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Abstract A novel fuzzy 3D filter designed to suppress

impulsive noise in color video sequences is proposed. In

contrast to other state-of-the-art algorithms, the proposed

approach employs the sequence data of the three RGB

channels, analyzes eight fuzzy gradient values for each of

the eight directions, and processes two temporal neigh-

boring frames concurrently. Numerous simulation results

confirm that this novel 3D framework performs well in

terms of objective criteria (PSNR, MAE, NCD, and SSIM)

and the more subjective measure of human vision in the

different color sequences. An efficiency analysis of several

promising 3D algorithms was performed on a DSP; com-

putation times for various techniques are presented.

Keywords Image denoising � Fuzzy logic rules �
Impulsive noise � Color sequence � Real-time

implementation

1 Introduction

In image processing, different types of noise affect the per-

formance of digital systems, and thus developing methods to

reduce the number of spurious pixels is considered a priority

in the field. Noise produces deficiencies during acquisition,

broadcast or storage of color image sequences. Therefore, it

is important to filter each frame of a color sequence before

it is processed [1, 2]. It is difficult to design techniques

that reduce noise while maintaining image content such as

edges, fine details, chromaticity characteristics, etc. [3, 4].

Filters that adapt their characteristics to the curent image

and noise data have been proven effective in restoring

images that contain various types of noise with different

distributions and image textures [2–6]. It is important that

the filtering algorithm be able to discriminate between the

local variations of pixels caused by noise and the natural

variations in the image structure.

Many filters are based on the order statistics technique,

in particular vector order statistics [1–5], [7–10, 20–23].

Recently, fuzzy logic techniques have been used to design

several 2D impulsive noise suppression filters [2, 5, 11–

19]. These filtering techniques can be applied frame by

frame to color sequences. However, the omission of tem-

poral corrections generates temporal inconsistencies. For

color sequences, 2D filters do not perform as well as 3D

filtering frameworks [24, 31].

Several proposed frameworks employ existing temporal

correlations between neighboring frames [6, 9, 10, 25–27].

Algorithms designed for color sequences should utilize the

data from three channels and might apply vector-based

methods [13, 19, 28–34].

To avoid filtering noise-free pixels, which blurs the

pixels, techniques based on weights and switching have

been designed [2, 4, 8, 9, 14, 28, 35–41].
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Filtering based on fuzzy sets is used in the proposed

framework. A special feature of fuzzy filters is their ability

to adapt based on local image data. The goal of a fuzzy

filter is to remove noise in spurious pixels while preserving

edges, fine features, noise-free pixels and texture and

chromaticity characteristics. For noisy pixels, the output of

a filter is a selected pixel or the result of the filtering

procedure, which applies fuzzy rules to several neighboring

pixels. During processing several frames, the filter should

be able to distinguish between movement of the objects,

fine details and corrupted pixels. Fuzzy sets and fuzzy rules

form the knowledge base of a fuzzy rule-based reasoning

system. Fuzzy sets are a generalization of classical sets.

Whereas classical sets over a universe X can be modeled

using X to {0, 1} mappings, fuzzy sets are characterized by

X to [0, 1] mappings (membership functions). In classical

set theory, an element x 2 X is or is not a member of a set.

In fuzzy set theory, a more gradual transition between

membership and non-membership is allowed; the degree of

membership is between 0 and 1. Therefore, fuzzy sets are

useful for processing human knowledge where linguistic

variables (e.g., large, small, etc.) are used. For example, a

difference in grey level can be described as large, not large

or large to some degree.

Fuzzy rules are linguistic IF-THEN constructions that

have the general form ‘‘IF A THEN B’’, where A and B are

the collections of propositions containing linguistic vari-

ables. The IF component of the rule, A, is called the pre-

mise or antecedent, and B is the consequence of the rule.

A fuzzy membership function defines how each point in

the input space is mapped to a membership value (or

degree of membership) between 0 and 1. The membership

function must vary between 0 and 1. The function can take

any form and is defined by the user from the point of view

of simplicity, convenience and efficiency.

Fuzzy filters are based on the observation that noise

causes a small fuzzy derivative, while a large fuzzy deriv-

ative is caused by the presence of fine details or edges. Fuzzy

rules are applied in each direction and take into account

variables that can occur, such as local variations, edges and

fine features. In image denoising, the fuzzy rules distinguish

between noisy pixels, plain areas, edges and fine image

features. These distinctions allow the main characteristics of

an image to be unchanged. In color video sequences, inter-

channel processing and motion detection algorithms are

used to preserve the fine details and edges in a color

sequence, and only corrupted pixels should be filtered.

In this paper, we propose an efficient fuzzy approach for

impulsive noise suppression in color sequences. In contrast to

current state-of-the-art fuzzy filters, the proposed framework

gathers red (R), green (G) and blue (B) channels sequence

data, uses fuzzy logic to analyze the basic pixel gradient value

and several related pixel gradient values in eight directions,

and processes two neighboring frames concurrently. The

results of numerous simulations demonstrate that the pro-

posed 3D filtering framework performs well in objective

criteria (PSNR, MAE, NCD, and SSIM) and a human sub-

jective analysis of the frames in the color sequences. In

addition, an efficiency analysis of several promising 3D

algorithms was performed on a DSP and in MATLAB; the

computation times for various techniques are presented.

The paper is organized as follows: Sect. 2 presents the

noise model and performance criteria; Sect. 3 explains the

proposed framework; Sect. 4 presents and analyzes the

simulation results; and Sect. 5 concludes the paper.

2 Impulsive noise model and performance criteria

In all models of impulsive noise in an image, noise appears

as color spots that have very small or very large values.

There are several models of noise contamination. We use a

simple model that is the most severe model of impulsive

noise from the point of view of image degradation [30, 37].

This model needs only prior information about the proba-

bility of random spike appearance, pn, which is indepen-

dent in each of the three RGB channels. We assume that

the amplitudes of the impulsive noise are random and

uniformly distributed in the interval of given values (0–

255). This model is employed independently in each color

channel of an image:

Eði; jÞ ¼ eði; jÞ; with probability 1� pn;
nði; jÞ; with probability pn:

�
ð1Þ

Here, e(i, j) is the original image (or a frame in a video

sequence), n(i, j) is a noise pixel that appears with

probability pn, and E(i, j) is the corrupted image.

