
ORIGINAL RESEARCH PAPER

Real-time implementation of remotely sensed hyperspectral image
unmixing on GPUs

Sergio Sánchez • Rui Ramalho • Leonel Sousa •

Antonio Plaza

Received: 13 December 2011 / Accepted: 7 August 2012 / Published online: 15 September 2012

� Springer-Verlag 2012

Abstract Spectral unmixing is one of the most popular

techniques to analyze remotely sensed hyperspectral

images. It generally comprises three stages: (1) reduction

of the dimensionality of the original image to a proper

subspace; (2) automatic identification of pure spectral

signatures (called endmembers); and (3) estimation of the

fractional abundance of each endmember in each pixel of

the scene. The spectral unmixing process allows sub-pixel

analysis of hyperspectral images, but can be computa-

tionally expensive due to the high dimensionality of the

data. In this paper, we develop the first real-time imple-

mentation of a full spectral unmixing chain in commodity

graphics processing units (GPUs). These hardware accel-

erators offer a source of computational power that is very

appealing in hyperspectral remote sensing applications,

mainly due to their low cost and adaptivity to on-board

processing scenarios. The implementation has been

developed using the compute device unified architecture

(CUDA) and tested on an NVidiaTM GTX 580 GPU,

achieving real-time unmixing performance in two different

case studies: (1) characterization of thermal hot spots in

hyperspectral images collected by NASA’s Airborne Vis-

ible Infra-red Imaging Spectrometer (AVIRIS) during the

terrorist attack to the World Trade Center complex in New

York City, and (2) sub-pixel mapping of minerals in AV-

IRIS hyperspectral data collected over the Cuprite mining

district in Nevada.

1 Introduction

Hyperspectral imaging instruments are capable of collect-

ing hundreds of images, corresponding to different wave-

length channels, for the same area on the surface of the

Earth [1]. For instance, NASA is continuously gathering

imagery data with instruments such as the Jet Propulsion

Laboratory’s Airborne Visible-Infrared Imaging Spec-

trometer (AVIRIS), which is able to record the visible and

near-infrared spectrum (wavelength region from 0.4 to

2.5 lm) of reflected light in an area 2–12 km wide and

several kilometers long, using 224 spectral bands [2]. The

resulting multidimensional data cube typically comprises

several GBs per flight (see Fig. 1). The wealth of spectral

information provided by latest-generation hyperspectral

imaging instruments has opened ground-breaking per-

spectives in many applications [3], many of which require

real-time response of algorithm analysis [4–6].

One of the main problems in the analysis of hyper-

spectral data cubes is the presence of mixed pixels [7],

which arise when the spatial resolution of the sensor is not

fine enough to separate spectrally distinct materials. For

instance, the pixel vector labeled as ‘‘vegetation’’ in Fig. 1

may actually be a mixed pixel comprising a mixture of

vegetation and soil, or different types of soil and vegetation

canopies. This is a common scenario in real-world

S. Sánchez � A. Plaza (&)

Hyperspectral Computing Laboratory, Department of

Technology of Computers and Communications, Escuela

Politecnica de Cáceres, University of Extremadura, Cáceres,

Spain

e-mail: aplaza@unex.es

S. Sánchez

e-mail: sersanmar@unex.es

R. Ramalho � L. Sousa
INESC-ID, IST, Technical University of Lisbon, Lisbon,

Portugal

e-mail: rmarme@sips.inesc-id.pt

L. Sousa

e-mail: las@inesc-id.pt

123

J Real-Time Image Proc (2015) 10:469–483

DOI 10.1007/s11554-012-0269-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-012-0269-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-012-0269-2&domain=pdf

applications, in which the spatial resolution of the sensor

cannot separate between spectrally pure components,

which may also appear mixed at intimate levels. In this

case, several spectrally pure signatures are combined into

the same (mixed) pixel and efficient techniques are

required to identify the spectral signatures of these pure

components and their abundance within hyperspectral

image pixels. Hyperspectral unmixing [8, 9] is one of the

most popular techniques to analyze hyperspectral data. It

generally comprises three stages: (1) reduction of the

dimensionality of the original image to a proper subspace,

(2) automatic identification of pure spectral signatures

(called endmembers), and (3) estimation of the fractional

abundance of each endmember in each pixel of the scene.

A very recent review work describes extensively the con-

tributions in the area of spectral unmixing in the past years

[10]. As mentioned in this paper, the spectral unmixing

process can be quite expensive in computational terms,

mainly due to the extremely high dimensionality of

hyperspectral data cubes [11].

Spectral unmixing involves the separation of a pixel

spectrum into its pure component endmember spectra and

the estimation of the abundance value for each endmember

[7]. The linear mixture model assumes that the endmember

substances are sitting side-by-side within the field of view

of the imaging instrument. On the other hand, the nonlinear

mixture model assumes nonlinear interactions between

endmember substances. In practice, the linear model is

more flexible and can be easily adapted to different anal-

ysis scenarios [9]. It can be simply defined as follows:

x ¼ Eaþ n ¼
Xp

i¼1

eiai þ n; ð1Þ

where x is an n-dimensional pixel vector given by a col-

lection of values at different wavelengths, E ¼ feigpi¼1 is a

matrix containing p endmembers, a ¼ ½a1; a2; . . .; ap� is a

p-dimensional vector containing the abundance fractions

for each of the p endmembers in x; and n is a noise term.

Solving the linear mixture model involves (1) identifying a

collection of feigpi¼1 endmembers in the image and (2)

estimating their abundance in each pixel. Several tech-

niques have been proposed for such purposes [4], but all of

them are quite expensive in computational terms. Although

these techniques map nicely to high-performance comput-

ing systems such as commodity clusters [9], these systems

are difficult to adapt to on-board processing requirements

introduced by applications with real-time constraints such

as wild-land fire tracking, biological threat detection,

monitoring of oil spills, and other types of chemical con-

tamination. In those cases, low-weight integrated compo-

nents such as commodity graphics processing units (GPUs)

are essential to reduce mission payload. In this regard, the

emergence of GPUs now offers a tremendous potential to

bridge the gap towards real-time analysis of remotely

sensed hyperspectral data [13–24].

In this paper, we develop the first real-time implemen-

tation of a full spectral unmixing chain for GPUs. The

proposed methodology has been implemented using NVi-

diaTM’s compute device unified architecture (CUDA) and

tested on an NVidiaTM GTX 580 GPU using two different

hyperspectral images collected by AVIRIS. The remainder

of the paper is organized as follows: Section 2 describes

the different modules that comprise the considered

unmixing chain. Section 3 describes the GPU implemen-

tation of these modules. Section 4 presents an experimental

evaluation of the proposed implementations in terms of

both unmixing accuracy and parallel performance, and

Section 5 concludes the paper with some remarks and hints

at plausible future research lines.

2 Hyperspectral unmixing chain

The standard hyperspectral unmixing chain is graphically

illustrated by a flowchart in Fig. 2. It should be noted that

our implementation focuses on the widely used linear

mixture model and consists of three main parts: (1)

dimensional reduction, (2) selection of pure spectral sig-

natures or endmembers, and (3) estimation of the abun-

dance of each endmember in each pixel of the scene. In this

work, the dimensional reduction step is performed using

principal component analysis (PCA) [25, 26], a popular

Fig. 1 The concept of remotely sensed hyperspectral imaging

470 J Real-Time Image Proc (2015) 10:469–483

123

tool for feature extraction in different areas including

remote sensing. Computing the PCA is an iterative pro-

cedure and is thus subject to many dependencies between

subsequent iterations. Furthermore, since the PCA trans-

form must respect orthogonality, it also boasts significant

intra-iteration dependencies. For the endmember selection

part, we rely on the well-known N-FINDR algorithm [27]

which is a standard endmember extraction technique in the

hyperspectral imaging community. Finally, abundance

estimation is carried out using linear spectral unmixing

(LSU) due to its simplicity. In the following, we describe

the three modules adopted in our hyperspectral unmixing

chain implementation: PCA, N-FINDR and LSU.

