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Abstract As today’s standard screening methods fre-

quently fail to diagnose breast cancer before metastases

have developed, earlier breast cancer diagnosis is still a

major challenge. Three-dimensional ultrasound computer

tomography promises high-quality images of the breast, but

is currently limited by a time-consuming image recon-

struction. In this work, we investigate the acceleration of

the image reconstruction by GPUs and FPGAs. We com-

pare the obtained performance results with a recent multi-

core CPU. We show that both architectures are able to

accelerate processing, whereas the GPU reaches the highest

performance. Furthermore, we draw conclusions in terms

of applicability of the accelerated reconstructions in future

clinical application and highlight general principles for

speed-up on GPUs and FPGAs.

Keywords Medical imaging � Heterogeneous computing �
FPGA � GPU � Performance comparison

1 Introduction

Breast cancer is the most common type of cancer among

women in the western world [8]. Unfortunately, it is often

initially diagnosed after metastases have already devel-

oped. The presence of metastases, however, decreases the

patient’s probability of survival significantly. A more

sensitive imaging method may enable detection in an ear-

lier state and thus enhance the survival probability of

affected women.

Three-dimensional ultrasound computer tomography

(3D USCT) promises reproducible and high-quality vol-

ume images of the female breast and is therefore a good

candidate for improvement in early breast cancer diagnosis.

During a measurement, the breast is suspended into a

water-filled basin (see Fig. 1, top) and surrounded by

thousands of ultrasound transducers, i.e. emitters and

receivers. The emitters sequentially send an ultrasonic

wave front, which interacts with the breast tissue and is

recorded by receivers as a pressure variation over time.

These signals, also called A-Scans, are sampled and stored

for all available emitter–receiver combinations. Thus, the

interaction between unfocused ultrasonic waves and the

imaged object is recorded from many different angles.

Our 3D USCT prototype system [20] is shown in Fig. 1.

It is equipped with a total number of 628 dedicated emitters

and 1,413 dedicated receivers. The complete sensor aper-

ture can be rotated and translated in order to create further

emitting and receiving positions. For a complete measure-

ment, this results in over 3.5 million A-Scans or approx. 20

GByte of raw data per single breast. For acquisition of the
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A-Scans, we use a custom data acquisition (DAQ) system

[9]. After completion, the recorded A-Scans are transferred

to a computer workstation for time-consuming image

reconstruction.

The duration of the image reconstruction currently limits

the clinical applicability of the overall imaging method.

The core element is a synthetic aperture focusing technique

(SAFT) [7], which exploits the pressure over time infor-

mation in the A-Scans in order to create reflectivity images.

A promising approach to accelerate this reconstruction step

is parallel processing in application-specific hardware. In

this work, we investigate the performance of our SAFT

reconstruction kernel on a graphics processing unit (GPU)

and on field programmable gate arrays (FPGAs) embedded

in our DAQ system. Furthermore, we include a current

high-performance FPGA into the comparison. Note that the

first FPGA system is given by our current reconstruction

scenario and the latter should give insight into future set-

ups. We relate the attained performance values with our

highly optimized CPU version and draw conclusions in

terms of general applicability of the accelerated versions

for use in our research as well as in future clinical routine.

Furthermore, we aim to highlight general principles for

speed-up on GPUs and FPGAs.

The remainder of this paper is structured as follows:

Sect. 2 gives a short overview of related work in the fields

of parallel medical image reconstruction as well as per-

formance comparisons of GPUs and FPGAs in general.

Section 3 introduces our SAFT-based image reconstruction

kernel and derives a parallelized algorithm description. The

hardware platforms targeted in the comparison are detailed

in Sect. 4 and the respective implementations of the SAFT

kernel are described in Sect. 5. In Sect. 6, our performance

results are presented and discussed. The paper is concluded

in Sect. 7.

2 Related work

The related work for this paper can be grouped into two

categories. Firstly, we introduce accelerated implementa-

tions of 3D medical image reconstruction methods, which

demonstrate that a considerable acceleration can be

achieved by parallel processing. Secondly, we review work

in the field of performance comparisons between FPGAs

and GPUs, showing that a general decision towards one or

the other architecture is difficult.

2.1 Parallel medical image reconstruction

Reconstruction algorithms for use in three-dimensional

medical imaging commonly feature an enormous compute

and data intensity as well as a high degree of parallelism.

As a consequence, a lot of research groups investigated the

acceleration of these algorithms by means of parallel

hardware architectures. In doing so, special interest has

recently been put on GPUs as well as FPGAs.

Most groups, however, focus on the acceleration of

well-established imaging methods, like X-ray-based com-

puted tomography (CT) or magnetic resonance imaging

(MRI). See [10, 16, 21–23] for a representative set of

works. Therein, the authors report significant, but varying,

acceleration factors of up to two orders of magnitude using

either FPGAs or GPUs instead of conventional software-

based processing on a CPU. The applied image recon-

struction algorithms in CT and MRT differ from USCT but

possess similar characteristics. Thus, the obtained results

cannot directly be compared, but give a strong motivation

for our work.