The performance analysis of the filter image can be

based on different objective criteria. We employ the fol-

lowing objective measures: the peak signal-to-noise ratio

(PSNR), which measures the ability of a chosen algorithm

to suppress noise, and the mean absolute error (MAE),

which characterizes the extent to which edges and fine

details are preserved. All of these metrics are defined in the

RGB color space:

PSNR ¼ 10 log10
ð255Þ2

MSE

" #
dB; ð2Þ

where the mean squared error (MSE) is defined as follows:

MSE ¼ 1

MN

XM
i¼1

XN
j¼1

ðjRði; jÞ � Reði; jÞj2
h

þ jGði; jÞ � Geði; jÞj2 þ jBði; jÞ � Beði; jÞj2Þ=3
i
:

ð3Þ
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The MAE is given as:

MAE¼ 1

MN

XM
i¼1

XN
j¼1

½ðjRði; jÞ�Reði; jÞj

þ jGði; jÞ�Geði; jÞjþ jBði; jÞ�Beði; jÞjÞ=3�: ð4Þ

For both MSE and MAE, R(i, j), G(i, j), and B(i, j)

represent the RGB color components of the original image

e(i, j), and Re(i, j), Ge(i, j), Be(i, j) are the color RGB

components of the output filtered image or frame. The

normalized color difference (NCD) is commonly used to

measure color preservation and is defined in the L*u*v*

color space [1, 3, 37]. To calculate the NCD criteria, the

image must be converted to the L*u*v* color space. The

error between two color vectors, DELuv ¼ ½ðDL�Þ2þ
ðDu�Þ2þðDv�Þ2�

1
2; is used to calculate the NCD measure:

NCD ¼
PM

i¼1

PN
j¼1 k DELuv kPM

i¼1

PN
j¼1 k e�Luv k

; ð5Þ

where e�Luv ¼ ½ðDL�Þ2 þ ðDu�Þ2 þ ðDv�Þ2�
1
2 is the norm or

magnitude of the uncorrupted original image pixel vector

in the L*u*v* space, and N and M are the image

dimensions.

In some cases, the standard quality metrics used in the

past, such as MSE and PSNR, can be erroneous. Therefore,

novel metrics are used to characterize the performance of

the algorithm, e.g., the structural similarity index measure

(SSIM), which is more consistent with human perception.

For monochrome images, the SSIM metric is defined as

follows [42, 43]:

SSIMbðe;EoutÞ ¼ ½lbðe;EoutÞ�½cbðe;EoutÞ�½sbðe;EoutÞ�; ð6Þ

where l, c and s are parameters calculated for each color

channel using the following:

lðe;EoutÞ ¼
2lelEout

þ C1

l2e þ l2Eout
þ C1

; ð7Þ

cðe;EoutÞ ¼
2rerEout

þ C2

r2e þ r2Eout
þ C2

; ð8Þ

sðe;EoutÞ ¼
reEout

þ C3

rerEout

: ð9Þ

In Eqs. (7–9), E is the filtered image, e is the original

(uncorrupted) image, l and r2 are the sample mean and

sample variances of E or e, and reE is the sample cross-

variance between E and e. The index b represents the R, G

or B color channel. The luminance similarity is denoted by

l, c characterizes the contrast similarity, and s is the

structural similarity for the chosen channel (R, G or B). The

justification of the SSIM index can be found in [42, 43].

The constants C1, C2, and C3 are used to stabilize the

metric when the means and variances are very small;

usually C1 = C2 = C3 = 1. The final quality measure is

the average of the SSIMs across the image (also called the

mean SSIM or MSSIM). The SSIM index is based on the

fact that natural images are highly structured. The

structural correlation between the original (uncorrupted)

and the filtered image is an important measure of the

overall visual quality. Further, the SSIM index measures

quality locally and is better able to capture local

dissimilarities than global quality measures such as the

MSE and PSNR. Although the form of Eq. (6) is more

complicated than the MSE, it is analytically tractable. We

calculate the mean value of the SSIM quality index:

SSIM ¼ 1

3
½SSIMR þ SSIMG þ SSIMB�: ð10Þ

To compare the noise suppression and detail

preservation capabilities of several filters, we use a

subjective visual criterion by presenting the filtered

frames for different color video sequences and/or their

error images. When filtered images are observed by the

human visual system, subjective visual comparisons

provide information about spatial distortions and artifacts

that are introduced by the different filters, the noise

suppression quality of the algorithm and the performance

of the filter.

3 Proposed 3D fuzzy framework

The goal of the proposed denoising method is to provide

better results than those obtained by other state-of-the-art

fuzzy filters. The method is divided into three steps. In the

first step, where the output is denoted by Eout(i, j)1, for

each pixel there is a level at which it is considered to be

noise-free and a level at which it is considered to be noisy.

In this step, a basic gradient values and four related gra-

dient values are calculated. In the second step, where the

output is denoted by Eout(i, j)2, the correlation between the

R, G and B components in each frame is used to detect

noise based primarily on existing information in the three

RGB color channels. In the third step, where the result of

filtering is denoted by Eout(i, j)3, spatial and temporal color

information from the current and previous frames are used

to remove any remaining noise. Figure 1 explains the

principal operations of the proposed method.