2.1 PCA for dimensionality reduction

PCA is a well-known method for dimensionality reduction

[26]. It can be computed by performing the eigendecom-

position of the covariance matrix of the input data X ¼
½x1x2. . .xm�T; where m is the total number of pixels, as can

be seen in Eq. (2), where R is the covariance matrix of

X;P ¼ ½p1p2. . .pn� is an orthogonal matrix whose columns

are the eigenvectors of R; n is the total number of spectral

bands and K is a diagonal matrix containing the eigen-

values of R:

R ¼ PKP�1: ð2Þ

The projection of the data X by the eigenvectors P yields

the principal components of X: The eigenvalues in K
encase the ‘‘weight’’ of each principal component on

the resulting data. By choosing only the eigenvectors

corresponding to the largest d eigenvalues, the dimen-

sionality of the data is reduced while preserving the max-

imum information (variance).

There are several algorithms for computing the

eigendecomposition such as the QR algorithm [32], the

multiple relatively robust representations algorithm [33],

Jacobi–Davidson algorithm [34], or the Arnoldi algorithm

[35]. It should be noticed that in the case of dimensionality

reduction, only the largest d � n eigenvalues (and corre-

sponding eigenvectors) need to be computed. The power

iteration algorithm [31] is a well-known algorithm for

computing the largest eigenpair of a matrix. If one defines a

random vector ~y as y ¼ P~y; then we have

Rky ¼ RkP~y ¼ PKkP�1P~y

¼
Xn

j¼1

pjk
k
j ~yj ¼ kk1

Xn

j¼1

pj
kj
k1

� �k

~yj:
ð3Þ

If the matrix R has a dominant eigenvalue, i.e.

jk1j[jkjj 8j 6¼ 1; then as k ! 1 the term ðkj=k1Þk !
0 8j 6¼ 1; hence Eq. (3) will converge to the dominant

eigenpair as k increases. Since the magnitude of kk1 also

increases with k; it is necessary to normalize the computed

vector each iteration. Eq. (4) shows the power iteration.

yðkþ1Þ ¼ Rkyð0Þ

kRkyð0Þk
¼ RyðkÞ

kRyðkÞk : ð4Þ

Simultaneous iteration [30] simply consists of applying the

power iteration algorithm to several eigenvectors simulta-

neously. While simultaneous iteration (and power iteration)

might not be the most computationally efficient

Fig. 2 Standard hyperspectral

unmixing chain

J Real-Time Image Proc (2015) 10:469–483 471

123

eigendecomposition algorithm available, it is very regular

and exposes data parallelism, which improves its potential

for parallelization in a massively parallel architecture such

as a GPU.

Since the power iteration algorithm converges only to

the dominant eigenpair, applying it straightforwardly

multiple times would lead to the same result; thus the

results need to be decorrelated. This is done by subtracting

from the data matrix the influence of the larger eigenvec-

tors, which can be accomplished simultaneously for all

eigenpairs being computed. If this deflation is done in the

original data space X; this will lead to an undesirable

increase in the dimensionality of the problem, as a new

data matrix Xi will need to be created for each eigenpair

being computed. However, this deflation step can be done

in the space of the eigenvectors (the matrix P), which

corresponds to multiplying P by a deflation matrix D: Since
we are subtracting from each eigenvector the influence of

the previous, larger eigenvectors, the deflation matrix D is

upper triangular. Each non-zero element dij of D is then

given by Eq. (5).

dii ¼ 1

dij ¼ �pTi pj �
Xj�1

k¼iþ1

dikp
T
k pj; for j[i

ð5Þ

While the construction of the matrix D has some recur-

siveness, each row is completely independent from another

and can be computed in parallel. Experimental results on

the tested GPU (see Sect. 4.3) show that the computation

of the deflation matrix D typically takes \3 % of the

computation time of the eigendecomposition procedure.

The complete algorithm is presented in Algorithm 1.

U corresponds to the power iteration, whereas W is the

correction caused by the deflation procedure. The function

triu() takes the upper triangular portion of the matrix. This

is a consequence of the fact that only the projections of the

larger eigenvectors are removed from the smaller ones and

not vice-versa. Convergence is achieved when the direc-

tions of the eigenvectors P remain unchanged from one

iteration to the next.

Simultaneous iteration computes the d largest eigenpairs

directly, without the need to reduce the data matrix to

simpler forms or compute the remaining smaller

eigenpairs.

2.2 N-FINDR for endmember selection

The N-FINDR algorithm [27] is one of the most widely

used and successfully applied methods for automatically

determining endmembers in hyperspectral image data

without using a priori information. This algorithm looks for

the set of pixels with the largest possible volume by

inflating a simplex inside the data. The procedure begins

with a random initial selection of pixels (see Fig. 3a).

Every pixel in the image must be evaluated to refine the

estimate of endmembers, looking for the set of pixels that

maximizes the volume of the simplex defined by the

selected endmembers. The mathematical definition of the

volume of a simplex formed by a set of endmember can-

didates is proportional to the determinant of the set aug-

mented by a row of ones. The determinant is only defined

in the case where the number of features is p� 1; p being

the number of desired endmembers [9]. Since in hyper-

spectral data typically n � p; a transformation that reduces

the dimensionality of the input data, is required. In this

study, the PCA transform described in the previous section

has been used for this purpose. The corresponding volume

is calculated for every pixel in each endmember position by

replacing that endmember and finding the resulting vol-

ume. If the replacement results in an increase of volume,

the pixel replaces the endmember. This procedure is

repeated in iterative fashion until there are no more end-

member replacements (see Fig. 3b). The method can be

summarized by a step-by-step algorithmic description

which is given below in Algorithm 2.

The feature reduction step of Algorithm 2 applies a

dimensionality reduction transformation such as the PCA

to reduce the dimensionality of the data from n to d ¼
p� 1; where p is an input parameter to the algorithm

(number of endmembers to be extracted).

In the initialization stage, let feð0Þ1 ; e
ð0Þ
2 ; . . .; e

ð0Þ
p g be a set

of endmembers randomly extracted from the input data.

472 J Real-Time Image Proc (2015) 10:469–483

123

At iteration k� 0; the volume defined by the current set

of endmembers is calculated in volume calculation as

follows:

VðeðkÞ1 ; e
ðkÞ
2 ; . . .; eðkÞp Þ ¼

det
1 1 � � � 1

e
ðkÞ
1 e

ðkÞ
2 � � � e

ðkÞ
p

� �����

����
ðp� 1Þ! : ð6Þ

In the replacement phase of Algorithm 2, for each pixel

vector xj in the input hyperspectral data, we recalculate the

volume by testing the pixel in all p endmember positions,

i.e., first calculate Vðxj; eðkÞ2 ; . . .; e
ðkÞ
p Þ; then calculate

VðeðkÞ1 ; xj; . . .; e
ðkÞ
p Þ; and so on until VðeðkÞ1 ; e

ðkÞ
2 ; . . .; xjÞ: If

none of the p recalculated volumes is greater than

VðeðkÞ1 ; e
ðkÞ
2 ; . . .; e

ðkÞ
p Þ; then no endmember is replaced.

Otherwise, the combination with maximum volume is

retained. Let us assume that the endmember absent in the

combination resulting in the maximum volume is denoted

by e
ðkþ1Þ
i : In this case, a new set of endmembers is pro-

duced by letting e
ðkþ1Þ
i ¼ xj and e

ðkþ1Þ
l ¼ e

ðkÞ
l for l 6¼ i: The

replacement step is repeated for all the pixel vectors in the

input data until all the pixels have been exhausted.