Closer to our application is an ultrasound-based imaging

system presented by Jensen et al. [11]. They show an

FPGA-based data acquisition and processing system for

ultrasound synthetic aperture imaging. The overall system

is composed of 320 FPGAs and is able to acquire and

process 1,024 ultrasound signals in parallel. Also similar to

our application, Romero et al. [18] present a GPU-based

reconstruction framework. Unfortunately, both do not state

an acceleration factor over an equivalent software-based

processing approach. They are able to produce SAFT-

reconstructed slice images in real time, i.e. over 20 images

per second, for their respective system architecture. As

both presented systems are composed of planar 2D ultra-

sound transducer systems, they operate with a much

reduced number of recorded A-Scans than our system.

Fig. 1 Schematic drawing of an USCT measurement (top) and an

image of our prototype system with covers being removed (bottom).

During a measurement, the breast hangs freely into the water-filled

basin. The surface of this basin is equipped with more than 2,000

ultrasound transducers
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Thus, the obtained real-time results cannot be expected, but

further motivate a direct performance comparison between

FPGA- and GPU-based SAFT reconstruction for our sys-

tem architecture.

2.2 Performance comparisons: FPGA versus GPU

There exists a body of work presenting performance figures

for either FPGAs or GPUs in comparison with a traditional

CPU for a wide range of applications, see e.g. [3] for a

number of examples. Furthermore, there have been direct

comparisons of FPGA-based and GPU-based solutions.

For example, Asano et al. [1] compared the processing

performance of three different image processing applica-

tions on an FPGA, CPU and GPU. With exception of two-

dimensional filtering, the FPGA excelled both other

applications (stereo-vision and k-means clustering). Simi-

larly, Chase et al. [4] compared performance as well as

development time for a real-time capable optical flow

algorithm on an FPGA and GPU, achieving a similar per-

formance on both architectures. However, the FPGA

implementation took about the tenfold development time.

Kalarot et al. [13] also compare GPU and FPGA

implementations for real-time stereo vision. They found

that the custom tailored FPGA implementation is superior

in terms of processing performance, while the GPU

implementation is much more flexible and still shows the

50-fold performance of a single-core CPU. In contrast, Che

et al. [6] undertook a comparison for Gaussian-Elimination,

Data Encryption Standard (DES) and the Needlemam–

Wunsch algorithm. For all of these three compute-intensive

applications they conclude that the GPU reaches the

highest performance and the FPGA the best computational

efficiency, measured in number of execution cycles.

In summary, performance results vary between appli-

cation domains and particular implementations. None

of the platforms seems to be definitely superior. Further-

more, there is currently no comprehensive metric for

classification available, which can be used to determine the

best-fitting platform for a given application.

3 SAFT application description

Synthetic aperture focusing technique [7] has been known

as a robust imaging algorithm of reflectivity for over

20 years. The early publications date back to the 1970s

[17], but have been considered computationally not feasi-

ble at that time for medical image reconstruction. The basic

idea is to accumulate many low-quality images, recorded

by transducers at different geometric positions in order to

create one high-resolution image.

As discussed in Sect. 1, we therefore record the pressure

variation over time for each emitter–receiver combination

(A-Scan). Figure 2 illustrates the measurement principle

for the A-Scan of emitter i (at position xi) and receiver

kðxkÞ, and an arbitrary scattering position x in an simplified

2D setup in which all three points are projected into an xy-

plane. The emitted ultrasonic wave-front is scattered and

the reflection is recorded at a specific point-in-time, given

by the distance emitter–scatterer–receiver and the speed-

of-sound. The SAFT reconstruction follows the inverse

principle. For each assumed scattering position within the

USCT device the expected signal arrival times for all

recorded emitter–receiver combinations are calculated. The

A-Scans’ amplitude values at these specific points-in-time

are then loaded and accumulated. By doing so, each

A-Scan sample gives a contribution to all voxels on the

surface of an ellipsoid, but as a consequence of the con-

ducted superposition of a huge number of A-Scans, the true

scattering positions are highlighted most.

IðxÞ ¼
X

8ði;kÞ
A t ¼ kxi � xk þ kxk � xk

cði;kÞ

� �

ka� bk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax � bxð Þ2 þ ay � by

� �2 þ az � bzð Þ2
q ð1Þ

Fig. 2 Simplified principle of the USCT imaging method for an

emitter-receiver combination and an arbitrary scattering position

projected into an xy-plane: the wave-front emitted at xi is scattered at

x and the echo is recorded at xk after a certain signal traveling time,

given by the geometric distance of the points xi, x and xk and the

speed-of sound. The SAFT algorithm follows the inverse principle to

localize scatterers
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In practice, the imaged region-of-interest (ROI) within the

USCT device has to be divided into a discrete grid of

voxels (volume pixels). Assuming an average breast vol-

ume of about 10 cm3 and a maximum geometric resolution

of our USCT prototype of 0.2 mm [20], this results in a

maximum number of about 1,0243 voxels. However, also

lower resolution volumes as well as single slice images are

of interest. In order to reconstruct the amplitude of voxel

IðxÞ, we follow Eq. 1. Beginning with the first A-Scan

ði ¼ 0; k ¼ 0Þ, we determine the signal traveling time t0 for

the path emitter–voxel–receiver by dividing the geometric

distance of these three points by the speed-of-sound c. The

preprocessed A-Scans’ equivalent pressure value Aðt0Þ [19]

at this point-in-time is then accumulated. This is then

repeatedly done for all further A-Scans ði; kÞ. However,

depending on the desired image quality and necessary

reconstruction time, also only a subset of all available

A-Scans, selected by a maximum angle between emitter–

voxel–receiver can be used.