3.1 First processing step: channel detection

and filtering

As an illustrative example, we explain the sequential pro-

cedures only for the red color component. The procedures

are similar for the green and the blue components. By

assuming that a 3 9 3 sliding window is located in the
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center of a 5 9 5 sliding window, a gradient value can be

calculated in eight different directions with respect to the

neighboring pixels in the 3 9 3 window (see Fig. 2). In

this framework, we introduce the gradient values as abso-

lute differences that represent the similarity level between

neighboring pixels. Two hypotheses must be resolved: the

central pixel is a noisy pixel, or it is a noise-free pixel. The

differences with respect to the central element, Ec
b are

defined as r(k,l)
b = |Ec

b(i, j) - Eb(i ? k, j ? l)|. They are

calculated for each direction, c = {N, E, S, W, NW, NE,

SE, SW}, where the point (i, j) = (0, 0) marks a central

pixel in a sliding window. The parameter b characterizes

the chosen color channel in the RGB space, and (k, l)

denotes the direction of the gradient; k and l can take the

values {-1, 0, 1} (Fig. 2). For any direction, the basic

gradient value and four related gradient values are descri-

bed by (k, l) values from {-2, -1, 0, 1, 2} [9]. The

related gradients are introduced to avoid spreading edges

and fine features. Eight basic gradient values, rc
b, are

defined for each direction, c, and color component, b.
Figure 2 shows the pixels used for the basic and four

related components for the processing procedure in the SE

direction. The basic gradient value for the SE direction is

r(1,1)
b = rb

SEðBÞ, and the four related gradient values are

given as follows: r(0,2)
b = rb

SEðR1Þ, r(2,0)
b = rb

SEðR2Þ,

r(-1,1)
b = rb

SEðR3Þ, and r(1,-1)
b = rb

SEðR4Þ.

To estimate the noise contamination in a central pixel of

a 5 9 5 sliding window, we introduce the LARGE and

Fig. 1 Block diagram of proposed 3D filtering framework

Fig. 2 Four related and basic gradients
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SMALL fuzzy sets (Fig. 2). A large membership degree

(i.e., close to 1) in the fuzzy set SMALL indicates that the

central pixel is a noise-free pixel. A large membership

degree in the fuzzy set LARGE set indicates that a central

pixel has a large probability of being noisy. Membership

functions can be built from basic functions, e.g., piece-wise

linear functions, the sigmoid curve, quadratic and cubic

polynomials, or the Gaussian function. Because of their

simplicity and convenience, we use Gaussian membership

functions [9, 10] to compute the membership degrees of

fuzzy gradients:

qðrb
c ;LARGEÞ ¼

1; rb
c [r1

exp�½ðrb
c �r1Þ2=2r2�; otherwise;

(

ð11Þ

qðrb
c ;SMALLÞ ¼

1; rb
c\r2

exp�½ðrb
c �r2Þ2=2r2�; otherwise:

(

ð12Þ

The values of the parameters used in Eqs. (11) and (12)

were determined based on the optimal values of the PSNR

and MAE criteria (see Sect. 4.1). The following fuzzy rules

are proposed to resolve the following hypothesis: a central

component is noisy, noise-free, or belongs to coarse details

(e.g., edge, fine features, etc.). Fuzzy Rule 1 defines the

fuzzy gradient value for the c direction,rc
b F, that belongs

to the fuzzy set LARGE. A color component pixel is

considered to be a noisy pixel if its basic gradient value is

similar to related gradient values 3 and 4 and differ from

related gradient values 1 and 2 (Fig. 2).

Fuzzy Rule 1. Defining fuzzy gradient value rbF
c into the

fuzzy-set LARGE: IF (rc
b is LARGE AND rb

cR1
is SMALL

AND rb
cR2

is SMALL AND rb
cR3

is LARGE AND rb
cR4

is

LARGE) THEN the fuzzy gradient value rbF
c is LARGE.

Here, the logic operation: (A AND B) = A � B.
Fuzzy Rule 2 defines the noisy factor, rb, determined

using the fuzzy gradient values obtained from Fuzzy Rule 1

and computed for each direction, c.

Fuzzy Rule 2. Defining fuzzy gradient value: IF MAX

(rN
b is LARGE, MAX (rS

b is LARGE, MAX (rE
b is

LARGE, MAX (rW
b is LARGE, MAX (rSW

b is LARGE,

MAX (rNE
b is LARGE, MAX (rNW

b is LARGE, rSE
b is

LARGE))))))) THEN The noisy factor rb is LARGE.

Here, the logic operation MAX (A, B) is employed.

The noisy factor, rb, is computed from information

found in the eight directions and is employed as a measure

to distinguish between a noisy and a noise-free pixel. To

determine the level of noise present in the processed

sample in the fuzzy set LARGE, this factor is the

maximum fuzzy weighted value and indicates if the central

pixel is corrupted. In Sect. 4.1 we present the experimental

justification for the threshold, Th1 in rb C Th1, which was

chosen according to the optimal PSNR and MAE criteria.

In the filtering procedure, the fuzzy gradient values of

the corrupted pixels are used as weights. The weights are

proportional to the noisy pixel value. If a pixel is corrupted

(rb C Th1), the fuzzy weights in the fuzzy set NO LARGE

(no noise) are used in the standard negator function (qc
b = 1 - qc,LARGE

b ). First, the fuzzy weights are calculated

in the order of the magnitude of the pixel values for each

color component including the central pixel ði; jÞ : fbc ¼
ffbSW; . . .; fbði;jÞ; . . .; f

b
NEg: The pixels are ranked in ascend-

ing order according to the weights, qc
b, of the fbc ¼

ffbSW; . . .; fbði;jÞ; . . .; f
b
NEg pixels. Pixels that have values that

are sufficiently outlined from the central pixel are removed.

Second, the fuzzy weight for the central component in the

fuzzy set NO LARGE is determined using: qbC ¼
M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rb

p
;M ¼ 3: Third, the ordered pixels, qc(l)

b , are

revised as candidates to change the corrupted central pixel

by incrementally decreasing l from 9 to 1; decreasing l is

valid if
Pl

q¼9 q
b
q � qb0 ; q

b
0 ¼

P
c q

b
cðlÞ þM

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rb

p� �
=2;

M ¼ 3: The pixels qc(l)
b are revised for l ¼ 9; 8; . . .; 3; until

the condition
P

q=9
l qq

b C ql B 2
b is satisfied. In this case, the

l-th ordered value is the output Ec
b(l) = Eb (i, j)1.

3.2 Second processing step: inter-channel detection

and filtering

3.2.1 Impulse noise detection

In this step, the noise detection is based mainly on the

correlations between the R, G and B image (frame) com-

ponents. Therefore, the fuzzy membership degree will be

assigned for each color channel separately. Noisy pixels are

detected by determining local differences of the R com-

ponent with respect to the G and B components. Correla-

tions between color components occur if a minimum

number of the local differences coincide with neighbors.

