technol. 4(4), 438–442 (1994)

6. Po, L.M., Ma, W.C.: A novel four-step search algorithm for fast

block motion estimation. IEEE Trans. Circuits Syst. Video

Technol. 6(3), 313–317 (1996)

7. Zhu, C., Lin, X., Chau, L.P.: Hexagon-based search pattern for

fast block motion estimation. IEEE Trans. Circuits Syst. Video

Technol. 12(5), 349–355 (2002)

Table 3 Performances

comparison of IME

architectures supporting

VBSME

Ref. nb PE’s Searching

range

Latency Tech

(lm)

Freq

(MHz)

Max k Mblocks/s

using FS

Max k Mblocks/s

using DS

Swee [3] 16 16� 16 4,096 0.13 294 72.9 n/a

Su-Jin [19] 64 16� 16 1,027 Spartan 3 (0.9) 178 151.9 n/a

32� 32 4,099 41.9 n/a

Lei [20] 256 65� 65 5,216 0.18 260 48.6 n/a

Song [15] 16 16� 16 4,096 0.18 266 9.9 n/a

Fatemi [18] 16 32� 32 26,624 0.18 316 11.8 n/a

Ours 16 16� 16 4,096 Virtex 6 (0.04) 436 108.5 1,806

Table 4 Comparison of

fractional motion estimation

architectures performances

Chen’s [2] Yang’s [13] Ruiz’s [23] Our’s

Year 2004 2006 2010 2012

Cycles 1664 790 870 1062

Nbr of PEs 9 18 8 8

Interpolation unit width 10 22 10 22

Tech (lm) UMC 0.18 TSMC 0.18 UMC 0.18 Virtex-6

vlx240tff784-3

Freq (MHz) 100 285 290 253

Throughput (k Mblocks/s) 49 250 NA 232

J Real-Time Image Proc (2014) 9:19–30 29

123



8. Zhu, S., Ma, K.K.: A new diamond search algorithm for fast

block matching motion estimation. IEEE Trans. Image Process

9(2), 287–290 (2000)

9. Cheung, C., Po, L.M.: A novel cross-diamond search algorithm

for fast block motion estimation. IEEE Trans. Circuits Syst.

Video Technol. 12(12), 1168–1177 (2002)

10. Liu, L., Feig, E.: A block-based gradient descent search algorithm

for block motion estimation in video coding. IEEE Trans. Cir-

cuits Syst. Video Technol. 6(4), 419–422 (1996)

11. Lee, Y.G., Ra, J.B.: Fast motion estimation robust to random

motions based on a distance prediction. IEEE Trans. Circuits

Syst. Video Technol. 16(7), 869–875 (2006)

12. Ismail, Y., McNeelly, J., Shaaban, M., Bayoumi, M.: Enhanced

efficient diamond search algorithm for fast block motion esti-

mation. In: IEEE ISCAS, pp. 3198–3201, Taipei (2009)

13. Yang, C., Goto, S., Ikenaga, T.: High performance VLSI archi-

tecture of fractional motion estimation in H.264 for HDTV. In

Proceedings of the IEEE ISCAS, pp. 2605–2608, Greece (2006)

14. Chen, Y.H., Chen, T.C., Chien, S.Y., Huang, Y.W., Chen, L.G.:

VLSI architecture design of fractional motion estimation for

H.264/AVC. J. Signal Process. Syst. 53(3), 335–347 (2008)

15. Song, Y., Liu, Z., Ikenaga, T., Goto, S.: A VLSI architecture for

variable block size motion estimation in H.264/AVC with low

cost memory organization. IEICE Trans. Fundam. E89(12),

3594–3601 (2006)

16. Chen, T.C., Chien, S.Y., Huang, Y.W., Tsai, C.H., Chen, C.Y.,

Chen, T.W., Chen, L.G.: Analysis and architecture design of an

HDTV720p 30 frames/s H.264/AVC encoder. IEEE Trans. Cir-

cuits Syst. Video Technol. 16(6), 673–688 (2006)

17. Liu, Z., Song, Y., Liu, Z., Ikenaga, T., Goto, S.: A fine-grain

scalable and low memory cost variable block size motion esti-

mation architecture for H.264/AVC. IEICE Trans. Fundam. E89-
C(12), 1928–1936 (2006)

18. Fatemi, M.R.H., Ates, H.F., Salleh, R.: A bit-serial sum of

absolute difference accelerator for variable block size motion

estimation of H.264. In: Proceedings of of the Conference on

Innovative in Intelligent Systems and Industrial Applications,

pp. 1–4 (2009)

19. Su-Jin, L., Cheong, G.K., Shin, D.K.: A pipelined hardware

architecture for motion estimation of H.264/AVC. In: Proceed-

ings of the 10th Asia-Pacific conference on Advances in Com-

puter Systems, Architecture ACSAC’05, pp. 79–89 (2005)

20. Lei, D., Wen, G., Ming, Z.H., Zhen, Z.J.: An efficient hardware

implementation for motion estimation of AVC standard. IEEE

Trans. Consumer Electron. 51(4), 1360–1366 (2005)

21. Chen, C.Y., Chien, S.Y., Huang, Y.W., Chen, T.C., Wang, T.C.,

Chen, L.G.: Analysis and architecture design of variable block

size motion estimation for H.264/AVC. IEEE Trans. Circuits

Syst. Regul. Pap. 53(3), 578–593 (2006)

22. Dubois, J., Mattavelli, M., Pierrefeu, L., Miteran, J.: Configurable

motion-estimation hardware accelerator module for the Mpeg-4

reference hardware description platform. In: Proceedings of IEEE

International Conference on Image Processing (ICIP05), Genova

(2005)

23. Ruiz, G.A., Michell, J.A.: An efficient VLSI architecture of

fractional motion estimation in H.264 for HDTV. J. Signal Pro-

cess. Syst. 62(3), 443–457 (2010)

30 J Real-Time Image Proc (2014) 9:19–30

123


	An efficient low-cost FPGA implementation of a configurable motion estimation for H.264 video coding
	Abstract
	Introduction
	Motion estimation technique
	Impact of the search strategy---related work
	Impact of VBSME and FME---related work

	A flexible motion estimation architecture
	Overview of the proposed architecture
	Proposed integer motion estimator
	PE unit architecture
	User search impact: study case using FS and DS methods

	Proposed fractional motion estimator
	FME architecture
	Scheduling dataflow


	Implementation results and discussion
	Conclusion
	References