As a final comment, it has been observed that different

random initializations of N-FINDR may produce different

final solutions. Thus, our N-FINDR algorithm was imple-

mented in iterative fashion, so that each sequential run was

initialized with the previous algorithm’s solution. This

means that, once a solution has been achieved by the

N-FINDR algorithm, another iterative run of the same algo-

rithm is conducted but this time using the previous solution

as the initial condition until the algorithm converges to a

simplex volume that cannot be further maximized. Note

that the initialization of N-FINDR with a solution already

derived by the same algorithm has the potential to improve

the volume estimation by the algorithm, as the starting

condition is already a good approximate solution that can

be refined in iterative fashion by focusing on optimizing

the selection of endmembers at the corners of the data

distribution. Our experiments show that, in practice, this

approach allows the algorithm to converge in a few itera-

tions only and also to obtain progressively more refined

solutions in terms of volume by virtue of the iterative

nature of the N-FINDR implementation adopted in

this work.

2.3 LSU for abundance estimation

Once the set of endmembers E ¼ feigpi¼1 has been

extracted, their correspondent abundance fractions a ¼
½a1; a2; . . .; ap� in a specific pixel vector x of the scene can

be simply estimated (in least squares sense) by the fol-

lowing unconstrained expression [8, 9]:

â ¼ ðETEÞ�1ETx: ð7Þ

Two physical constraints can be imposed into the model

described in (1); these are the abundance non-negativity

constraint (ANC), i.e., ai � 0 for all 1� i� p; and the

abundance sum-to-one constraint (ASC), i.e.,
Pp

i¼1 ai ¼ 1:

It should be noted that the abundance estimation in Eq. (7)

does not satisfy the ANC and the ASC constraints. An

estimate satisfying the ASC constraint can be obtained by

solving the optimization problem:

min
â2D

fðx� â � EÞTðx� â � EÞg; ð8Þ

subject to D ¼ fâj
Pp

i¼1 âi ¼ 1g: Similarly, imposing the

ANC constraint results in the same optimization problem

but subject to D ¼ fâjâi � 0 for all ig: As indicated in

[29], a non-negative constrained least squares algorithm

can be used to obtain a solution to the ANC-constrained

problem in iterative fashion. Then, imposing the ASC

constraint can be achieved by introducing a new

endmember signature matrix, denoted by E0; and a

modified version of the abundance vector â; denoted by

â0; are introduced as follows:

E0 ¼ dE
1T

� �
; â0 ¼ dâ

1

� �
: ð9Þ

Fig. 3 Graphical interpretation

of the N-FINDR algorithm in a

three-dimensional space

J Real-Time Image Proc (2015) 10:469–483 473

123

Although imposing the ASC and ANC constraints repre-

sents a common practice in the unmixing literature, these

constraints are prone to criticism as the selection of suitable

endmembers should lead to abundance estimations that

naturally hold such constraints without the need to impose

them [9]. In other words, when the ASC and ANC con-

straints are imposed to estimate the abundances of a set of

spectral signatures which are not sufficiently pure or rep-

resentative, the errors introduced as part of the abundance

estimation process can be more critical than those resulting

from the use of a linear (instead of a nonlinear) model, or

from the selection of inappropriate endmembers. Hence, in

this work we do not impose the ANC and ASC constraints

and use Eq. (7) for abundance estimation purposes by

assuming that the N-FINDR algorithm for endmember

extraction will be able to provide good endmember sig-

natures for spectral unmixing purposes in most analysis

scenarios.

Although the maximum volume procedure adopted by

N-FINDR is successful when pure signatures are present in

the data, in some cases there may not be completely pure

signatures in a scene. To address this issue, several end-

member identification techniques have been developed

without assuming the presence of pure signatures in the

input data. However, these methods aim at generating

virtual endmembers (not necessarily present in the set

comprised by input data samples and hence not necessarily

associated with realistic spectral constituents). Despite the

interest of such techniques [36–39], in this work we focus

on the widely used N-FINDR algorithm which provides

more realistic spectral signatures as it identifies the end-

members as pixels in the original hyperspectral scene.

Further work on implementation of endmember identifi-

cation and spectral unmixing algorithms without the

pure signature assumption will be conducted in future

developments.

3 GPU implementation

The architecture of a GPU can be seen as a set of multi-

processors (MPs). Each multiprocessor is characterized by

a single instruction multiple data (SIMD) architecture, i.e.,

in each clock cycle each processor executes the same

instruction but operating on multiple data streams. Each

processor has access to a local shared memory and also to

local cache memories in the multiprocessor, while the

multiprocessors have access to the global GPU (device)

memory. Unsurprisingly, the programming model for these

devices is similar to the architecture lying underneath.

GPUs can be abstracted in terms of a stream model, under

which all data sets are represented as streams (i.e., ordered

data sets). Algorithms are constructed by chaining so-

called kernels which operate on entire streams and which

are executed by a multiprocessor, taking one or more

streams as inputs and producing one or more streams as

outputs. Thereby, data-level parallelism is exposed to

hardware, and kernels can be concurrently applied without

any sort of synchronization. The kernels can perform a kind

of batch processing arranged in the form of a grid of

blocks, where each block is composed by a group of

threads that share data efficiently through the shared local

memory and synchronize their execution for coordinating

accesses to memory.

With the aforementioned general ideas in mind, our

GPU implementation of the hyperspectral unmixing chain

comprises three stages: (1) GPU implementation of PCA

(called GPU-PCA); (2) GPU implementation of N-FINDR

(called GPU-FINDR); and (3) GPU implementation of

LSU (called GPU-LSU).

3.1 GPU-PCA

Our GPU version of PCA works as follow: first we load the

image data X from the main memory of the CPU to the

global memory of the GPU, where it is centered and nor-

malized to one standard deviation by dividing each data

column by its variance before running the PCA algorithm

itself. This improves the stability of the subsequent

computations.

To perform the data normalization we use a GPU kernel

called dataNorm. The invocation of this kernel is config-

ured with as many thread blocks as the number of bands n

of the original image, and maximizing the number of

threads per block according to the considered architecture

(in our case 1,024 threads per block). The kernel first

computes the average value of all the pixels in each band to

determine an average pixel �X; and subtracts it from all the

pixels in the image. We use shared memory and coalesced

accesses to global memory to perform this operation.

Figure 4 illustrates the adopted reduction process in

graphical form. Afterwards, we subtract this mean pixel

from each pixel. Figure 5 shows how this process, called

centering, is performed. We can see how the threads of the

ith block compute the ith band of the mean pixel and then

subtract this value from the ith band of each pixel in the

image. In the figure, we denote the last pixel as m� 1 and

the last thread as k � 1: Because we have less threads than

pixels in the image, we process each band in sections of k

threads. At the end of this step we have finished the

computation of the operation X� �X: The next task to be

performed is to add the squares of the centered data in

column-wise fashion, using again a reduction method (see

Fig. 4). Once this process is completed, we have completed

474 J Real-Time Image Proc (2015) 10:469–483

123

the data normalization process on the whole image X and

the PCA algorithm can now be applied.

After normalizing the data, the first step in Algorithm 1

is the computation of the covariance matrix R of the nor-

malized image by multiplying the normalized image X by

its transpose. This operation can be performed using

cuBLAS matrix multiplication. The steps listed below are

now repeated until convergence

1. We start building the deflation matrix D (line 3 of

Algorithm 1). For this first we compute PTP in GPU,

where P is a random generated matrix of size n bands

times the numbers of principal components we want to

extract d � 1: The computation of D can be achieved

recursively by adding elements to each row or each

columns as we can see in Eq. 5.