In contrast to the exemplified image-to-signal mapping,

the SAFT reconstruction can also be realized as a signal-to-

image mapping by determining the voxels on the above-

mentioned ellipsoidal surface for each A-Scan sample and

then adding these samples’ value into the respective voxels.

However, the first algorithmic description (image-to-signal

mapping) is better suited for a parallelization: The pro-

cessing can then be parallelized voxel-wise, i.e. different

threads process different voxels. As different voxels can be

reconstructed independently from each other, each thread

only reads once from an A-Scan and accumulates the

loaded value into its private voxel. In contrast, when con-

ducting the signal-to-voxel mapping, different threads

would process different A-Scan samples and would write

non-deterministically into the same output image. In this

case, race conditions on memory are inevitable and would

have to be circumvented by atomic instruction or a final

reduction of separate images, whereas both approaches

would degrade the achievable parallel performance.

4 Parallel target hardware

This section briefly introduces the system architectures and

parallel processing capabilities of the target hardware.

4.1 CPU: Intel Core-i7 920

We used the Intel Core i7-920 ‘‘Bloomfield’’ CPU as state-

of-the-art reference platform. The quad-core CPU has a

Nehalem micro architecture [12] and is clocked at a fre-

quency of 2.67 GHz. Simultaneous multi-threading (SMT)

allows each core to have two threads in flight in order to

avoid memory stalls by interleaving the processing of these

two threads. Besides the task-parallel thread processing,

each core has a single-instruction-multiple-data (SIMD)

capable processing unit and 128bit wide registers.

Furthermore, each core has its separate Level-1 data

cache of 32 kByte size and a 256 kByte large Level-2 data

and instruction cache. The overall processor shares the

unified Level-3 cache of 8 MByte as well as the off-chip

DDR3 system memory. Note that from a programmer’s

point-of-view, the described memory subsystem can be

used transparently, i.e. data elements are automatically

loaded and stored throughout the hierarchy. However, this

may also lead to performance penalties if the automatic

caching mechanisms are not used appropriately.

4.2 GPU: Nvidia Geforce GTX 580

For this comparison, we chose an Nvidia Geforce GTX

580, which is based on the current Fermi (GF110) micro-

architecture [15] and is, at the time of writing this paper,

Nvidia’s highest-performance consumer class single chip

GPU. Figure 3 gives an overview of the GPU architecture.

The PCI-Express expansion card has 1.5 GByte of glo-

bal memory (GDDR5) and the GPU chip a total number of

512 CUDA Cores (CCs) running at 1.54 GHz, each con-

sisting of a floating-point and integer unit. Every 32 CCs

are grouped into one streaming multiprocessor (SM).

Besides the CCs each SM contains 16 Load/Store-units, a

32k � 32bit Register File and four special function units

(SFUs) for computation of transcendental functions. Fur-

thermore, each SM has a Texture- and Constant Cache as

Fig. 3 Block diagram of the Nvidia Geforce GTX 580 GPU

consisting of 16 Streaming Multiprocessors (SM). Each SM has 32

CUDA Cores (CC), 16 Load/Store Units, four special function units

(SFUs), a large register file and a partly configurable shared memory

for usage as L1 cache or user-managed scratch pad memory as well as

a Constant- and Texture-Cache. The 768 kByte large L2 cache is

shared by all SMs and accesses the external GDDR5 memory
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well as a 64 kByte local memory common to all its CCs.

This local memory is partly configurable for the use as

scratch pad memory or as L1 cache. There is also a unified

768 kByte L2 cache present, which is shared by all SMs

and transparently accelerates all accesses of the external

memory.

Nvidia’s CUDA programming framework matches the

underlying hardware architecture. In order to hide memory

access latencies, it uses a single-instruction-multiple-

threads (SIMT) strategy, which makes use of extensive

hardware multi-threading. For processing, a scalar kernel is

launched on a specified number of threads, which are fur-

ther organized into thread-blocks. Every thread is pro-

cessed in one CC and a block of threads is local to a

particular SM. Except for the caches, data elements have to

be moved explicitly between the different types of mem-

ory, i.e. registers, shared and global memory. Only the

global memory, including its constant and texture memory

spaces, is accessible from the host CPU. Within the GPU

device, registers are private to a single thread and data in

shared memory can be accessed from all threads within the

same block. In contrast, the global memory is accessible by

all threads, whereas constant and texture memory can only

be read from the GPU.

