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Abstract Use of high dynamic range (HDR) images and

video in image processing and computer graphics appli-

cations is rapidly gaining popularity. However, creating

and displaying high resolution HDR content on CPUs is a

time consuming task. Although some previous work

focused on real-time tone mapping, implementation of a

full HDR imaging (HDRI) pipeline on the GPU has not

been detailed. In this article we aim to fill this gap by

providing a detailed description of how the HDRI pipeline,

from HDR image assembly to tone mapping, can be

implemented exclusively on the GPU. We also explain the

trade-offs that need to be made for improving efficiency

and show timing comparisons for CPU versus GPU

implementations of the HDRI pipeline.

Keywords High dynamic range imaging �
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Real-time imaging

1 Introduction

The use of high dynamic range imagery in computer

graphics and image processing has gained popularity in

recent years. This can be attributed to the increased realism

and visual quality that is afforded by use of HDR data.

Techniques such as image-based lighting, environment

mapping, and special effects such as realistic motion blur

and the well known bloom effect all produce improved

results if they use HDR data instead of low dynamic range

(LDR) data [23].

This increased demand for working with HDR content is

well matched with the capabilities of modern graphics

cards. Currently all modern graphics hardware support

floating point textures and renderbuffers. This allows pro-

grammers to directly feed in a floating point HDR image

and process it on the GPU.

It is, however, often the case that HDR images used in

graphics applications are created offline using the CPU, or

they are obtained as pre-made from external image dat-

abases [8]. However, given the large number of indepen-

dent pixel operations required to create an HDR image, the

process of HDRI assembly is very suitable to be imple-

mented on the GPU. Thus, the first goal of this paper is to

demonstrate how to create an HDR image from a set of

bracketed low dynamic range (e.g. JPEG) images directly

on the GPU by using the OpenGL API.

Due to the limitations of conventional display devices, it

is not possible to display HDR imagery directly, although

this may change in near future as HDR displays enter the

mainstream [1, 25]. Instead, their dynamic range needs to

be reduced followed by quantization into an integer 8-bit

per color channel data type before they can be shown on a

display device. Algorithms that perform dynamic range

reduction are called tone mapping (or tone reproduction)

operators (TMOs), and they range from simple linear

scaling to sophisticated multi-scale approaches that attempt

to simulate the human vision (see [5, 10, 23] for excellent

reviews).

Similar to the HDR assembly process, most TMOs are

comprised of a large number of independent pixel opera-

tions which render them suitable for a GPU implementa-

tion as well. One of the most popular TMOs that belongs to

this category is the photographic tone reproduction opera-

tor [21]. Thus, the second goal of this paper is to demon-

strate how both the global and local versions of this

A. O. Akyüz (&)
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operator can be efficiently implemented by using OpenGL

fragment shaders. Different from previous work, we will

show that the implementation of this operator neither

requires expensive convolution nor Fourier transform

operations to compute local adaptation luminances.

2 Related work

In this section, we review the previous work that deals with

optimizing the HDR imaging pipeline. Cohen et al. [7]

introduced the idea of HDR texture mapping on the GPU.

As contemporary graphics cards at the time of the study did

not support floating point textures, the authors proposed a

technique to simulate HDR textures by using multiple 8-bit

textures. Battiato et al. [6], on the other hand, provided a

state-of-the-art report of the HDRI pipeline from HDR

image creation to tone mapping. However, implementation

of the pipeline on the GPU was not discussed.

The idea of tone mapping on the GPU was introduced by

several authors [3, 11, 12]. In Goodnight et al. [11] and

Goodnight et al. [12], the authors implemented Reinhard

et al. [21]’s tone mapping operator using fragment shaders.

To implement the local version of this operator, they have

devised an efficient GPU based convolution operation.

Furthermore, the authors have shown how to apply the

method to time-varying sequences such as HDR videos.

Artusi et al. [3], on the other hand, proposed a general

framework to speed-up global tone mapping operators by

effectively dividing the workload between the CPU and the

GPU.