Similarity degrees between the other color components

with respect to the values of its neighbors, qG and qB, are
included. The algorithm is applied independently in each

color component where the fuzzy membership degree is

assigned into the fuzzy set noise-free. The detection pro-

cedure checks two different relationships between the

central color component and its neighboring color com-

ponents: (1) if each color component value is similar to its

neighbors in the same color band; and (2) if the magnitude

differences for each color channel correspond to the mag-

nitude differences of the other color channels. The pixel in
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the image color at the position (i, j) is a vector Ei,j, with

components R, G and B. Each pixel is defined as fi ¼
ðfRi ; f

G
i ; f

B
i Þ; the central pixel is represented by f0 ¼

ðfRC; f
G
C ; f

B
CÞ: In a sliding 3 9 3 window, the neighboring

pixels of the central pixel, fC; are f1; f2; . . .; f8:
The absolute magnitude differences between the central

pixel, fC; and the color neighbors are computed as follows

[13]:

DfRc ¼ jfRC � fRc j; DfGc ¼ jfGC � fGc j; DfBc ¼ jfBC � fBc j:
ð13Þ

where c ¼ 1; . . .; 8 and DfRc ;Df
G
c and DfBc represent the

differences for the R, G, and B components, respectively.

The membership degree in the SMALL fuzzy set is

defined according to the desired behavior, i.e., a relatively

small difference is characterized by a large membership

degree. Let employ the same Gaussian membership func-

tion (12). The values of the parameters 52inter ¼ 9 and

r2inter
2 = 750 used in membership function (12) at this

filtering stage have been chosen experimentally from

numerous simulations according to optimal values of

PSNR and MAE criteria (see Sect. 4.1).

Found membership degrees, qðDfRc Þ; qðDf
G
c Þ; qðDf

B
c Þ in

the fuzzy set SMALL are used to decide if fRC; f
G
C and fBC are

similar to their neighbors. Below, only the red component

is explained. Similar procedures are used for the G and B

channels. To ensure that the most relevant differences are

taken into account, the qðDfRk Þ are ranked in descending

order. By applying Eq. (12) the similarities between fRC and

the closest neighbors are:

qRc ¼
YQ
j¼1

qðDfRðjÞÞ: ð14Þ

Next, the similarity measures between pixels in the chosen

color channel and the corresponding pixels from the other

two color channels are calculated, i.e., jqðDfRc Þ � qðDfGc Þj
and jqðDfRc Þ � qðDfBc Þj: To obtain this, the membership

degree of the next fuzzy set is computed using the

experimentally determined parameter values r2,b1b2 =

0.01 and rb1b2
2 = 0.0021 found experimentally:

qRGc ¼ q1ðjqðDfRc Þ � qðDfGc ÞjÞ;
qRBc ¼ q1ðjqðDfRc Þ � qðDfBc ÞjÞ:

ð15Þ

The membership degrees qc
RG and qc

RB, indicate if the

local difference between the center pixel and the pixel in

position c in the R component is similar to the local

differences in the G and B components. The computed qc
RG

and qc
RB are ranked in descending order, and the similarity

measure is calculated as follows:

qRG ¼
YQ
j¼1

qRGðjÞ ; qRB ¼
YQ
j¼1

qRBðjÞ : ð16Þ

The following fuzzy rule defines the condition when the

R component is noise-free.

Fuzzy Rule 3 Defining fuzzy gradient NffRC for the red

component fRC in the fuzzy set noise-free: IF (qR is LARGE

AND qRG is LARGE AND qG is LARGE) OR (qR is LARGE

AND qRB is LARGE AND qB is LARGE) THEN the noise-

free degree of fRC is LARGE. Conjunction (A AND

B) = A � B and disjunction (A OR B) = A ? B - A � B
operations determine the membership degree in noise-free

fuzzy set and its weight as follows:

WðfRa;freeÞ ¼ qRqRGqG þ qRqRBqB � qRqRGqGqRqRBqB;

WðfBa;freeÞ ¼ qBqBRqR þ qBqBGqG � qBqBRqRqBqBGqG;

WðfGa;freeÞ ¼ qGqGRqR þ qGqGBqB � qGqGRqRqGqGBqB:

ð17Þ

3.2.2 Impulse noise suppression

The next step in the impulse noise suppression process is to

find the fuzzy weights that will be used during the filtering

in a sliding window (Fig. 1). The weights, WðfRa;freeÞ; for
the noise-free pixels are used, and the weights, WðfRa Þ; for
the other pixels, fRa ; should be computed according to

Fuzzy Rules 4 and 5 if the central pixel is noisy (case of R

component). Similar fuzzy rules are applied to the G and B

components. The membership function level in fuzzy set

SMALL (noise) for any noisy pixel fa is defined using the

negator operator as: NðfRa Þ ¼ 1�WðfRa;freeÞ:

Fuzzy Rule 4 Defining the weight WfRC for the red

component fR0 : IF NfFR
C
is LARGE THEN WfRC:

Fuzzy Rule 5 Defining the weight WfRc for the neighbor

of the red component fRc : IF (NffRC is not LARGE AND

NffRc is LARGE AND qðDfGc Þ is LARGE AND NffGc is

LARGE) OR ðNffRC is not LARGE AND NffRc is LARGE

AND qðDfBc Þ is LARGE AND NffBc is LARGE) THEN WfRc
is

LARGE.

3.3 Third processing step: spatio-temporal denoising

In the spatial-temporal stage, the value of the threshold,

Th2, for the fuzzy noisy factor, rb, is adjusted to avoid

smoothing in the fine image details. The value rb = 0.5

was chosen according to the best PSNR and MAE criteria

values (Sect. 4.1). A procedure similar to the first
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processing step (Fig. 1) is employed: IF rb C Th2, then the

denoising procedure using fuzzy membership degrees

obtained for the fuzzy set LARGE is realized; else, the filter

output is E
b
out ¼ E

b
C.