4.3 FPGA: custom data acquisition (DAQ) system

Our custom DAQ system consists of 21 expansion boards:

one second level card (SLC) and 20 identical first level

cards (FLC) [9]. The overall system holds 81 Altera

Cyclone II FPGAs [5], see Table 1 for an overview of the

FPGAs’ device features. In the current configuration, the

DAQ system is only used to control the measurement

procedure and to acquire the ultrasound receiver signals.

As the FLCs hold the vast majority of FPGAs within

the complete system, only these are considered in this

comparison.

An FLC consists of an analogue and a digital part. As

we focus on processing capabilities, only the digital part is

relevant for this work. A block diagram of the digital part is

given in Fig. 4. Each FLC is equipped with four Cyclone II

FPGAs; conventionally, we use one of these as a local

master (CntrlFPGA) in order to manage communication to

the other FPGAs on board and to the SLC. We employ the

other three FPGAs (CompFPGA) for signal acquisition.

There are two different types of memory on-board avail-

able. Each CompFPGA is connected to a distinct static

RAM module (2 MB each) and the ContrFPGA is attached

to a large dynamic RAM module (DDRII) of 2 GB.

Communication on-board takes either place via a Local

Bus with a data rate of 80 MB/s or by direct links between

each CompFPGA and the CntrlFPGA (Fast Links,

3 � 80 MB/s).

The DAQ system is currently used only for acquisition

and intermediate storage of the A-Scans. This functionality

includes signal decimation and pre-filtering, which occu-

pies about 17 % of the available logic elements, 97 % of

the embedded multipliers and about 1 % of the memory

bits on each CompFPGA. Especially, the extensive use of

embedded multipliers makes a dynamic reconfiguration of

the overall system necessary, when switching from DAQ to

processing mode and vice versa. The reconfiguration of the

complete DAQ system takes currently up to 2 min, but

could be done in an optimized manner in less than 6 s by a

concurrent reconfiguration of all FLCs [2].

4.4 FPGA: Xilinx Virtex-6

As a high-performance counterpart on FPGA side we use a

current Xilinx Virtex-6 VLX240T FPGA [24]. The overall

FPGA communication system architecture, see Fig. 5,

consists of a Peripheral Component Interconnect Express

(PCIe) subsystem and an Advanced Microcontroller Bus

Architecture (AMBA), Advanced eXtensible Interface

(AXI) bus subsystem, whereas the latter also includes a

controller for the attached 2 GByte DDR3 memory mod-

ule. This communication infrastructure occupies 20 % of

the available Logic Slices and 5 % of the BlockRAMs.

Fig. 4 Block diagram of the digital part of an FLC in the DAQ

system. It is equipped with four Altera Cyclone II FPGAs

(1 � CntrFPGA, 3 � CompFPGA). Each CompFPGA is attached

to a 2 MB QDRII static RAM module and the Cntrl FPGA to a DDRII

dynamic RAM (2 GB). The FPGAs are connected by a Local Bus

(80 MB/s) and by direct Fast Links (3 � 80 MB/s)
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The PCIe subsystem is based on the design1 of Marcus

et al. [14] and has been optimized to meet the 8-lane,

generation 1 timing. Furthermore, it has been adapted to

serve as an AXI-Lite (control) and AXI-Full (data) bus

master. Thus, the host PC is able to access the connected

AXI-Lite slaves via memory-mapped Programmable-

Input-Output (PIO) reads and writes. The AXI-Full slaves

can be read from and written to via autonomous direct

memory accesses (DMA). For both, PIO and DMA func-

tionality, the PCIe endpoint implements separate channels

so that simultaneous transactions are possible. In order to

achieve the necessary PCIe throughput, the endpoint runs

at 250 MHz and interfaces to the AXI subsystem running

125 MHz, which doubles the width from 64 to 128 bit.

As indicated above, the AXI subsystem consists of an

AXI-Lite and an AXI-Full bus infrastructure and also

includes the DDR3 memory controller connected as a slave

module of the AXI bus. All necessary AXI cores have been

created using the Xilinx EDK environment. Both bus infra-

structures run at 125 MHz and have an address width of

32 bit. The multi-master and burst-capable AXI-Full bus is

implemented via a crossbar scheme and has a data width of

128 bit, whereas the single-master AXI-Lite bus uses a shared

bus architecture of 32 bit data-width. Due to the separate read

write channels of the AXI interconnect, the bus can be

operated in full duplex mode. As the native DDR3 memory

bandwidth is not saturated by either AXI read or write

transactions, the same is true for the DDR3 slave module.

5 Application integration

The following subsections describe our implementations of

the SAFT algorithm for the 3D USCT image reconstruction

on the CPU, the GPU as well as the Virtex-6 FPGA and the

FPGAs in our DAQ system. A simplified data flow diagram

of the SAFT processing scheme derived from Eq. 1 can be

found in Fig. 6.

5.1 CPU implementation

We parallelized the processing on different processor cores

by eight Pthreads and further by usage of SSE instructions

in order to exploit the SIMD processing capabilities within

each core. Therefore, we partly programmed in plain C and

partly in Assembler, and compiled with gcc 4.5.1 and nasm

2.9.3, respectively. The assembler optimized reconstruction

kernel originates from our previous work in [25].