A real-time tone mapping operator that also models the

perception effects was developed by Krawczyk et al. [17].

In this work, the authors modeled several important effects

such as visual acuity, glare, and luminance adaptation.

Later work implemented a Reinhard-like operator on

FPGA architectures [13, 14].

To summarize, previous studies made significant con-

tributions to achieve real-time performance in tone map-

ping. In this work, however, we explain how the full HDR

imaging pipeline, from image creation to display, can be

implemented in real-time. Different from previous work,

we also show how a local tone mapping operator that uti-

lizes local adaptation luminances can be implemented

without having to implement neither convolution nor

Fourier transform based approaches on the GPU.

3 Theory

In this section, we will briefly explain the theory behind the

HDR image generation and tone mapping. Their GPU

implementation will be discussed in the following section.

3.1 HDR image assembly

HDR images can be created in several ways: direct capture,

rendering, and multiple exposures technique are among the

most commonly used ones. Direct capture may become the

de facto way of creating HDR images in future, but cur-

rently it requires special hardware furnished with HDR

sensors and therefore is not commonly used by most

photographers. Furthermore, most such devices impose

other restrictions such as limited resolution, long capture

times, and lack of color support [23]. Rendering, on the

other hand, is only suitable for computer generated HDR

imagery.

The multiple exposures technique allows photographers

to take a bracketed sequence of LDR images using a

conventional digital camera, and then merge them into a

single HDR image. Figure 1 depicts such a sequence of 9

exposures with each exposure 1-fstop apart from the next

one. In that each exposure is properly exposed for a dif-

ferent region in the scene, the final HDR image contains

details in both dark and light regions (Fig. 2). Owing to the

Fig. 1 A bracketed sequence captured with a Canon EOS 550D/T2i digital camera. Each exposure is 1-fstop apart from the next exposure in the

series
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fact that this technique allows generation of HDR images

using off-the-shelf cameras, it is a popular choice among

photographers.

A single pixel, Ij, of an HDR image can be computed by

using the following formula in the multiple exposures

technique:

Ij ¼
XN

i¼1

f�1ðpijÞwðpijÞ
ti

.XN

i¼1

wðpijÞ; ð1Þ

where N is the number of LDR images, pij is the value of

pixel j in image i; f is the camera response function, w is a

weighting function used to attenuate the contribution of

poorly exposed pixels, and ti is the exposure time of image

i. One can obtain an HDR image by computing this

equation for all pixels.

In this equation, the inverse of the camera response

function, f�1, is used to linearize (i.e. degamma) the LDR

images as they are typically captured in the non-linear

sRGB color space. f�1 can be recovered directly from the

bracketed sequence using response curve recovery algo-

rithms [9, 19, 24], or it can be assumed to match the sRGB

standard. We adopt the latter approach in this paper to

benefit from OpenGL’s sRGB texture support.

3.2 Dynamic range reduction

Standard display devices such as televisions and computer

monitors are designed to display 8-bit per color channel

integer input streams (although video cards that can output

10-bit and monitors that can display them have been in use

for some time [2]). Due to this limitation, HDR images and

video cannot be directly displayed on standard display

devices. To display them, their dynamic range needs to be

reduced followed by quantization into 8-bit integers. The

algorithms that perform this task are called tone mapping

(or tone reproduction) operators.1

To date, various tone mapping operators have been

proposed each with a different approach to dynamic range

reduction. TMOs are generally classified as global and

local with global operators applying the same compressive

function to each pixel while local operators changing the

shape of this function (thus the degree of compression)

based on the statistics of the local neighborhood around

each pixel.

One of the most popular TMOs that is commonly used

in practice, and that ranks high in user studies, is Reinhard

et al.’s [21] photographic tone reproduction operator. This

operator comes in two flavors, namely the global and the

local operator.