2. Then we perform the deflation projection Pdfl ¼ PD in

GPU using cuBLAS (line 4 of Algorithm 1).

3. In this step we execute the power iteration and the

correction caused by the deflation process is calcu-

lated. Both matrix–matrix multiplications U ¼ RPdfl

and W ¼ PtriuðPT
dflU;�1Þ are performed in GPU using

cuBLAS (lines 5 and 6 of Algorithm 1).

4. The computation of P ¼ U�W (line 7 of Algorithm 1)

and P ¼ P=normðPÞ (line 8 of Algorithm 1) are

performed in the CPU as we experimentally observed

that their implementation in the GPU did not signif-

icantly speed-up the overall computation. It should be

noted that P, a n by d matrix, has significantly lower

dimensionality than R; a n by n matrix, which in turn

has a significantly lower dimensionality than the

original image X, a m by n matrix, since m � n � d:

This simplifies the memory transfers as the amount of

information to be transmitted is significantly smaller

than the original data volume.

5. Finally, we analyze convergence by checking if the

direction of eigenvectors did not significantly change

from the previous iteration. This operation is very

simple and can be made again in the CPU. If the

measured changes are above a given tolerance thresh-

old we continue iterating; otherwise, we finalize and

provide the final eigenvectors.

Once the eigenvectors P have been calculated the final step

is to multiply them by the original data X to obtain the

dimensionally reduced image. This matrix multiplication

operation is again performed in the GPU using the cuBLAS

library and specifically the cublasSgemm function.

3.2 GPU-NFINDR

Prior to the implementation of the N-FINDR algorithm on

the GPU, a set of optimizations was performed. The most

time-consuming computation in the N-FINDR algorithm is

the calculation of the determinants. The determinant of a

nonsingular matrix V is usually obtained from the factor-

ization PV ¼ LU (where P is a permutation matrix, L is a

unit lower triangular matrix, and U is an upper triangular

matrix) as the product of the diagonal elements of U: This

decomposition is known as Gaussian elimination or LU

factorization (with partial row pivoting). The repeated

volume calculations of the N-FINDR algorithm can be

reduced by exploiting some basic properties of the LU

factorization and matrix determinants. Consider, e.g., the

p	 p and p	 p� 1 matrices:Fig. 4 Reduction process in shared memory

Fig. 5 Centering data scheme in kernel dataNorm

J Real-Time Image Proc (2015) 10:469–483 475

123

V
ð1Þ
M ¼

1 . . . 1 1

e
ð0Þ
2 . . . e

ð0Þ
p xj

� �
; and

�V
ð1Þ
M ¼

1 . . . 1

e
ð0Þ
2 . . . e

ð0Þ
p

� � ð10Þ

obtained after the feature reduction resulting from the PCA

transform. Assume that we have computed the LU factor-

ization (with partial pivoting) PM
�V
ð1Þ
M ¼ LMUM: Then, the

LU factorization (with partial pivoting) of V
ð1Þ
M is simply

given by PMV
ð1Þ
M ¼ ½UMðL�1

M PT
MxjÞ�: Therefore, the LU

factorizations required in the volume calculations of the

N-FINDR algorithm can be all computed by simply

forming the p	 m matrix M̂ ¼ 1 1 . . . 1
�M

T

� �
; where �M

T ¼

~M
T
V ; ~MT ¼ ðMT � meanðMTÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
m� 1

p
; and m denotes

the total number of pixels in the hyperspectral image. Then,

we need to compute L�1
M PT

MM̂: This is one of the parts that

we accomplished in the GPU by means of a Volume-

Calculation kernel which obtains the volume of each

pixel for one iteration. The m volumes required in the first

iteration of the N-FINDR algorithm are obtained from the

product of the determinant of UM times each one of the

entries in the last row of L�1
M PT

MM̂: By means of a

ReductionVol kernel, we get the value of the maximum

volume and the coordinates of the pixel that produces such

volume. Given that m � p; this implies a significant

reduction of the computational complexity of the original

algorithm. In the following, we describe in step-by-step

fashion how lines 2–6 of Algorithm 2 have been imple-

mented in the GPU (the feature reduction step in line 1 of

Algorithm 2 was described in the previous section).

3.2.1 Initialization

First, we form the matrix �V
ð1Þ
M of size p	 p by initializing

to ones the first row and setting in each column (from row

2) a randomly selected endmember. The determinant of the

resulting matrix �V
ð1Þ
B is now calculated and the result is

stored in the variable currentVolume. Since the dimensions

of this matrix are small, the determinant computation can

be done in the CPU.

3.2.2 Volume calculation and replacement

Next, we form a vector (of size m) Vvolumes where, in each

iteration k; the volume resulting from the replacement of

the pixel i with an endmember will be stored. Also, the

reduced image M is modified by adding a first band of ones

and getting M̂: In each iteration k we replace in �V
ð1Þ
M the

endmember in position k by the endmember in position p;

we also replace the column p by a column of the type

0

0

..

.

1

2

664

3

775: Then the LU factorization is applied to this matrix

and LM;UM and PM are obtained. After that, we compute

the determinant of UM and invert LM: Due to the fact that

the aforementioned matrices are triangular and small, the

determinant and the inverse can be computed in the CPU

without any penalty to the total execution time.

At this point, we have the elements necessary to cal-

culate the achieved volumes in one iteration. Note that

these elements are computed by multiplying the determi-

nant of UM by all the entries in the last row of L�1
M PT

MM̂:

We divide these calculation into two phases: in the first

phase we perform the matrix multiplication S ¼ L�1
M PT

M in

the CPU. The second phase is more computationally

expensive and is performed in the GPU using the kernel

VolumeCalculation, which is graphically illustrated

in Fig. 6. As we know the volumes are achieved by mul-

tiplying the determinant of UM by the elements of the last

row of L�1
M PT

MM̂; that is, by multiplying UM by the ele-

ments of the last row of SM̂: The result of this operation is

a p	 m matrix which only needs the elements in the last

row. Because of that we can save the calculations to get

the first p� 1 rows by multiplying only the last row of S by

the matrix M̂:

Fig. 6 Volume computation scheme in kernel VolumeCalculation

476 J Real-Time Image Proc (2015) 10:469–483

123

Once we have computed the volumes for one iteration,

the next step is to find the pixel which generated the biggest

volume and check if this volume is bigger than current-

Volume. For this task we use the kernel ReductionVol,

which is graphically illustrated in Fig. 7. The kernel per-

forms a reduction process in which each block works with

a section of Vvolumes and extracts the local maximum and

the position of this local maximum. Since each block

achieves a different value, at the end of the execution we

will have as many values as blocks (each value is the local

maximum of its section), and it will be necessary to store

these values in a structure, together with their positions in

global memory. Then, these values will be copied to the

main memory of the CPU in order to reduce again and get

the global maximum and its position in Vvolumes.

3.3 GPU-LSU

As mentioned in Sect. 2.3, the abundance fractions a ¼
½a1; a2; . . .; ap� in a specific pixel vector x of the original

hyperspectral scene can be simply estimated (in least

squares sense) by the unconstrained expression (7). This

expression can be modified to estimate abundance fractions

for all pixels in the image by simply rewriting it as A ¼
ðETEÞ�1ETXT; where A is the abundance matrix, E is the

endmember matrix, and X is the image matrix. Given the

matricial character of the estimator, a possible solution is to

use cuBLAS to implement all matrix–matrix multiplications

and compute the inverse operation in the CPU. In our case,

we prefer to perform the first multiplications in the CPU as

well, to avoid the data transfers before and after the inverse

operation. Then we use a GPU kernel to perform the last

multiplication involving the image data. In this way, our

implementation is divided into two phases:

• In the first phase we compute (in the CPU) a so-called

computeMatrix, which is a p	 n matrix resulting from

ðETEÞ�1ET:

• The second part of our implementation is carried out by

the kernel Unmixing, which multiplies each row of

computeMatrix by each pixel to obtain the abundance

vector â in embarrassingly parallel fashion for each

pixel. After this we set the abundance vectors in a

structure to get the abundance maps. Because each

thread will use all the rows of computeMatrix, we store

this matrix in the shared memory of all multiprocessors.