As discussed in Sect. 3, we parallelized the processing

voxel-wise, so that each thread reconstructs a subset of the

voxel grid and uses all selected A-Scans. Within the thread,

we perform the actual assembler-optimized SAFT recon-

struction. Depending on the dimension of the chosen voxel

grid, we divide the overall image in y-direction between the

threads, if less xy slices are reconstructed than threads are

available, or otherwise in z direction (see Fig. 2 for a

definition of the coordinate system). We then loop over the

A-Scans and within the reconstruction kernel we loop over

all assigned voxels. Two neighboring voxels are processed

concurrently and interleaved with the reconstruction of two

further voxels in order to achieve a full SIMD utilization in

each processing step. All geometric calculations are done

in single precision floating point arithmetic. Firstly, the

distances emitter–voxel and voxel–receiver are sequen-

tially calculated for the first and the second voxel pair.

Then, we add the partial distances and multiply the sum

with the precomputed inverse speed-of-sound value for all

four voxels in parallel. Finally, the four A-Scan samples

are loaded and two-way parallel added into the respective

voxels in double precision.

5.2 GPU implementation

All GPU routines, in this context called kernels, were

written in CUDA C and use the toolkit version 4.0. We

voxel-wise parallelized the reconstruction similar to the

Fig. 5 Block diagram of the Xilinx Virtex-6 device architecture. The

communication systems consists of an PCIe endpoint and an AXI

subsystem, including an AXI-Lite and AXI-Full bus infrastructures as

well a DDR3 controller connected as a slave interface. The PCIe

endpoint serves as bus master

Table 1 Cyclone II FPGA device elements [5]

Element Number per FPGA

Logic elements 33,216

Embedded multipliers (9 bit) 70

Total memory bits 483,840

1 Available online at http://opencores.com/project,pcie_sg_dma.
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CPU description above. However, as threads are much

more lightweight and a huge number of threads are needed

to reach a good performance on the GPU, each thread

reconstructs only a single voxel. In order to further achieve

high data-transfer efficiency, we batch-wise transfer

A-Scans between GPU and host memory and then use this

batch for image reconstruction. By usage of asynchronous

CUDA API calls, both types of operations (data transfers

over PCIe and kernel executions) are performed simulta-

neously. This enables us to apply a double-buffering

scheme. After an initial synchronous transfer all further

batches are transferred during the previous batch is being

processed, and thus data transfer latencies over PCIe are

hidden completely. We experimentally determined a batch-

size of 11’304 A-Scans, which equals all recorded A-Scans

for eight emitters, as a good trade-off between recon-

struction flexibility, global memory usage and the effi-

ciency of large data sets. In this case, computation time

dominates the transfer via PCIe for all resolutions, larger

than an image slice of 192� 192 pixels.

In the SAFT reconstruction kernel, each thread recon-

structs one voxel. Each thread-block consists of 16 � 16

voxels in xy-direction (see Fig. 2). In each thread, the

voxel’s value resulting from potential previous kernel

executions is loaded. We then loop over the A-Scans of this

batch and within the loop body we calculate the distances

emitter–voxel and voxel–receiver, sum up and multiply

with the precomputed inverse speed-of-sound. As in the

CPU implementation, all geometric calculations are done

in single-precision. Then, the determined sample’s value is

loaded and locally accumulated in double precision. When

exiting the loop, the resulting voxel value is stored back to

global memory. After the reconstruction is completed, the

voxel field is transferred via PCI-Express from global GPU

to host memory.

Due to the necessary indirection in the sample deter-

mination, i.e. the calculated point in time has to be used as

memory index, the A-Scans’ samples are loaded in a non-

deterministic manner. Thus, we compare here three dif-

ferent implementations:

– Direct global access: In this implementation the

determined A-Scans sample are directly loaded from

global memory. This results in cached reads via the L1-

and L2-Cache hierarchy and therefore we use the L1

cache configuration of the shared memory.

– Direct texture access: Here, the samples are also

directly loaded from global memory, but in contrast

to the implementation above, the A-Scans are

addressed via the GPUs’ texture fetching units, result-

ing in cached texture reads.

– Shared memory preload: In each iteration of the above-

mentioned A-Scan loop, the samples of the complete

A-Scans are preloaded into the shared memory. By

doing so, the read commands are perfectly aligned and

can be coalesced. However, this preload scheme

requires an synchronization of all threads within the

thread-block before the actual calculation can be begin.

5.3 FPGA implementation: DAQ system

The FPGA implementation is custom-tailored to our DAQ

system architecture. As 1/20 of all A-Scans reside in the

DDR2 memory of each FLC after the measurement took

place, we parallelized here signal-wise between different

FLCs and then again voxel-wise on every FLC. Due to the

distributed A-Scan storage, this concept is more efficient

than broadcasting the A-Scans over the backplane to all

other FLCs. As a consequence, after the local reconstruc-

tion is finished, each FLC has to send its partial voxel field,

which is only reconstructed with a subset of A-Scans, to the

SLC for a final reduction. Table 2 gives an overview of the

used real estate per FPGA type.