3.2.1 Global operator

The global operator starts by computing the key of the

scene which indicates its overall subjective brightness. The

key is approximated by the log-average luminance (see

Sect. 3.3 for color space conversions needed to obtain

luminance from color and vice-versa), �Lw:

�Lw ¼ exp
1

N

X

x;y

logðdþ Lwðx; yÞÞ
 !

: ð2Þ

Here, Lwðx; yÞ indicates the world luminance2 of pixel

ðx; yÞ and d is a small offset added to avoid singularity that

may occur at logð0Þ if black pixels are present in the image.

The summation is performed across the entire image.

Once the log-average luminance is computed, it is

mapped to a user defined value, a, based on the desired

subjective brightness of the scene. This is accomplished by:

Lðx; yÞ ¼ a
�Lw

Lwðx; yÞ: ð3Þ

For most scenes illuminated by moderate lighting, a can be

set to 0.18. To render darker scenes, it may be reduced to

0.09 or 0.045 (or less), and for lighter scenes it may be

increased to 0.36 or 0.72 (or more).

Once the image is scaled in this manner, the actual

dynamic range compression is performed using a sigmoidal

compression function:

Ldðx; yÞ ¼
Lðx; yÞ

1þ Lðx; yÞ ; ð4Þ

where Ldðx; yÞ represents the display luminance. While this

equation is guaranteed to bring all pixels into a displayable

Fig. 2 The combined result of the sequence in Fig. 1 into a single

HDR image which is tone mapped using the technique described in

this paper

1 Quantization into 8-bits is not part of tone mapping, but it is a

necessary step to create displayable images.
2 The subscript w indicates world luminance which may be in

absolute or relative units depending on the calibration of the image.
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range, some intentional burning in bright areas may be

desired to create a more natural photographic look. The

amount of burning can be controlled by a user defined

parameter, Lwhite:

Ldðx; yÞ ¼
Lðx; yÞ 1þ Lðx;yÞ

L2
white

� �

1þ Lðx; yÞ : ð5Þ

In this final equation, all luminance values greater than

Lwhite will be mapped to 1; that is they will burn out. If

Lwhite is set to infinity, this equation will reduce to Eq. 4.

3.2.2 Local operator

The local operator resembles the global operator in that

tone mapping is performed via a similar formula:

Ldðx; yÞ ¼
Lðx; yÞ

1þ V1ðx; y; sÞ
: ð6Þ

The difference, however, is that V1 represents the local

adaptation luminance in the neighborhood around the pixel

ðx; yÞ. The size of this neighborhood is controlled by the

scale parameter, s. Vi can be computed as

Viðx; y; sÞ ¼ Lðx; yÞ � Riðx; y; sÞ; ð7Þ

where Ri is a Gaussian profile of the form

Riðx; y; sÞ ¼
1

pðaisÞ2
exp � x2 þ y2

ðaisÞ2

 !
: ð8Þ

To determine the appropriate scale, Reinhard et al. [21]

propose to compute the difference of Gaussian

convolutions at different scales, V1 and V2. When the

difference between the two convolution results is above a

threshold, the appropriate scale is found. This, in effect,

computes the largest uniform region around each pixel,

which serves as an adaptation region for that pixel. This

can be formalized as:

Vðx; y; sÞ ¼ V1ðx; y; sÞ � V2ðx; y; sÞ
2/a=s2 þ V1ðx; y; sÞ

; ð9Þ

where / is a sharpening parameter. Here the goal is to find

the largest scale sm that satisfies:

jVðx; y; smÞj\�; ð10Þ

where � is a user parameter. Larger values give rise to

larger adaptation neighborhoods. Reinhard et al. [21] sug-

gests using / ¼ 8:0 and � ¼ 0:05 as default parameters.

The photographic tone mapping operator poses two

challenges for a GPU implementation. First, the log-aver-

age luminance of the whole image needs to be computed—

an operation which is not GPU friendly. Second, local

adaptation luminances need to be computed for the local

operator. This amounts to convolving the image with filters

of varying sizes, which is also not a GPU friendly opera-

tion. In this paper, we show that both problems can be

solved by judicious use of mipmapping.