The remaining noisy pixels are now processed using

temporal data gathered from two neighboring frames. In

areas with no movement, the corresponding pixels from the

previous frame can help detect the remaining corrupt pix-

els. The current Et,b(i, j) and previous Et-1,b(i, j) frames of

a video sequence are located inside a 5 9 5 9 2 sliding

window. Analogous to the first processing step explained

for the R component, the two neighboring frames are

analyzed concurrently to find noise-free pixels in the cur-

rent frame (t). The differences between the (t) and (t - 1)

frames are calculated as follows:

dEb
ðk;lÞ ¼ jEt;bðiþ k; jþ lÞ � Et�1;bðiþ k; jþ lÞj; ð18Þ

where dE(k,l)
b denotes the frame difference, and

ðk; lÞ 2 f�2;�1; 0; 1; 2g:
The frame difference, dE(k,l)

b , is used to obtain the cur-

rent error frame (t). The absolute difference gradient val-

ues, Db
c ; for a central pixel with respect to its neighbors in a

5 9 5 9 1 window are calculated and processed as was

performed in (Sect. 3.1). The absolute difference for the SE

(basic) direction is given by Db
SEðbasicÞ

¼ jdEb
ð0;0Þ � dEb

ð1;1Þj: A
similar procedure is repeated for all basic and related

gradient values in any direction.

The Gaussian membership functions presented in Eqs.

(11) and (12) are employed using parameters that have

been adjusted for the difference frame, dEb
ðk;lÞ, according

to the optimal values of the PSNR and MAE criteria

(Sect. 4.1). The fuzzy rules in this final stage use the

absolute differences of the neighboring frames to dis-

tinguish among a noisy pixel, local movement, and a

noise-free pixel in this 5 9 5 9 1 sliding window.

Fuzzy Rule 6 Determines the first fuzzy gradient differ-

ence ðrbF
c ÞI and repeats the Fuzzy Rule 1 in this case only for

gradient values: rc
b, rb

cR1
, rb

cR2
, rb

cR3
, and rb

cR4
found

using Eq. (18). This rule defines the confidence movement

noise for fuzzy gradient differences in a given direction, c.

Fuzzy Rule 7 Determines the fuzzy gradient difference

ðrbF
c ÞII : IF (rc

b is SMALL AND rb
cR1

SMALL AND rb
cR2

is SMALL) THEN rbF
c is SMALL, defining the confidence

no movement-no noise, using the fuzzy gradient differences

in direction c, distinguishing among the homogeneous and

non-homogeneous regions.

Fuzzy Rule 8 computes fuzzy noisy rb and repeats the

operations of Fuzzy Rule 2, changing ðrbF
c Þ by ðrbF

c ÞI:

Finally, Fuzzy Rule 9 defines the confidence to event no

movement, introducing the factor gb:

Fuzzy Rule 9 IF MAX (ðrbF
N ÞII is SMALL,

MAX(ðrbF
S ÞII is SMALL, MAX (ðrbF

E ÞII is SMALL,

MAX (ðrbF
W ÞII is SMALL, MAX (ðrbF

SWÞII is

SMALL, MAX (ðrbF
NEÞII is SMALL, MAX (ðrbF

NWÞII is

SMALL, ðrbF
SE ÞIIis SMALL))))))), THEN gb is SMALL.

According to fuzzy rules 6–9 for the case when

rb C 0.5, when a pixel is considered to be noisy, the de-

noising procedure is to apply a procedure similar to that

described after Fuzzy Rule 2 in Sect. 3.1 with parameters:

qbC ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rb

p
þ gb;M ¼ 5; qbc ¼ 1� ðrtb

c ÞI þ ðrtb
c ÞII

and qb0 ¼
P

c q
b
cðjÞ þM

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rb

p
þ gb

� �
=2;M ¼ 5 for each

current frame using the calculated fuzzy weights for the R,

G and B color components (Fig. 1).

4 Simulation results and performance evaluation

4.1 Parameter selection

First, the thresholds, Th1 and Th2, (Fig. 1) and the param-

eters that are used in the membership functions given in

Eqs. (11) and (12) are determined. The optimal parameters

were obtained, for which the PSNR is largest and the MAE

is smallest, by investigating video frames from Salesman,

Flowers, Stefan and Miss America that were corrupted in

each of the color channels with random impulse noise. The

intensity of the impulse noise ranged from 0 to 30 %.

According to the computed performance, i.e., the PSNR and

the MAE, of the proposed framework, we found the optimal

values of the threshold parameters, Th1 and Th2, used in the

proposed algorithm (Fig. 1). According to the PSNR and

MAE measures for all four analyzed color video sequences,

which are given in Tables 1 and 2, the optimal threshold

values are Th1 = 0.3 and Th2 = 0.5.

Similar simulations were performed to obtain the values of

the parameters r1, r2 and r2 of the membership functions

given in Eqs. (11) and (12); the following values were adop-

ted: r1 = 60, r2 = 9 and r2 = 1000 (Tables 3, 4). We

investigated how to change the values of these parameters at

the temporal stage of filtering and found the following:

r1 = 0.1, r2 = 0.01 and r2 = 0.1. Other values of the

parameters: r2inter = 9, rinter
2 = 750, and r2,b1b2 = 0.01, -

rb1b2
2 = 0.0021, and that we applied in the membership

function Eq. (12), and parameter Q = 2 in Eqs. (14) and (16)

were chosen according to optimal values of the PSNR and the

MAE measures (Tables 5, 6). We have standardized all of

these parameters to be constants so that a real-time imple-

mentation of the proposed technique on aDSPwill be simpler.
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4.2 Performance analysis of promising filters

The video color sequences Miss America and Salesman in

176 9 144 QCIF format and video color sequences

Flowers and Stefan in 352 9 288 CIF format (Fig. 3) were

used to evaluate 3D fuzzy algorithms. The frames of the

color video sequences were contaminated artificially by

random impulsive noise of different intensities (0–30 %) in

each color channel independently. Several methods have

been used to process the color video sequences.