The CntrlFPGA is responsible for reconstruction control

on each FLC. The A-Scans are then one after the other

loaded from DDRII memory and sent via Fast Links to the

CompFPGAs. Besides the pressure samples, each A-Scan

transfer includes a header, containing the emitter and

receiver coordinates. After the local reconstruction has

finished, the CntrlFPGA receives a subset of voxels from

each CompFPGA via Fast Links and sends the partial voxel

field to the SLC.

On each CompFPGA, 1/3 of the voxel field is recon-

structed tenfold parallel. See Fig. 7 for a block diagram of

the processing modules. All modules on the CompFPGA

Fig. 6 Data flow diagram of SAFT processing for one voxel

x ¼ ðx; y; zÞ, an emitter xE ¼ ðxE; yE; zEÞ and a receiver xR ¼
ðxR; yR; zRÞ and the precalculated inverse of the related speed of

sound value c. The determined index t is used to load the A-Scan

sample. This flow has to be repeated for all voxel–emitter–receiver

combinations
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are clocked at a frequency of 60 MHz. After the first

A-Scan is transferred, the reconstruction is started by cal-

culating the geometric coordinates for the first 10 voxels in

the PixelGen unit and afterwards feeding them into the

SAFT units. In each SAFT unit, the respective emitter–

voxel and voxel–receiver distances are calculated, summed

up and divided by the speed of sound in order to determine

the sample indices. These indices are then stored in the

SampleRegister. The MemoryManagement unit loads the

ten determined samples one after the other from an A-Scan

buffer and feeds them to the PixelRegister. There, the

needed voxels are already pre-loaded from QDRII mem-

ory, then accumulated and afterwards stored back. This

procedure is repeated for all voxels before moving to the

next A-Scan. In order to hide transfer times over the Fast

Links, an A-Scan double-buffering scheme is applied.

5.4 FPGA implementation: Virtex-6

Similar to the GPU, we operate the Virtex-6 evaluation

board as a PCIe accelerator, i.e. the reconstruction flow is

initiated and controlled by a host PC. We also batch-wise

reconstruct and copy the A-Scans into the DDR3 memory

(see Fig. 5). In order to hide transfer latencies, double-

buffering is applied on various levels: First, the transfer vie

PCIe is overlapped with the processing of the previous

batch and second, during the actual processing of an

A-Scan the following scan is already preloaded from

DDR3 memory into an internal buffer.

The SAFT processing modules run at 125 MHz. The

overall structure can be divided into a control and a com-

putational part, see also Fig. 8. Besides the AXI-Lite slave

module, which implements the host accessible registers,

and the AXI-Full master module for accessing the DDR3

memory, the saftController consists of four further mod-

ules: firstly, the controlFSM, which is responsible for the

overall processing flow, and the geoCoordMem providing

the computational units with the emitter and receiver

coordinates of the currently processing A-Scan. Data-wise

the saftController inhibits the ascanLoad and pixelRdWr

modules, which translate the respective transfer requests

into AXI bus transaction for either reading a complete

A-Scan into the scanBuffer or reading and writing the

internally buffered pixel set from or to the pixelBuffer.

The computational part consists of 32 parallel saftUnits,

whereas each contains a pixelCoordGen, two sampleUnits,

a scanBuffer and a pixelBuffer. Beginning with the supplied

start pixel xP, the pixelCoordGen generates two successive

pixels in each clock cycle, which are then fed into the

separate sampleUnits. There, the sample indices are cal-

culated according to Fig. 6 and Eq. 1. These indices are

then used to address a true dual-ported BlockRAM holding

the current A-Scan in the scanBuffer. Finally, the loaded

sample values are accumulated in the pixelBuffer, which

contains two 64 bit adders as well as a deep Fifo buffering

a image slice of 1,024 pixels. The complete processing is

deeply pipelined and has a throughput of 2 pixels per

saftUnit and 64 pixels in total. Table 3 gives an overview

Table 2 FPGA occupation

Element CntrFPGA (%) CompFPGA (%)

Logic elements 39 54

Embedded multipliers (9 bit) 49 100

Total memory bits 3 27

Table 3 Virtex-6 VLX240T device occupation

Element Total Occupied

(%)

Comm.

system (%)

SAFT

module (%)

Logic slices 37,680 91 20 71

DSP48E1 slices 768 75 0 75

BlockRam (36kBit) 416 80 5 75

Fig. 7 Block diagram of CompFPGA processing modules. Each

FPGA processes 1/3 of the voxel field for all local A-Scans in ten

parallel SAFT units. The overall processing, i.e. determining the

A-Scan sample and accumulating the sample value, is divided into

four pipeline stages. In order to hide transfer latencies, A-Scans are

double-buffered. The voxels reside in QDRII memory
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of the total number of device elements as well as their

percentile occupation by the total system, the communi-

cation and the SAFT processing part.