3.3 Dealing with color

The dynamic range compression described in the previous

section expects luminance values as input. However, in

practice, we typically deal with color images. To convert

color values to luminance, we need to employ color space

transformations. After tone mapping we can invert these

transformations to retrieve the modified color values. In

this section, we briefly highlight the key features of these

color space transformations. For a more complete treat-

ment, we refer the reader to literature on color imaging [22,

27].

To compute the luminance value for a given color

triplet, we first need to know its color space. If this infor-

mation is not available, we can assume that the HDR image

is in the sRGB color space as this is the default output color

space for most digital cameras. We also assume that the

HDR image contains linear color values. This is also a

reasonable assumption as the HDR generation process

typically linearizes the individual exposures before com-

bining them into the HDR image. We can then convert an

sRGB color value into its CIE XYZ representation with the

following transformation [15]:

Xw

Yw
Zw

2

4

3

5 ¼
0:4124 0:3576 0:1805
0:2126 0:7152 0:0722
0:0193 0:1192 0:9505

2

4

3

5
Rw

Gw

Bw

2

4

3

5: ð11Þ

In the CIE XYZ color space, the Y component encodes the

luminance. Thus, Yw is equal to the world luminance Lw
that we used in the previous section. We can now compress

Yw to obtain the display luminance Yd which is equal to Ld
in Eqs. 4 and 5.

The output RGB colors can be computed by:

Cd ¼
Cw

Yw

� �c

Yd ð12Þ

where C ¼ R;G;B and c is used for optional saturation

adjustment. Setting c[ 1 increases saturation while c\1

decreases it. It is worth noting that all of these transfor-

mations described in this section are performed for each

pixel independently, and thus are very amenable to benefit

from GPU implementation.

4 Mipmapping

As mipmapping constitutes a key part of our algorithm

which we use to compute the global average, �Lw, and local
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adaptation luminances, V1 and V2, a brief review of the

concept can be useful. Mipmapping, first introduced by

Williams [26], is a commonly used technique to map tex-

ture images onto polygonal surfaces. The idea of mip-

mapping is to store a texture image as a pyramid of

multiple levels, where each level contains a progressively

lower-resolution version of the original image. During

texture mapping, the level which most closely matches the

screen size of the polygon that is being textured is chosen

as the source image.

In OpenGL, the mipmap levels for two dimensional

textures can be explicitly provided by the programmer

using glTexImage2D or glTexSubImage2D calls.

Alternatively, the programmer can request automatic gen-

eration of mipmaps from the OpenGL server by using the

glGenerateMipmap function. In this case, each level of

the mipmap chain is created from the previous level by

using filtered reduction (the first level must be provided by

the user). Although no specific filtering algorithm is

enforced by the OpenGL standard, most implementations

use box filtering [16]. Thus, each pixel in a higher mipmap

level represents the local average of pixels in the lower

level (see Fig. 3).

A mipmapped 2D texture can be sampled in the frag-

ment shader using the GLSL construct texture(s, xy,

b). Here, s is a handler to the texture that will be sampled.

xy indicates the coordinates inside the texture image, and

b is a bias that will be added to the mipmap level computed

by OpenGL. If the texture size is equal to the screen size of

the polygon that is being rendered, one can think of b equal

to the mipmap level index.

As mentioned above, we use mipmapping to effi-

ciently compute a measure of local adaptation luminance

around each pixel. In the original algorithm of Reinhard

et al. [21], this is performed by computing a Gaussian

convolution around each pixel. It is therefore appropriate

to discuss the differences between these two approaches.

In convolution, each pixel is placed in the center of a

convolution kernel and a local average is computed

within that kernel. The kernel size can be increased to

compute convolution over a larger neighborhood. In

mipmapping, however, the downsampled versions of the

original image are computed once using filtered reduc-

tion. Although this is very efficient as each pixel is used

only once, it may give rise to an asymmetrical neigh-

borhood for computing local adaptation luminances. The

difference between the two approaches is shown in

Fig. 4.