A graphical illustration of the performance of this

kernel is shown in Fig. 8.

4 Experimental results

In this section, we evaluate the performance of the con-

sidered implementation from the viewpoint of its analysis

accuracy and parallel performance. Since we are imple-

menting a widely consolidated hyperspectral unmixing

chain, the main goal of this section is to illustrate the

potential of GPUs in the sense that, for the first time, we are

able to analyze data with sub-pixel precision in real-time.

This is a highly desirable goal in the remote sensing

community as it allows more efficient exploitation of

hyperspectral data in applications requiring a fast response.

This will be the central aspect and main motivation of this

section, which is organized as follows: First, we describe

the hyperspectral data sets used in the experiments. Then,

we illustrate the unmixing accuracy of the processing

Fig. 7 Finding the maximum volume in kernel ReductionVol Fig. 8 Computation scheme in kernel Unmixing

J Real-Time Image Proc (2015) 10:469–483 477

123

chain, and finally, we provide an extensive analysis of the

achieved parallel performance.

4.1 Hyperspectral image data

The first hyperspectral image scene used for experiments in

this work was collected by the AVIRIS instrument, which

was flown by NASA’s Jet Propulsion Laboratory over the

World Trade Center area in New York City on 16 Sep-

tember 2001, just 5 days after the terrorist attacks that

collapsed the two main towers and other buildings in the

WTC complex.1 The full data set selected for experiments

consists of 614	 512 pixels, 224 spectral bands, and a total

size of (approximately) 140 Mbytes. The spatial resolution

is 1.7 m/pixel. The leftmost part of Fig. 9 shows a false

color composite of the data set selected for experiments

using the 1,682, 1,107 and 655 nm channels, displayed as

red, green and blue, respectively. Vegetated areas appear

green in the leftmost part of Fig. 9, while burned areas

appear dark gray. Smoke coming from the WTC area

(in the red rectangle) and going down to south Manhattan

appears bright blue due to high spectral reflectance in the

655 nm channel. Extensive reference information, col-

lected by U.S. Geological Survey (USGS), is available for

the WTC scene. In this work, we use a USGS thermal map2

which shows the target locations of the thermal hot spots at

the WTC area, displayed as bright red, orange, and yellow

spots at the rightmost part of Fig. 9. The map is centered at

the region where the towers collapsed, and the tempera-

tures of the targets range from 700 to 1,020 K. Further

information available from USGS about the targets

(including location and estimated size) is reported on

Table 1. As shown by Table 1, all the targets are sub-pixel

in size since the spatial resolution of a single pixel is

1.7 m2. The information in Table 1 will be used as ground-

truth to validate the accuracy of the proposed parallel

hyperspectral unmixing algorithms.

A second hyperspectral image scene has been consid-

ered for experiments. It is the well-known AVIRIS Cuprite

scene (see Fig. 10a), collected in the summer of 1997 and

available online in reflectance units after atmospheric

correction.3 The portion used in experiments corresponds

to a 350	 350-pixel subset of the sector labeled as

f970619t01p02_r02_sc03.a.rfl in the online data, which

comprises 188 spectral bands in the range from 400 to

2,500 nm, and a total size of around 50 Mbytes. Water

absorption and low SNR bands were removed prior to the

analysis. The site is well understood mineralogically, and

has several exposed minerals of interest including alunite,

buddingtonite, calcite, kaolinite and muscovite. Reference

ground signatures of the above minerals (see Fig. 10b),

available in the form of a U.S. Geological Survey library

(USGS)4 will be used to assess endmember signature purity

in this work.

4.2 Analysis of algorithm precision

The full hyperspectral unmixing chain was first tested with

the AVIRIS scene over the World Trade Center. The

number of endmembers to be detected by GPU-FINDR was

set to p ¼ 30 after calculating the virtual dimensionality

(VD) of the hyperspectral data [29]. This value was also

used to decide the number of principal components to be

retained by GPU-PCA (as the number of endmembers

estimated was p ¼ 30; we retained d ¼ 29 principal com-

ponents). An evaluation of the precision of the GPU-LSU

in estimating the abundance of the extracted endmembers

is contained in Table 1, in which the accuracy of the

estimation of the sub-pixel abundance of fires in Fig. 9 can

be assessed by taking advantage of the information about

the area covered by each thermal hot spot available from

U.S. Geological Survey (USGS). Since each pixel in the

AVIRIS scene has a size of 1.7 m2, it is inferred that the

thermal hot spots are sub-pixel in nature and thus require

spectral unmixing in order to be fully characterized. In this

regard, the area estimations reported on the last column of

Table 1 demonstrate that the considered hyperspectral

unmixing chain (implemented using unconstrained abun-

dance estimation) can provide accurate estimations of the

area covered by thermal hot spots. In particular, the esti-

mations for the thermal hot spots with higher temperature

(labeled as ‘A’, ‘C’ and ‘G’ in the table) are almost perfect.

For illustrative purposes, Fig. 11 shows some of the

abundance maps for the most relevant endmembers

Fig. 9 False color composition of an AVIRIS hyperspectral image

collected by NASA’s Jet Propulsion Laboratory over lower Manhat-

tan on 16 September 2001 (left). Location of thermal hot spot fires in

World Trade Center area (right)

1 http://speclab.cr.usgs.gov/wtc.
2 http://pubs.usgs.gov/of/2001/ofr-01-0429/hotspot.key.tgif.gif.
3 http://aviris.jpl.nasa.gov. 4 http://speclab.cr.usgs.gov/spectral-lib.html.

478 J Real-Time Image Proc (2015) 10:469–483

123

http://speclab.cr.usgs.gov/wtc
http://pubs.usgs.gov/of/2001/ofr-01-0429/hotspot.key.tgif.gif
http://aviris.jpl.nasa.gov
http://speclab.cr.usgs.gov/spectral-lib.html

extracted from the AVIRIS hyperspectral scene after

applying the proposed GPU implementation of the full

hyperspectral unmixing chain. We recall that endmember

abundance maps are the outcome of the unmixing process,

where each map reflects the sub-pixel composition

(between 0.0 and 1.0) of a certain endmember in each pixel

of the scene. Specifically, the maps displayed in Fig. 11

correspond to vegetation (see Fig. 11a), smoke (see

Fig. 11b), and fire (see Fig. 11c). Finally, Fig. 12 shows

the corresponding spectral endmembers extracted by the

proposed method. If we relate the endmember plots with

the three channels visible by the human eye (red, green and

blue), we can see from Fig. 12 that the smoke endmember

exhibits high spectral reflectance in the blue (470 nm)

channel, while vegetation exhibits a peak of reflectance in

the green (530 nm) channel, hence motivating that the

human eye associates green color to vegetation, although

the spectral signature of vegetation exhibits many other

peaks and valleys. Finally, the fire endmember has high

reflectance in the red (700 nm) channel, but it also shows

even higher reflectance values in the short-wave infra-red

(SWIR) region, located between 2,000 and 2,500 nm. This

indicates the much higher temperature of the fires when

compared with other representative endmembers in the

scene.