During processing, all A-Scans of the current batch are

used one after the other to reconstruct an image slice of

32� 1;024 ¼ 32;768 voxels, which are internally buffered

in the pixelBuffer modules. At larger image dimensions, the

buffered pixels are then exchanged with the next slice, i.e.

the current pixel set is written to DDR3 memory and

optionally the successive set is read in. This is repeatedly

done until the current batch has been used for all pixels and

the procedure starts over with the next batch. Due to this

necessary pixel exchange at volume dimensions larger than

32k pixels, the batch-size has been maximized to 169,560

A-Scans, optimally using the available 2 GB memory

module. In this case, the pixel exchange time accounts only

for approx. 0.023 % of the total reconstruction time and

thus has only a marginal effect on performance.

6 Results and discussion

In this section, we present our performance results for the

SAFT kernel on the CPU and the GPU as well as the

Virtex-6 FPGA and the FPGAs embedded in our DAQ

system. Firstly, we analyze the attained performance on

each platform separately and then directly compare these

performance values between different platforms. As a

performance metric we use the throughput of reconstructed

voxels per second normalized to a single A-Scan. This

metric allows for a simple projection of the total SAFT

reconstruction time for a given voxel grid and number of

used A-Scans.

6.1 Performance analysis and discussion

6.1.1 CPU

The best performance on the CPU is reached at optimal

load balancing, i.e. when the parallelized image dimension

(y or z) is a multiple of the number of threads. For this case,

Fig. 9 shows the detailed voxel throughput over the num-

ber of reconstructed voxels for different thread configura-

tions. The single-threaded version saturates at a voxel grid

dimension of about 500k voxels to a performance value of

0.2 GVoxel/s. After reaching its peak values, the four and

eight threaded configurations start to level off at 1 M

voxels, i.e. when the reconstructed voxel grid drops out of

the L3 cache of 8 MB, and saturate at about 1.5 M voxels

(4 threads) and 2 M voxels (8 threads). From there on the

four-threaded configuration using all four physical cores of

the processor performs at 0.74 GVoxel/s and a perfor-

mance of 1.0 GVoxel/s is reached using hyper-threading.

When moving from one to four threads, processing accel-

erates by of factor 3.7. An additional factor of 1.35 is

gained with hyper-threading, i.e. using idle cycles of each

processor core by processing a further thread.

As neighboring voxel pairs are consecutively processed

and tend to have similar signal traveling times for an

A-Scan, the loaded samples possess a good spatial and

temporal locality, which both is optimally suited for

caching. Furthermore, as the reconstructed voxels per core

reside side by side in memory, the pre-fetching features of

the processor are elegantly used and limit the cache impact

to only 37 MVoxel/s for the 8 and 14 MVoxel/s for the

four-thread configuration. With a marginal performance

drop of 3.7 % for the eight threaded and 1.9 % for the four

threaded configuration, the CPU SAFT kernel can be

considered greatly cache-independent.

6.1.2 GPU

On the GPU, the x and y resolution has to be a multiple of

16, which is the dimension of a basic thread-block. Fig-

ure 10 shows the obtained performance for the GTX 580

again in terms of voxel throughput versus the number of

processed voxels. For each three implementation variants

(see Sect. 5.2), the performance saturates between 500k

and 1 M voxels to its peak value. The Shared Memory

version shows the lowest performance of 2.8 GVoxel/s,

followed by the direct Global Memory access with a per-

formance of 14.3 GVoxel/s and by usage of Texture

Memory and its dedicated fetching units the best perfor-

mance of 17.2 GVoxel/s is reached.

Apparently, the synchronization within each loop itera-

tion as well as pre-loading a complete A-Scan of 3,000

samples in each tread-block severely limits the performance

Fig. 8 Block diagram of the SAFT processing module clocked at

125 MHz and consisting of the saftController and 32 parallel

saftUnits. The saftController connects to the outer system, see

Fig. 5, via an AXI Lite slave and an AXI Full master interface. The

saftController is responsible for controlling and monitoring the

processing flow, whereas the fully pipelined saftUnits reconstruct two

pixels per unit or 64 pixels in total per clock cycle
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of the Shared Memory version and results in a performance

degradation of over factor six in comparison to the Texture

Memory implementation. Furthermore, the usage of texture

memory accelerates processing by 20 % in comparison to

the direct global memory access. For small voxel grids

(smaller than 500k voxels) all three performance curves in

Fig. 10 exhibit a complex behavior, caused by a superpo-

sition of different effects like load balancing between dif-

ferent streaming multiprocessors. However, as these are

only identifiable at very low resolutions and have hardly

any influence on the performance of actual 3D USCT

reconstructions, a detailed analysis and discussion is left for

future work.

In summary, the SAFT algorithm naturally fits to the

GPU architecture, as it offers a huge number of indepen-

dent voxels, no divergent branches, many floating point

operations as well as a beneficial communication-to-com-

putation ratio. As each thread-block processes a neigh-

boring region of voxels, the A-Scan caching principles

discussed for the CPU also apply on a larger scale to the

GPU.