In this figure, R1;R2, and R3 indicate the local adaptation

regions around the pixel shown in red. In Gaussian con-

volution, this pixel is always placed in the center of the

convolution kernel. In mipmapping, this is not always the

case as shown in the figure. We show in Sect. 6 that this

difference has only a minor effect on the quality of the

results, and therefore the heavy computational cost of

convolution can be avoided in most cases.

5 Practice

In this section, we will demonstrate how the theory

described in the previous section can be put into practice by

using OpenGL. As it would be impractical to illustrate the

entire implementation, we will focus on its most crucial

features. In our implementation, we used OpenGL 4.2

which was the latest version of OpenGL at the time of this

writing. However, lower versions of the language can also

be used as long as they support the required functionality

such as mipmapping, floating point textures, sRGB textures

and framebuffers, and GLSL. All of these versions are

supported in OpenGL version 2.1 with appropriate exten-

sions and natively on 3.0 onwards.

Fig. 3 A higher mipmap level is created from the lower mipmap

level by filtered reduction

Fig. 4 The difference between proper convolution and mipmapping

for computing local adaptation luminances. Ri indicate local adap-

tation regions at different scales
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5.1 OpenGL setup for HDRI assembly

To create an HDR image on the GPU, we need to access

the pixels of the bracketed LDR images in the fragment

shader. The most convenient way to achieve this is to

upload LDR images as textures and sample from them

using an appropriate sampler. The code snippet

below demonstrates how to create these textures and the

sampler:

Note that we generate only one sampler as it will be

shared by all of the texture units. Once the textures are

generated, we can upload the LDR images which are stored

as one dimensional arrays with color channels interleaved

as red, green, and blue:

Here, w and h denote the dimensions of the LDR ima-

ges. It is important to note that the internal format of the

textures is set to sRGB. This will allow us to retrieve the

linearized color values when we sample from these textures

in the fragment shader. In other words, sampling from an

sRGB texture will approximate the result of f�1ðpijÞ in

Eq. 1.

We can now set up the source texture and sampler

bindings. First, we need to bind the LDR sampler into all of

the texture units as we want to use the same sampler for all

units. Second, we need to bind each LDR texture into a

different texture unit to be able to access them simulta-

neously in the fragment shader. These settings can be

achieved by:

Here, note that in addition to binding textures and

samplers, we initialize an array called ldrSamplerUn-

its with sequential integers from 0 to numImages �1.

This array will later be used to specify which sampler

will fetch data from which texture unit in the fragment

shader.

The settings above complete the source texture and

sampler setup. We can now perform the destination setup

which is necessary to store the resulting HDR pixel values.

To achieve this, we can create a floating point texture and

attach it to one of the color attachment points of a frame-

buffer object (FBO), and make that FBO the current render

target as shown in Listing 4:

The last operation we need to perform before the

render call is to update the two uniform variables that
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will be used in the fragment shader. To this end, we first

need to obtain the locations of these uniform variables,

bind the HDR creation program, and then upload the

values:

It is important to note the usage of ldrSamplerUn-

its which was initialized with sequential integers in

Listing 3. By writing its value into the uniform array

sampler variable ldrSampler, we establish a contract

that in the fragment shader ldrSampler[0] will sample

from texture unit 0, ldrSampler[1] will sample from

texture unit 1, and so on.

At this point we have completed all the necessary

OpenGL API setup for HDR assembly. We can start

the process by setting the viewport size equal to

the image resolution, and drawing a quad to touch all

pixels:

This will initiate the execution of vertex and fragment

shaders whose details are provided in the following

section.