Table 1 The PSNR (dB) for the threshold parameters Th1 and Th2

Flowers 10 % Miss America 10 % Flowers 20 % Miss America 20 %

Th1/Th2 0.4 0.5 0.6 Th1/Th2 0.4 0.5 0.6 Th1/Th2 0.4 0.5 0.6 Th1/Th2 0.4 0.5 0.6

0.2 29.87 30.07 30.01 0.2 35.89 36.45 36.16 0.2 27.12 27.19 27.16 0.2 32.07 32.65 32.21

0.3 30.03 30.19 30.10 0.3 36.14 36.92 36.67 0.3 27.24 27.34 27.29 0.3 32.10 32.74 32.68

0.4 29.96 30.09 30.07 0.4 35.84 36.42 36.24 0.4 27.16 27.18 27.21 0.4 32.09 32.63 32.27

Table 2 The MAE for the threshold parameters Th1 and Th2

Stefan 10 % Salesman 10 % Stefan 20 % Salesman 20 %

Th1/Th2 0.4 0.5 0.6 Th1/Th2 0.4 0.5 0.6 Th1/Th2 0.4 0.5 0.6 Th1/Th2 0.4 0.5 0.6

0.2 0.186 0.179 0.192 0.2 0.545 0.529 0.564 0.2 0.215 0.196 0.231 0.2 0.729 0.718 0.731

0.3 0.172 0.168 0.183 0.3 0.529 0.505 0.552 0.3 0.204 0.188 0.217 0.3 0.712 0.702 0.726

0.4 0.184 0.174 0.197 0.4 0.538 0.536 0.558 0.4 0.210 0.191 0.229 0.4 0.717 0.714 0.737

Table 3 The PSNR (dB) for the r1 and r2 parameters in membership functions

Flowers 5 % Miss America 5 % Flowers 15 % Miss America 15 %

r1/r2 50 60 70 r1/r2 50 60 70 r1/r2 50 60 70 r1/r2 50 60 70

6 29.76 30.14 30.04 6 38.72 39.52 40.01 6 27.16 27.87 27.94 6 34.61 35.07 34.82

9 29.97 30.47 30.36 9 39.04 40.22 40.12 9 27.84 28.32 28.17 9 34.89 35.37 35.03

12 29.82 30.21 30.12 12 38.89 40.07 39.92 12 28.26 27.76 28.04 12 34.72 35.11 34.79

Table 4 The MAE for the r1 and r2 parameters in membership functions

Stefan 5 % Salesman 5 % Stefan 15 % Salesman 15 %

r1/r2 50 60 70 r1/r2 50 60 70 r1/r2 50 60 70 r1/r 2 50 60 70

6 0.174 0.168 0.185 6 0.172 0.162 0.181 6 0.204 0.197 0.216 6 0.589 0.577 0.596

9 0.168 0.158 0.176 9 0.163 0.156 0.162 9 0.192 0.181 0.201 9 0.562 0.552 0.582

12 0.179 0.166 0.192 12 0.177 0.167 0.183 12 0.209 0.199 0.217 12 0.591 0.573 0.597

Table 5 The PSNR (dB) for the r2inter and rinter
2 parameters in membership functions

Flowers 0 % Miss America 0 % Flowers 20 % Miss America 20 %

r2inter/

rinter
2

700 750 800 r2inter/

rinter
2

700 750 800 r2inter/

rinter
2

700 750 800 r2inter/

rinter
2

700 750 800

6 30.82 30.86 30.93 6 49.27 49.85 49.69 6 26.46 26.99 26.82 6 31.87 32.58 32.06

9 31.07 31.13 31.09 9 49.92 50.14 50.06 9 27.01 27.34 27.16 9 32.19 32.74 32.39

12 30.90 30.96 31.04 12 49.39 49.72 49.57 12 26.59 27.07 26.94 12 32.01 32.66 32.12

320 J Real-Time Image Proc (2015) 10:313–328

123



During the first stage of processing in the proposed

framework (Fig. 1), the edges and fine details were selec-

ted using fuzzy techniques. To preserve the image features

during the filtering stage, an algorithm must be able to

accurately detect the edges and fine features. The images

shown in Fig. 4 were taken before the processing proce-

dure of the first stage of the algorithm for color sequences

Flowers (40th frame) and Miss America (57th frame). The

results obtained using the FRINR_seq filter [24] and the

proposed technique, FMINS, show the detection ability of

these algorithms. Ideally, no details should be present in

the image because every image detail (edge, sharpness,

etc.) has to be detected. Nevertheless, a few details and

edges are detected as noisy pixels and are observed in the

images (Fig. 4). At the first step of spatial filtering, the

proposed framework preserves better edges and fine fea-

tures than the FRINR_seq filter.

Each row corresponds to a different intensity of noise

(first row, 0 %; second row, 10 %). Independent of the

amount of noise in a frame, the edges are detected well

when the FMINS filter is employed.

To demonstrate that the proposed filter takes advantage

of temporal information, we compare the proposed filter to

the 2D impulse noise reduction methods for color images.

As was shown in recently published articles [24, 31], the

INRC [13] and 2D FD [10, 35] filters outperform all other

state-of-the-art 2D techniques. Therefore, by comparing

simulation results obtained using the FRINR_seq, 3D FD

and FMINS 3D filtering techniques, we can illustrate the

comparative performance of the FMINS 3D framework.

Table 7 presents the PSNR, MAE, NCD and SSIM metrics

averaged per 100 frames for the FMINS 3D framework,

FRINR_seq [24] and 3D FD [31]. For the Miss America,

Salesman, Flowers, and Stefan color video sequences, the

FMINS 3D outperforms the other methods. Because the

textures and chromaticity properties of these sequences

differ, this result shows the robustness of our novel filter.

According to all four objective criteria, the best perfor-

mance is realized by the proposed algorithm over a wide

range of noise intensities. When the noise intensity is

30 %, there are cases when the objective performance

of the FRINR_seq filter is slightly better than the pro-

posed technique. This can be explained by the temporal

processing of the two methods. The proposed filtering

framework employs only two neighboring frames in the

temporal process; the FRINR_seq filter processes three

Table 6 The MAE for the r2,b1b2 and r2b1;b2 parameters in membership functions

Stefan 0 % Salesman 0 % Stefan 20 % Salesman 20 %

r2,b1,b2/

r2b1;b2

0.0017 0.0021 0.0024 r2,b1,b2/

r2b1;b2

0.0017 0.0021 0.0024 r2,b1,b2/

r2b1;b2

0.0017 0.0021 0.0024 r2,b1,b2/

r2b1;b2

0.0017 0.0021 0.0024

0.008 0.161 0.155 0.158 0.008 0.089 0.086 0.092 0.008 0.192 0.193 0.194 0.008 0.712 0.706 0.714