6.1.3 FPGA: DAQ System & Virtex-6

In case of the DAQ System, only power-of-two resolutions

have been considered in order to optimize the hardware

design. Out of these, only the two medium resolutions of

2562 and 5122 pixels have been realized and due to the

deterministic and cycle-wise processing both show the

same performance of 1.6 GVoxel/s. Besides the parallel-

ization on different FPGAs, the performance is obtained by

pipelined processing, which is, in this custom-tailored

form, not possible on both CPU and GPU. The overall

processing on a CompFPGA is divided into multiple

pipeline stages, whereas the iterative square-root opera-

tions constrain a further increase in stages and thus, limit

the overall performance. Similarly, the number of SAFT

units per FPGA is limited by the available embedded

multipliers. A further increase of units using logic elements

instead of hardware multipliers reduces the maximum

FPGA operation frequency below our margin of 60 MHz.

Note that if only a single CompFPGA is compared, the

performance is degraded almost by a factor of 50 in

comparison to the CPU version. However, the Altera

Cyclone II FPGAs in our DAQ system are already quite

dated and not targeted to high performance computing.

Although this result is important for our current recon-

struction setup as will be shown in the following section,

the next paragraph gives insight into the results on a more

competitive FPGA platform.

Due to design optimizations also for the Virtex-6

implementation only power-of-two resolutions between

1282 and 1;0242 voxels have been realized, whereas a full

utilization of the 32 implemented SAFT units need at least

a resolution of 2562. From this point on, the Virtex-6

implementation constantly performs at a peak value of

7.8 GVoxels/s. Also here, this performance is reached by

extensive pipelining with approx. 100 stages besides the 32

parallel SAFT units.
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6.2 Performance comparison

For this comparison, all implementations have been opti-

mized with respect to the target architecture. This leads to

individual restrictions in terms of image resolution and A-

Scan batch sizes, which have been explained in the last

sections. However, none of these limitations constricts the

needs of 3D USCT volume reconstructions. As the per-

formance values also mostly depend on the number of

reconstructed voxels, we used values taken from the satu-

ration region of all platforms for the direct comparison.

Table 4 summarizes the obtained performance values for

all investigated architectures.

Our CPU implementation, serving as a state-of-the-art

reference, reaches a performance of 1.0 GVoxel/s. The

DAQ system, combining all 60 CompFPGAs, shows a

performance of 1.6 GVoxel/s and thus accelerates pro-

cessing approx. 1.6-fold and the Virtex-6 FPGA imple-

mentation performs at 7.8 GVoxel/s (acceleration factor

7.9). Finally, the GTX580 GPU reaches the highest per-

formance of about 17.2 GVoxel/s, which is over an 17-fold

increase in comparison to the CPU, an 11-fold increase to

the DAQ system and an 2.2-fold increase to the Virtex-6

FPGA.

7 Conclusion and outlook

In this work, we compared the processing performance of

our SAFT-based image reconstruction kernel on a GPU, a

single a high-performance Virtex-6 FPGA and our custom

FPGA-based DAQ system with a recent multicore CPU.

Our results show that all system architectures accelerate

processing and the GPU reaches by far the highest

performance.

Finally, we show use-cases for the different accelerated

versions within the 3D USCT image reconstruction

sequence. One interesting aspect is the reconstruction of

medium-quality slice images providing an estimation of the

overall data quality and a localization of the breast within

the USCT device for the following high-resolution volume

reconstructions. As the A-Scans reside in the DAQ system

after a measurement and have to be transferred to the PC in

order to be processed by either CPU or GPU, this time can

be profitably used by DAQ system reconstructions. This

transfer currently needs about 30 min for the full data-set

using a 100 Mbit/s Ethernet connection, which allows up to

11 slice reconstructions of 512 � 512 pixels with 1/4 of all

A-Scans, including the non-optimized reconfiguration time.

As a further advantage, the patient can be still present at the

time the first slice reconstructions are finished (less than

5 min), giving the opportunity to repeat the examination in

case of parameter maladjustments or measurement errors,

which can be caused, for example, by movements of the

patient. Once the measurement data are transferred to the

PC, the processing performance of the GPU is accessible.

Considering a reconstruction setup of 64 slices of

1,024 � 1,024 slices using 1/2 of all A-Scans, the SAFT

processing time is reduced from over 1 day on the CPU to

about 2 h on the GTX 580 GPU. As detailed in Sect. 3, the

reconstruction of different voxels is independent and thus,

by dividing the overall voxel grid and using multiple

GPUs, this time can almost be linearly scaled down with

the number of used GPUs.

Furthermore, as already a single current FPGA has

almost half the performance of the GPU and a substantial

number of FPGAs is and will be needed for data acquisi-

tion in 3D USCT, FPGA-based image reconstruction is

nevertheless a viable solution for the next generation of our

data acquisition system, which will be even more targeted

towards data processing. Also here, reconstruction time

could be scaled down by distributing independent voxels

between multiple FPGAs.

Our plans for future work include the steady improve-

ment of the accelerated versions of our imaging algorithms

in terms of quality and processing speed. For example, in

the above implementations, each A-Scan is assumed with

an average speed-of-sound. However, a correction for

variations within the breast is mandatory for high-resolu-

tion and high-quality volumes. Furthermore, we want to

investigate the performance differences between GPUs and

FPGAs as well as the fundamental application character-

istics, which are suitable for either GPU-based or FPGA-

based computing in more detail.
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