5.2 Shader setup for HDR assembly

The vertex shader that we need for HDR assembly is a

simple pass-through shader which updates the position and

texture coordinate attributes of each vertex:

Note that this vertex shader is not specific for HDR

assembly. In fact, we will use the same shader for tone

mapping. The heart of the HDR assembly process is

implemented in the fragment shader shown in Listing 8:
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The main function above calls two other functions

namely luminance and weight to compute the

luminance of each pixel and its contribution to the cor-

responding HDR value. Because we assume that the LDR

images are captured in sRGB color space, the computa-

tion of luminance is based on the ITU-R BT.709 prima-

ries [15]:

As for the weighting function, we need to use a function

which attenuates the contribution of over- and under-

exposed pixels while emphasizing the effect of properly

exposed pixels. Several weighting functions are proposed

in literature. We choose the tent function proposed by

Debevec and Malik [9] due to its simplicity:

This function assigns the highest weight for the pixels in

the middle of the input range, and linearly decreases it for

lower and higher pixel values.

We note that Listing 8 closely adheres to the HDR

assembly equation shown in Eq. 1. The main difference is

that we assume the LDR exposures to be separated by

1-fstop apart. This allows us to compute the exposure ratios

in the pixel shader directly (note the use of refId),

instead of getting them from the application. A second

difference is that, we let the OpenGL do the linearization of

LDR images for us by specifying an internal format of

sRGB as shown in Listing 2. If more accuracy is desired,

the precomputed actual camera response can be provided to

the shader through a uniform array variable.

Finally, it is important to note that we write out the

logarithm of the luminance into the alpha channel of the

HDR image. This will be useful to compute the log-aver-

age luminance via mipmapping as explained in the next

section.

5.3 OpenGL setup for tone mapping

Once the draw call in the previous section completes, the

HDR image will be stored in the texture hdrTex. For tone

mapping, we can bind this as a source texture and sample

from it to access the HDR color values. We can then

perform dynamic range compression, and write out the

resulting compressed pixel values into an sRGB texture to

obtain the final displayable image. First let us demonstrate

the generation of the tone map output texture, and its

binding to the target FBO:

We can now create a sampler to sample from the HDR

image in the fragment shader. The reason that we cannot

use the LDR sampler that we already created is that we

need the HDR sampler to have mipmapping enabled. By

sampling from the highest mipmap level we can obtain the

log-average luminance of the HDR image which is needed

for tone mapping.

Finally, we can update our uniform variables that will be

used in the fragment shader and draw a quad to initiate tone

mapping.
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Here, key, Ywhite, and sat are user-defined parame-

ters and can bemodified to change the appearance of the tone

mapping result as will be demonstrated in Sect. 6.

5.4 Shader setup for tone mapping

The vertex shader that we use for tone mapping is identical

to the vertex shader for HDR assembly (see Listing 7). The

main work for tone mapping is performed inside the

fragment shader as shown below:

The tonemapping routine closely follows the description in

Sect. 3.2. First the linear sRGB values are converted to XYZ.

Tone mapping is then performed to compress the luminance.

Finally, the compressed luminance is used to obtain the dis-

playable RGB values with an optional saturation adjustment:

The implementation of the RGB2XYZ routine is

straightforward and omitted for brevity.

The tone mapping implementation in Listing 15 per-

forms global tone mapping. For some applications, it may

be desirable to perform local tone mapping as it better

preserves the visibility of details. Previous GPU-based

approaches for local tone mapping implemented convolu-

tion operations on the GPU. Here, we demonstrate that

reasonable results can be obtained by simply using Op-

enGL’s mipmapping ability in lieu of convolutions.
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To approximate convolutions, we compute V1 and V2

from consecutive mip levels. For this approach to work it is

important to set the minification parameter of the sampler

as GL_LINEAR_MIPMAP_NEAREST as shown in List-

ing 12. Note that this approach is not only faster than

computing convolutions as was done in Goodnight et al.

[11], but also much easier to implement.

Once the HDR image is created and tone mapped, the

results can be downloaded back to CPU using the

glGetTexImage function of OpenGL.