0.01 0.156 0.152 0.155 0.01 0.086 0.083 0.089 0.01 0.190 0.188 0.192 0.01 0.709 0.702 0.711

0.012 0.159 0.157 0.161 0.012 0.088 0.085 0.093 0.012 0.194 0.193 0.193 0.012 0.710 0.707 0.713

Fig. 3 Original frames of the

color video sequences: Flowers

(40th), Stefan (50th), Salesman

(59th), and Miss America (57th)

J Real-Time Image Proc (2015) 10:313–328 321

123



neighboring frames. The performance of all three methods

vary from frame to frame when applied to the video

sequences Miss America, Salesman, Flowers, and Stefan

with random impulse noise levels ranging from 0 to 30 %

in each color channel. The PSNR and MAE from each

experiment on different frames are presented in Figs. 5

and 6, respectively. The designed approach outperforms

the other methods. The novel performance measure SSIM

captures human perception better than the traditional

PSNR, MAE and NCD. It is well known that objective

metrics do not always correspond to human perception.

Figures 7, 8, 9 and 10 show the filtered frames and the

corresponding error images obtained by applying the three

methods to the 40th frame (zoomed part) of Flowers, the

57th frame of Miss America(zoomed part), the 50th frame

of Stefan and the 59th frame of Salesman, respectively.

The proposed framework leaves less edges, fine details

(e.g., the letters and lines in the Stefan frame) and noises in

error images than the other filters.

The proposed fuzzy filter combines sufficiently good

detail preservation with good noise removal and appears to

outperform other filters over a wide range of noise inten-

sities. Note that the novel filter employs only two neigh-

boring frames, in contrast to the FRINR_seq which uses

three frames. In fast moving regions, this can be a benefit

during spatio-temporal processing.

4.3 Some remarks on the computational efficiency

of the proposed algorithm

The proposed filtering framework outperforms other state-

of-the-art filters for video sequences that has been

corrupted by random impulse noise. The development of

the framework focused on the results of filtering and not on

the complexity of the proposal. To better quantify the

complexity, we compare our method to previously

designed techniques that have been implemented on a DSP

and in MATLAB. Some promising algorithms have been

performed on a digital signal processor manufactured by

Texas Instruments. This device is a fixed point processor

(EVM DM642) running at 720 MHz. The processing times

were measured for QCIF-sized frames of 176 9 144 pixels

in format 565 RGB (5 bits for R, 6 bits for G, and 5 bits for

B color channels) using images corrupted by random

impulsive noise (Table 8). Because the processing times of

the fuzzy algorithm vary according to the frame texture and

level of noise intensity, the computation times have been

averaged over 20 frames.

A recently proposed 3D-FD filter [31] runs at a speed of

approximately 7.5 s/frame for 176 9 144 images. This

filter computes the required membership functions and

other fuzzy parameters by applying operations that are

similar to the FMINS filter. In addition, the 3D-FD filter

calculates arccos functions to estimate the angles of color

pixels and combines them with gradient values in fuzzy

rules. The additional stage of the designed filter, during

which the inter-channel similarities are calculated, does

present a large computational expense. The execution

times of simulation experiments performed in MATLAB

using the FMINS filter applied to the Miss America and

Flowers color video sequences that were corrupted by

impulsive noise of 10 % intensity were 18 % and 15 %

less, respectively, than the execution times obtained when

the 3D-FD filter was used. This gives the approximate

Fig. 4 Comparison of edge and fine features detection for filters a FRINR_seq and b FMINS applied to Flowers (40th frame), and filters

c FRINR_seq and d FMINS applied to Miss America (57th frame)
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Table 7 The PSNR, MAE, NCD and SSIM measures averaged per 100 frames obtained from processing the Flowers, Miss America, Stefan and

Salesman color video sequences using the 3D FD, FRINR_seq, FMINS and classic (3D VMF, 3D GVDF) filters

% Noise 3D FD FRINR_Seq Proposed FMINS

Flowers Miss America Flowers Miss America Flowers Miss America

PSNR (dB) MAE PSNR (dB) MAE PSNR (dB) MAE PSNR (dB) MAE PSNR (dB) MAE PSNR (dB) MAE

0 30.46 1.68 48.22 0.037 30.99 1.47 49.62 0.022 31.13 1.26 50.14 0.012

5 29.41 2.13 39.36 0.381 30.26 1.95 39.75 0.369 30.47 1.82 40.22 0.349

10 28.46 2.72 35.99 0.752 29.97 2.25 36.52 0.716 30.19 2.11 36.92 0.693

15 27.52 3.41 34.49 1.191 28.16 3.32 35.26 1.024 28.32 3.03 35.37 1.014

20 26.84 4.16 32.10 1.826 27.21 3.84 32.65 1.610 27.34 3.64 32.74 1.602

25 26.03 5.01 30.20 1.853 26.88 4.08 30.75 1.774 26.92 4.04 30.76 1.767

30 25.02 6.10 28.15 3.594 25.35 6.07 28.96 3.339 25.35 6.06 28.93 3.347

% Noise NCD SSIM NCD SSIM NCD SSIM NCD SSIM NCD SSIM NCD SSIM

0 0.004 0.8816 0.000 0.9891 0.003 0.8823 0.000 0.98916 0.002 0.8833 0.000 0.98920

5 0.005 0.8473 0.002 0.98213 0.005 0.8495 0.001 0.98220 0.003 0.8509 0.000 0.98238

10 0.006 0.8157 0.003 0.97650 0.005 0.8182 0.003 0.97656 0.005 0.8203 0.001 0.97658

15 0.008 0.7867 0.006 0.96988 0.007 0.7885 0.005 0.96990 0.007 0.7902 0.003 0.96992

20 0.009 0.7562 0.009 0.96139 0.007 0.7574 0.007 0.96139 0.007 0.7583 0.005 0.96145

25 0.011 0.7274 0.010 0.95418 0.010 0.7287 0.008 0.95420 0.009 0.7347 0.007 0.95435

30 0.014 0.6926 0.017 0.94800 0.012 0.6989 0.012 0.94800 0.012 0.7002 0.014 0.94803