To conclude this section, we provide an experimental

assessment of endmember extraction accuracy with the

AVIRIS Cuprite scene. Table 2 shows the spectral angles [7]

(in degrees) between the most similar endmember pixels

detected by GPU-FINDR and the USGS library signatures in

Fig. 10b. The lower the spectral angle, the more similar the

spectral signatures are. The range of values for the spectral

angle is [0�, 90�]. In this experiment, the number of end-

members to be detected was set to p ¼ 19 after calculating

the VD of the AVIRIS Cuprite data (hence, the number of

retained dimensions was d ¼ 18). As shown by Table 2, the

GPU-FINDR extracted endmembers are spectrally very

similar to the USGS library signatures, despite the potential

variations (due to possible interferers still remaining after the

atmospheric correction process) between the ground signa-

tures and the airborne data. Since no reference information is

available regarding the true abundance fractions of minerals

in the AVIRIS Cuprite data, no quantitative experiments

were conducted although the obtained mineral maps exhibit

similar correlation with regards to previously published

maps.5 Since these results have been discussed in previous

work (see for instance [27]), we do not display them here.

Fig. 10 a False color

composition of the AVIRIS

hyperspectral over the Cuprite

mining district in Nevada.

b U.S. Geological Survey

mineral spectral signatures used

for validation purposes

Table 1 Properties of the thermal hot spots reported in the rightmost part of Fig. 9

Hot spot Latitude (north) Longitude (west) Temperature (K) Area according

to USGS (m2)

Area according to

unmixing (m2)

A 40�42047.1800 74�00041.4300 1,000 0.56 0.55

B 40�42047.1400 74�00043.5300 830 0.08 0.06

C 40�42042.8900 74�00048.8800 900 0.80 0.78

D 40�42041.9900 74�00046.9400 790 0.80 0.81

E 40�42040.5800 74�00050.1500 710 0.40 0.45

F 40�42038.7400 74�00046.7000 700 0.40 0.37

G 40�42039.9400 74�00045.3700 1,020 0.04 0.05

H 40�42038.6000 74�00043.5100 820 0.08 0.09

5 http://speclab.cr.usgs.gov/cuprite.html.

J Real-Time Image Proc (2015) 10:469–483 479

123

http://speclab.cr.usgs.gov/cuprite.html

4.3 Analysis of parallel performance

The proposed GPU implementation of the full hyperspec-

tral unmixing chain has been tested on a NVidiaTM GTX

580 GPU, which features 512 processor cores operating at

1.54 GHz, with single precision floating point performance

of 1581.1 Gflops, total dedicated memory of 1,536 MB,

2,004 MHz memory (with 384-bit GDDR5 interface) and

memory bandwidth of 192.4 GB/s.6 The GPU is connected

to an Intel core i7 920 CPU at 2.67 GHz with eight cores,

which uses a motherboard Asus P6T7 WS SuperComputer.

It is important to emphasize that our GPU versions of PCA,

N-FINDR and LSU provide exactly the same results as the

serial versions of the same algorithms. Hence, the only

difference between the serial and parallel algorithms is the

time they need to complete their calculations. On the other

hand the adopted linear spectral unmixing chain is com-

petitive with regard to other chains. Our main reason for

selecting this unmixing chain for implementation is its

competitiveness in hyperspectral image unmixing.

The serial algorithms were executed in one of the avail-

able cores, and the parallel times were measured in the

considered GPU platform. For each experiment, 50 runs

were performed and the mean values are reported (these

times were always very similar, with differences on the

order of a few milliseconds only). Table 3 summarizes the

obtained results by the C implementation and by the GPU

implementation. An optimization has been considered for

the CPU implementation, namely the inclusion of the --O3

optimization flag in the compiler. This optimization could

not reach real-time performance in our experiments. As

shown by Table 3, the execution time measured after pro-

cessing the AVIRIS World Trade Center scene on the GPU

was only 1.366 s. This result is strictly in real-time, since the

cross-track line scan time in AVIRIS, a push-broom

instrument [2], is quite fast (8.3 ms to collect 512 full pixel

vectors). This introduces the need to process the considered

Fig. 11 Abundance maps extracted by the GPU implementation of the considered unmixing chain for the vegetation (a), smoke (b) and fire

(c) endmembers in the AVIRIS World Trade Center scene

Fig. 12 Spectral endmembers of vegetation, smoke, and fire

extracted from the AVIRIS World Trade Center scene

Table 2 Spectral angle values (�) between the pixels extracted by

GPU-FINDR from the AVIRIS Cuprite scene and the USGS library

signatures in Fig. 10b

Alunite Buddingtonite Calcite Kaolinite Muscovite

4.81� 4.16� 9.52� 10.76� 5.29�

6 http://www.nvidia.com/object/product-geforce-gtx-580-us.html.

480 J Real-Time Image Proc (2015) 10:469–483

123

http://www.nvidia.com/object/product-geforce-gtx-580-us.html

scene (614	 512 pixels and 224 spectral bands) in\5.09 s

to fully achieve real-time performance.

In the case of the AVIRIS Cuprite scene, the execution

time measured on the GPU was only 387 ms. This result is

also in real-time since the AVIRIS Cuprite scene needs to

be processed in\1.98 s (due to its lower size) to fulfill this

requirement. In all cases, the C function GETTIMEOFDAY()

was used for timing the CPU implementations, and the

CUDA timer was used for the GPU implementations. It

should be noted that the GPU implementations have been

carefully optimized taking into account the specific

parameters of each considered architecture, including the

global memory available, the local shared memory in each

multiprocessor, and also the local cache memories as

extensively described in Sect. 3. This is confirmed by the

fact that the speedups reported on Table 3 are quite sig-

nificant. Even with the most optimized serial version of the

algorithm, the speedup varies between 16.76 and 21.96,

which is higher than the one that would be achieved with

an optimal parallel implementation of the algorithm that

exploits the eight cores of the i7 920 CPU. Although

the global GPU memory (1.5 GB) is large enough to store

the full hyperspectral image in all considered cases, we

accommodated blocks of pixels in small local memories in

the GPU to guarantee very fast accesses, thus performing

block-by-block processing to speed up the computations as

much as possible. Also, we emphasize that the times of the

data transfers between CPU and GPU are included in the

GPU times reported on Table 3. As shown by the table, in

the two considered experiments the data transfer times

represent approximately 30 % of the total GPU time.

5 Conclusions and future lines

The ever-increasing spatial and spectral resolutions that

will be available in the new generation of hyperspectral

instruments for remote observation of the Earth anticipate

significant improvements in the capacity of these instru-

ments to uncover spectral signals in complex real-world

analysis scenarios. Such capacity demands parallel pro-

cessing techniques which can cope with the requirements

of time-critical applications and properly scale with image

size, dimensionality, and complexity. In order to address

such needs, in this paper we have developed the first real-

time implementation of a full hyperspectral unmixing chain

using commodity GPUs. The performance of the proposed

implementation has been evaluated (in terms of the quality

of the solutions provided and its parallel performance) in

the context of two real applications, using an NVidiaTM

GTX 580 GPU. The experimental results reported in this

paper indicate that remotely sensed hyperspectral imaging

can greatly benefit from the development of efficient

implementations of unmixing algorithms in specialized

hardware devices for better exploitation of high-dimen-

sional data sets. In this case, the main contribution of this

work is the development of the first real-time implemen-

tation of a fully consolidated spectral unmixing chain for

hyperspectral image analysis using only one GPU device,

with few on-board restrictions in terms of cost and size,

which are important when defining mission payload in

remote sensing missions (defined as the maximum load

allowed in the airborne or satellite platform that carries the

imaging instrument). This is a significant contribution to

the remote sensing community, as it allows for a more

efficient exploitation of hyperspectral data in applications

requiring a fast response.