6 Results

In this section, we demonstrate representative results that

were obtained by using the algorithms described in this

paper. We will first show the effect of changing the tone

mapping parameters on the resulting images, and then

demonstrate that our GPU implementation produces simi-

lar results to two reference CPU implementations. We will

then illustrate the performance that can be gained by using

our method and then compare it with a standard convolu-

tion based approach.

Figure 5 depicts tone mapped versions of two HDR

images that were created using 9 exposures captured with a

Canon EOS550D/T2i digital SLR camera. On the left

column, we demonstrate the effect of changing the key

parameter of the tone mapping operator. As it can be seen,

increasing the key value results in progressively brighter

images. On the right column, we demonstrate the effect of

changing the burn-out threshold, or Lwhite in Eq. 5. As this

threshold is reduced we can see more pixels getting

clamped at the highest possible value. For instance, while

the details outside the window is visible in the top image,

this region burns-out in the bottom image. Thus, this

parameter can be used to controllably burn bright regions

in an image to create an artistic effect. An automatic

method to estimate reasonable values for these parameters

is explained by Reinhard [20].

We also illustrate the influence of the saturation

parameter in Fig. 6. We remind that saturation adjustment

is not part of tone mapping, but can be applied as a post

Fig. 5 The left column depicts

the tone mapping results with

increasing key value in each

row (0.18, 0.36, and 0.72 from

top to bottom). The right

column, on the other hand,

depicts tone mapping results

with decreasing burn-out

threshold (106; 5, and 2 from top

to bottom)
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processing operation to create the desired final look. As can

be seen from the figure, setting a low saturation parameter

such as 0.5 yields a more grayscale result while a high

saturation parameter such as 1.5 exaggerates the color

saturation.

The difference between the global and local operators is

depicted at the top row of Fig. 7. As expected, the local

operator better preserves the visibility of details as can be

seen in the close-ups on the right. At the bottom row of the

same figure, we show the results generated by using a

reference CPU implementation.3 As the figure shows, our

results are very similar to the CPU implementation. In fact,

the visibility of the details on the book appears to have

been better preserved by our method. The difference could

be attributed to using different scale factors. Whereas the

reference implementation uses 1.6 as the ratio of two

scales, we had to use 2.0 due to mipmapping.

Next, we compare our results with two reference CPU

implementations using a qualitative metric (Fig. 8). In this

figure, the top row shows the global photographic tone

mapping results obtained by our method as well as the

implementation of the same method in the pfstmo package

(pfstmo_reinhard02) and the original implementation of

Reinhard et al. [21]. On the second row, we can see the

visible differences as detected by the dynamic range

independent visual quality assessment metric [4]. Here, the

Fig. 6 The effect of changing the saturation parameter. The image on the left has the saturation parameter set to 0.5 and the image on the right to

1.5. The center image has no post tone mapping saturation adjustment (i.e. parameter set to 1.0)

Fig. 7 Global (left) versus local (middle) tone mapping. As can be

seen in the close-ups, the local operator better preserves the visibility

of details. The top row shows the results obtained by our GPU

implementation, whereas the bottom row shows the results of a

reference CPU implementation [18]

3 We used pfstmo_reinhard02 operator from pfstmo package [18].
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green color indicates the loss of contrast, blue indicates the

amplification of contrast, and red indicates the reversal of

contrast. We can see that the differences between the two

CPU implementations are minor4 and similar to the

differences between our result and Reinhard et al.’s [21]

original implementation. Visual inspection of a selected

region confirms this similarity. At the bottom two rows, we

show the same result but this time for the local operator.

Again the differences between the two CPU methods and

our GPU method are comparable. The close-ups show the

enhanced details.