Although in our experiments we observed that the GPU

global memory can be considered enough to achieve real-

time processing of hyperspectral data given the current data

acquisition ratios at modern hyperspectral imaging instru-

ments, the dimensionality of hyperspectral images is ever

increasing. This may introduce issues in the future, which

could be tackled by resorting to multi-GPU implementa-

tions. On the other hand, multi-threaded solutions may also

be appealing in this field as they do not require complete

porting of the code. As a result, future developments will

be also directed towards the development of hyperspectral

imaging algorithms on multi-core platforms, as the number

of cores in those platforms is ever increasing and there is

no need to transfer data to the GPU in this case. We feel

that, currently, the compact size, portability, and extremely

high number of cores make GPUs an appealing architecture

for hyperspectral image processing.

Table 3 Processing times (s) and speedups achieved for the GPU implementations of PCA, N-FINDR and LSU parts and for the full

hyperspectral unmixing chain on an NVidiaTM GPU GTX 580 architecture, tested with two different hyperspectral scenes

AVIRIS Cuprite AVIRIS World Trade Center

PCA N-FINDR LSU Full chain PCA N-FINDR LSU Full chain

CPU 29.340 2.229 3.063 34.633 110.179 14.673 14.770 136.815

CPU (flag --O3) 5.577 0.950 0.319 6.847 21.305 7.061 1.639 30.006

GPU 0.239 0.100 0.048 0.387 (0.113) 0.633 0.552 0.180 1.366 (0.476)

Speedup 122.682 22.172 63.620 89.490 173.799 26.575 82.045 100.157

The GPU times for the full chain already include memory transfer times, which are displayed separately in the parentheses

J Real-Time Image Proc (2015) 10:469–483 481

123

Acknowledgments This work was supported by national funds

through FCT – Fundação para a Ciência e a Tecnologia, under project

PEst-OE/EEI/LA0021/2011. This work has also been supported by the

European Community’s Marie Curie Research Training Networks Pro-

gramme under reference MRTN-CT-2006-035927, Hyperspectral Imag-

ing Network (HYPER-I-NET), and by the Spanish Ministry of Science

and Innovation (HYPERCOMP/EODIX project, reference AYA2008-

05965-C04-02). Sergio Sánchez is sponsored by a research fellowship

with reference PTA2009-2611-P, associated with the aforementioned

project. Funding from Junta de Extremadura (local government) under

project PRI09A110 is also gratefully acknowledged. Last but not least,

we gratefully thank the Editor and the three anonymous reviewers for

their outstanding comments and suggestions, which greatly helped us to

improve the quality and presentation of this manuscript.

References

1. Goetz, A.F.H., Vane, G., Solomon, J.E., Rock, B.N.: Imaging

spectrometry for Earth remote sensing. Science 228, 1147–1153
(1985)

2. Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G.,

Aronsson, M., Chippendale, B.J., Faust, J.A., Pavri, B.E., Chovit,

C.J., Solis, M., Monsch, K.A., Olah, M.R., Williams, O.: Imaging

spectroscopy and the Airborne Visible/Infrared Imaging Spec-

trometer (AVIRIS). Remote Sens. Environ. 65, 227–248 (1998)

3. Plaza, A., Benediktsson, J.A., Boardman, J., Brazile, J., Bruzz-

one, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P.,

Gualtieri, J.A., Marconcini, M., Tilton, J.C., Trianni, G.: Recent

advances in techniques for hyperspectral image processing.

Remote Sens. Environ. 113, 110–122 (2009)

4. Plaza, A.: Preface to the special issue on architectures and

techniques for real-time processing of remotely sensed images.

J Real Time Image Process. 4(3), 191–193 (2009)

5. Plaza, A., Du, Q., Chang, Y.-L., King, R.L.: Foreword to the

special issue on high performance computing in Earth observa-

tion and remote sensing. IEEE J. Sel. Top. Appl. Earth Obs.

Remote Sens. 4(3), 503–507 (2011)

6. Lee, C.A., Gasster, S.D., Plaza, A., Chang, C.-I., Huang, B.:

Recent developments in high performance computing for remote

sensing: a review. IEEE J. Sel. Top. Appl. Earth Obs. Remote

Sens. 4(3), 508–527 (2011)

7. Keshava, N.: Spectral unmixing. IEEE Signal Process. Mag.

19(1), 44–57 (2002)

8. Keshava, N.: A survey of spectral unmixing algorithms. Linc.

Lab. J. 14(1), 55–78 (2003)

9. Plaza, A., Martinez, P., Perez, R., Plaza, J.: A quantitative and com-

parative analysis of endmember extraction algorithms from hyper-

spectral data. IEEE Trans. Geosci. Remote Sens. 42, 650–663 (2004)
10. Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Du, Q.,

Gader, P., Chanussot, J.: Hyperspectral unmixing overview: geo-

metrical, statistical and sparse regression-based approaches. IEEE

J. Sel. Top. Appl. Earth Obs. Remote Sens. 5, 354–379 (2012)

11. Plaza, A. Chang, C.-I.: High performance computing in remote

sensing. Computer & Information Science Series. Chapman &

Hall/CRC Press/Taylor & Francis, Boca Raton (2007)

12. Plaza, A., Chang, C.-I.: Special issue on high performance

computing for hyperspectral imaging. Int. J. High Perform.

Comput. Appl. 22, 363–365 (2008)

13. Paz,A., Plaza, A.: Clusters versusGPUs for parallel automatic target

detection in remotely sensed hyperspectral images. EURASIP J.

Adv. Signal Process. 2010, 1–18 (2010, Article ID 915639)

14. Plaza, A., Plaza, J., Vegas, H.: Improving the performance of

hyperspectral image and signal processing algorithms using

parallel, distributed and specialized hardware-based systems.

J. Signal Process. Syst. 50, 293–315 (2010)

15. Tarabalka, Y., Haavardsholm, T.V., Ksen, I., Skauli, T.: Real-

time anomaly detection in hyperspectral images using multivar-

iate normal mixture models and GPU processing. J. Real Time

Image Process. 4, 287–300 (2009)

16. Setoain, J., Prieto, M., Tenllado, C., Tirado, F.: GPU for parallel

on-board hyperspectral image processing. Int. J. High Perform.

Comput. Appl. 22, 424–437 (2008)

17. Setoain, J., Prieto, M., Tenllado, C., Plaza, A., Tirado, F.: Parallel

morphological endmember extraction using commodity graphics

hardware. IEEE Geosci. Remote Sens. Lett. 43, 441–445 (2007)

18. Sanchez, S., Paz, A., Martin, G., Plaza, A.: Parallel unmixing of

remotely sensed hyperspectral images on commodity graphics pro-

cessing units. Concurr. Comput. Pract. Exp. 23, 1538–1557 (2011)

19. Plaza, A., Plaza, J., Paz, A., Sanchez, S.: Parallel hyperspectral

image and signal processing. IEEE Signal Process.Mag. 28, 119126
(2011)

20. Plaza, A., Du, Q., Chang, Y.-L., King, R.L.: High performance

computing for hyperspectral remote sensing. IEEE J. Sel. Top.

App. Earth Observ. Remote Sens. 4, 528–544 (2011)

21. Christophe, E., Michel, J., Inglada, J.: Remote sensing process-

ing: From multicore to GPU. IEEE J. Sel. Top. Appl. Earth

Observ. Remote Sens. 4, 643–652 (2011)

22. Yang, H., Du, Q., Chen, G.: Unsupervised hyperspectral band

selection using graphics processing units. IEEE J. Sel. Top. Appl.

Earth Observ. Remote Sens. 4, 660–668 (2011)

23. Goodman, J.A., Kaeli, D., Schaa, D.: Accelerating an imaging

spectroscopy algorithm for submerged marine environments

using graphics processing units. IEEE J. Sel. Top. Appl. Earth

Observ. Remote Sens. 4, 669–676 (2011)

24. Wei, S.-C., Huang, B.: GPU acceleration of predictive partitioned

vector quantization for ultraspectral sounder data compression.

IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 4, 677682
(2011)

25. Schowengerdt, R.A.: Remote Sensing: Models and Methods for

Image Processing, 2nd edn. Academic Press, New York (1997)

26. Richards, J.A., Jia, X.: Remote Sensing Digital Image Analysis:

An Introduction. Springer, Berlin (2006)

27. Winter, M.E.: N-FINDR: an algorithm for fast autonomous

spectral end-member determination in hyperspectral data. In:

Proceedings of SPIE, vol. 3753, 266–270 (1999)

28. Plaza, A., Valencia, D., Plaza, J., Martinez, P.: Commodity

cluster-based parallel processing of hyperspectral imagery.

J. Parallel Distrib. Comput. 66, 345–358 (2006)

29. Chang, C.-I.: Hyperspectral Imaging: Techniques for Spectral

Detection and Classification. Kluwer/Plenum Publishers, New

York (2003)

30. Clint, M., Jenning, A.: The evaluation of eigenvalues and

eigenvectors of real symmetric matrices by simultaneous itera-

tion, Comput. J. 13, 76–80 (1970)

31. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn,

pp. 406–408. Johns Hopkins University Press, Baltimore (1996)

32. Parlett, B.N.: The Symmetric Eigenvalue Problem. Society for

Industrial and Applied Mathematics (1998)

33. Parlett, B.N., Dhillon, I.S.: Relatively robust representations of sym-

metric tridiagonals. Linear Algebra Appl. 309(1–3), 121–151 (2000)
34. Sleijpen, G.L., Van der Vorst, H.A.: A Jacobi–Davidson iteration

method for linear eigenvalue problems. SIAM Rev. 42(2),
267–293 (2000)

35. Saad, Y.: Numerical Methods for Large Eigenvalue Problems,

revised edition. Society for Industrial and Applied Mathematics

(2011)

36. Craig, M.D.: Minimum-volume transforms for remotely sensed

data. IEEE Trans. Geosci. Remote Sens. 32, 542552 (1994)

37. Miao, L., Qi, H.: Endmember extraction from highly mixed data

using minimum volume constrained nonnegative matrix factor-

ization. IEEE Trans. Geosci. Remote Sens. 45(3), 765777 (2007)

482 J Real-Time Image Proc (2015) 10:469–483

123

38. Li, J., Bioucas-Dias, J.: Minimum volume simplex analysis: a fast

algorithm to unmix hyperspectral data, In: Proceedings of the

IEEE International Geoscience and Remote Sensing Symposium,

vol. 3, pp. 250–253 (2008)

39. Chan, T.-H., Chi, C.-Y., Huang, Y.-M., Ma, W.-K.: A convex

analysis-based minimum-volume enclosing simplex algorithm for

hyperspectral unmixing. IEEE Trans. Signal Process. 57,
44184432 (2009)

Author Biographies

Sergio Sánchez received the

M.Sc. degree in 2010 and is

currently a Research Associate

with the Hyperspectral Comput-

ing Laboratory, Department of

Technology of Computers and

Communications, University of

Extremadura, Spain. His main

research interests comprise

hyperspectral image analysis and

efficient implementations of

large-scale scientific problems on

commodity graphical processing

units (GPUs).

Rui Ramalho received the M.Sc

degree in electrical and computer

engineering from Instituto Supe-

rior Técnico (IST), Universidade

Técnica de Lisboa, Portugal, in

2008. He is currently working

towards his Ph.D. in electrical

and computing engineering at

IST and Instituto de Engenharia

de Sistemas e Computadores

(INESC-ID). His research inter-

ests include parallel and distrib-

uted computing, biomedical

signal processing, and machine

learning algorithms. Rui Ramalho

is a student member of IEEE.

Leonel Sousa received his

Ph.D. degree in electrical and

computer engineering from the

Instituto Superior Técnico

(IST), Universidade Técnica de

Lisboa, Portugal, in 1996. He is

currently a full professor in the

Electrical and Computer Engi-

neering Department at IST and a

senior researcher at INESC-ID.

His research interests include

VLSI architectures, signal pro-

cessing systems, and parallel

and distributed computing. He

has contributed more than 150

papers to international journals and conferences. He is currently a

member of the HiPEAC and the ComplexHPC European Networks,

an associate editor of the Eurasip Journal on Embedded Systems, and

has been recently involved in the organization of several international

conferences. He is a senior member of both the IEEE and the ACM.

Antonio Plaza received the

M.S. and Ph.D. degrees in

computer engineering from the

University of Extremadura,

Caceres, Spain. He was a Vis-

iting Researcher with the

Remote Sensing Signal and

Image Processing Laboratory,

University of Maryland Balti-

more County, Baltimore, with

the Applied Information Sci-

ences Branch, Goddard Space

Flight Center, Greenbelt, MD,

and with the AVIRIS Data

Facility, Jet Propulsion Labora-

tory, Pasadena, CA. He is currently an Associate Professor with the

Department of Technology of Computers and Communications,

University of Extremadura, Caceres, Spain, where he is the Head of

the Hyperspectral Computing Laboratory (HyperComp). He was the

Coordinator of the Hyperspectral Imaging Network (Hyper-I-Net), a

European project designed to build an interdisciplinary research

community focused on hyperspectral imaging activities. He has been

a Proposal Reviewer with the European Commission, the European

Space Agency, and the Spanish Government. He is the author or

coauthor of around 300 publications on remotely sensed hyperspectral

imaging, including more than 60 Journal Citation Report papers, 20

book chapters, and over 200 conference proceeding papers. His

research interests include remotely sensed hyperspectral imaging,

pattern recognition, signal and image processing, and efficient

implementation of large-scale scientific problems on parallel and

distributed computer architectures. Dr. Plaza has coedited a book on

high-performance computing in remote sensing and guest edited

seven special issues on remotely sensed hyperspectral imaging for

different journals, including the IEEE Transactions on Geoscience

and Remote sensing (for which he serves as Associate Editor on

hyperspectral image analysis and signal processing since 2007), the

IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing (for which he serves as a member of the steering

committee since 2011), the International Journal of High Performance

Computing Applications, and the Journal of Real-Time Image Pro-

cessing. He is also serving as an Associate Editor for the IEEE

Geoscience and Remote Sensing Newsletter. He has served as a

reviewer for more than 280 manuscripts submitted to more than 50

different journals, including more than 140 manuscripts reviewed for

the IEEE Transactions on Geoscience and Remote Sensing. He has

served as a Chair for the IEEE Workshop on Hyperspectral Image and

Signal Processing: Evolution in Remote Sensing in 2011. He has also

been serving as a Chair for the SPIE Conference on Satellite Data

Compression, Communications, and Processing since 2009, and for

the SPIE Remote Sensing Europe Conference on High Performance

Computing in Remote Sensing since 2011. Dr. Plaza is a recipient of

the recognition of Best Reviewers of the IEEE Geoscience and remote

Sensing Letters in 2009 and a recipient of the recognition of Best

Reviewers of the IEEE Transactions on Geoscience and remote

Sensing in 2010. He is currently serving as Director of Education

activities and member of the Administrative Committee of the IEEE

Geoscience and Remote Sensing Society.

J Real-Time Image Proc (2015) 10:469–483 483

123

	Real-time implementation of remotely sensed hyperspectral image unmixing on GPUs
	Abstract
	Introduction
	Hyperspectral unmixing chain
	PCA for dimensionality reduction
	N-FINDR for endmember selection
	LSU for abundance estimation

	GPU implementation
	GPU-PCA
	GPU-NFINDR
	Initialization
	Volume calculation and replacement

	GPU-LSU

	Experimental results
	Hyperspectral image data
	Analysis of algorithm precision
	Analysis of parallel performance

	Conclusions and future lines
	Acknowledgments
	References