We show further set of results obtained by our method

together with the reference implementation in Fig. 9 using

Fig. 8 Qualitative comparison using the dynamic range independent

image quality metric [4]. Top row shows the results of global tone

mapping using different implementations of the photographic tone

mapping operator: pfstmo_reinhard02, Reinhard et al.’s original

implementation (acquired from:http://www.cs.utah.edu/*reinhard/

cdrom), and our GPU implementation. The bottom row shows the

same for the local operator. Close-ups are also shown for visual

inspection. Refer to text for more details

4 Such differences between two implementations can be caused by

different post processing operations after tone mapping such as

normalization, clamping, quantization which are not elaborated in the

original paper but are nevertheless used in the implementations.
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well-known HDR images. As can be seen from the figure,

our results are qualitatively similar to the reference CPU

implementation, but are obtained at a fraction of the time of

the latter.

We provide a run time comparison to illustrate the per-

formance benefits of our method. Table 1 lists the results of

such a comparison obtained by creating and tonemapping an

18 megapixels (MP) HDR image created from 9 exposures

captured by a Canon EOS 550D (Fig. 1). In this test we used

a high end CPU and a GPU. As the results indicate, both

creating and tonemapping anHDR image on the GPU yields

immense performance benefits. HDR assembly, on average,

yields 2–3 orders of magnitude improvement, while tone

mapping yields 3–4 orders ofmagnitude. If disk I/O andGPU

texture upload times are included in the timings, creating an

HDR image takes about 13.8 s on the CPU whereas it takes

only 4.4 s on the GPU.

As for the memory consumption, the total GPU memory

in bytes required for storing LDR images is given by

N � w� h� 3, where N is the number of exposures, and w

and h are the dimensions of the images. The HDR image

occupies w� h� 4� 4 bytes of memory as it needs to be

Table 1 Performance comparison of creating and tone mapping an

HDR image on the CPU versus GPU in frames per second

Device HDR gen. Global TM Local TM

CPUa 0.18 fps 0.12 fps 0.015 fps

GPUb 65 fps 137 fps 103 fps

Timings do not include disk I/O and GPU texture upload times
a Intel Core i7 at 3.20 GHz
b Nvidia GeForce GTX 590

Fig. 9 Comparison of our results (top) with a reference CPU implementation (bottom). Results of the global operator are shown on the left for

the memorial image and top for the nave image. The dynamic ranges of the images are 5.53 and 8.50 orders of magnitude respectively
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in four component per pixel floating point format. The full

mipmap chain requires approximately 1.33 times this

number.

We conducted more experiments to understand which

part of the algorithm takes the most GPU time. As accurate

measurement of timings on the GPU is not straightforward,

we omitted individual parts of our algorithm to see its effect

on the frame rate. The results are reported in Table 2.We can

see that the majority of the time is spent on texture look-ups

from the source exposures. This is followed by the time it

takes to generate a mipmap chain which approximately

reduces the frame rate by 23%. Luminance and weight

computations have very small impact on the performance.

Finally, we investigated how long a standard convolu-

tion operation on the GPU takes. As can be seen in Table 3,

when the kernel size is 7� 7 or greater, the convolution

alone takes more time than our mipmap optimized imple-

mentation. Given that typically larger kernels would be

required to compute local adaptation luminances, the per-

formance of the convolution approach is likely to be even

lower in practice. This indicates that our algorithm is not

only simpler to implement, but also outperforms convolu-

tion without compromising quality.

These results underline the importance of transitioning

to a full GPU pipeline for both creating and tone mapping

high resolution HDR images.

7 Conclusions

With high resolution HDR images becoming more com-

mon in image processing and computer graphics applica-

tions, their rapid processing is gaining importance. In this

paper, we have shown how one can achieve real-time

performances by implementing the full HDRI pipeline on

the GPU. We demonstrated the feasibility of the approach

as well as the improved performance that it affords. We

emphasized the key features of the implementation to

facilitate its reproduction by other researchers and pro-

grammers. While the full HDRI pipeline may contain other

operations such as the camera response recovery, image

alignment, ghost removal, etc., the skeletal implementation

provided here can serve as a basis to implement these other

functionality as well.5
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