% Noise 3D FD FRINR_Seq Proposed FMINS

Stefan Salesman Stefan Salesman Stefan Salesman

PSNR (dB) MAE PSNR (dB) MAE PSNR (dB) MAE PSNR (dB) MAE PSNR (dB) MAE PSNR (dB) MAE

0 45.23 0.175 47.69 0.106 45.87 0.160 47.71 0.094 46.33 0.152 47.94 0.083

5 41.36 0.184 42.46 0.177 42.11 0.165 42.92 0.168 43.11 0.158 43.67 0.156

10 37.69 0.197 38.19 0.517 38.58 0.174 39.64 0.513 38.82 0.168 40.27 0.505

15 34.51 0.216 37.62 0.587 35.11 0.189 38.12 0.564 35.62 0.181 38.65 0.552

20 32.01 0.221 36.37 0.738 32.94 0.199 36.73 0.712 33.11 0.188 37.12 0.702

25 31.18 0.248 35.05 0.829 32.02 0.215 35.54 0.806 32.19 0.206 35.72 0.800

30 28.24 0.256 34.12 1.184 29.33 0.224 34.83 0.976 29.07 0.224 34.65 1.002

% Noise NCD SSIM NCD SSIM NCD SSIM NCD SSIM NCD SSIM NCD SSIM

0 0.009 0.9856 0.003 0.9623 0.007 0.9938 0.002 0.9622 0.004 0.9942 0.000 0.9630

5 0.010 0.9597 0.006 0.9311 0.009 0.9731 0.004 0.9304 0.005 0.9793 0.002 0.9425

10 0.013 09413 0.009 0.9098 0.011 0.9519 0.007 0.9145 0.008 0.9576 0.003 0.9207

15 0.015 0.9362 0.011 0.8947 0.012 0.9300 0.007 0.9091 0.009 0.9394 0.005 0.9099

20 0.019 0.9130 0.012 0.8721 0.012 0.9069 0.009 0.8741 0.010 0.9150 0.008 0.8784

25 0.023 0.8822 0.014 0.8548 0.013 0.8611 0.012 0.8551 0.012 0.8883 0.011 0.8623

30 0.027 0.8337 0.018 0.8313 0.014 0.8647 0.014 0.8428 0.015 0.8492 0.017 0.8366

% Noise 3D VMF 3D GVDF

Flowers Miss America Flowers Miss America

PSNR (dB) MAE PSNR (dB) MAE PSNR (dB) MAE PSNR (dB) MAE

0 26.92 6.470 35.034 2.500 25.58 7.35 33.49 2.99

5 26.79 6.639 34.858 2.547 25.55 7.44 33.76 2.91

10 26.49 6.888 34.585 2.614 25.47 7.55 33.79 2.87

15 26.21 7.140 34.187 2.707 25.26 7.72 33.70 2.89
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processing times for the novel filter in a DSP implemen-

tation. Information about the speed of the FRINR_seq filter

can be found in Table 3 of reference [24]. In general, the

fuzzy-based algorithms implemented on a DSP take much

more time than traditional algorithms which use less

complex mathematical operations. Because the detection

and filtering of each pixel is independent of the results

obtained for other pixels in a frame, the computation time

of the proposed filter can be reduced by performing the

detection and filtering stages in parallel.

5 Conclusions

The proposed 3D filtering framework is based on fuzzy set

logic in combination with the basic gradient values, four

related gradient values in different directions, inter-channel

correlations and previous and current temporal frames. We

have demonstrated that this novel filter has better pro-

cessing performance than the best fuzzy and non-fuzzy

filters. In color video sequences, the proposed method

successfully suppressed impulsive noise with a wide range

Table 7 continued

% Noise 3D VMF 3D GVDF

Flowers Miss America Flowers Miss America

PSNR (dB) MAE PSNR (dB) MAE PSNR (dB) MAE PSNR (dB) MAE

20 25.76 7.481 33.58 2.847 24.82 8.13 33.31 2.89

25 24.90 7.974 32.93 3.185 23.96 9.01 32.83 3.12

30 24.70 8.494 31.82 3.311 23.24 9.74 31.61 3.28

% Noise NCD SSIM NCD SSIM NCD SSIM NCD SSIM

0 0.014 0.7790 0.009 0.7185 0.016 0.7334 0.010 0.7148

5 0.015 0.7718 0.009 0.7103 0.016 0.7048 0.010 0.7097

10 0.015 0.7591 0.010 0.7094 0.017 0.6849 0.011 0.7057

15 0.016 0.7491 0.010 0.7016 0.017 0.6605 0.011 0.7008

20 0.016 0.7233 0.010 0.6840 0.018 0.6590 0.011 0.6947

25 0.017 0.6957 0.011 0.6789 0.018 0.6051 0.012 0.6934

30 0.018 0.6899 0.011 0.6773 0.020 0.5869 0.012 0.6887

% Noise 3D VMF 3D GVDF

Stefan Salesman Stefan Salesman

PSNR (dB) MAE PSNR (dB) MAE PSNR (dB) MAE PSNR (dB) MAE

0 27.95 5.322 41.65 2.726 26.81 6.248 39.99 3.215

5 27.72 3.986 37.25 3.242 26.16 6.439 36.83 3.873

10 26.65 6.421 36.01 3.412 25.38 6.516 35.36 4.373

15 26.40 6.747 35.23 3.693 24.89 6.728 34.29 4.912

20 26.18 7.232 34.47 3.821 24.19 6.862 33.21 5.384

25 25.81 7.790 33.32 4.045 23.58 6.977 32.46 5.945

30 25.68 8.145 31.97 4.264 23.15 7.058 31.24 6.012

% Noise NCD SSIM NCD SSIM NCD SSIM NCD SSIM

0 0.017 0.6090 0.015 0.7403 0.019 0.5786 0.017 0.8033

5 0.017 0.5929 0.015 0.7131 0.020 0.5633 0.017 0.7773

10 0.018 0.5816 0.016 0.6945 0.020 0.5526 0.018 0.7595

15 0.019 0.5784 0.016 0.6813 0.021 0.5496 0.018 0.7469

20 0.019 0.5641 0.019 0.6616 0.021 0.5360 0.019 0.7280

25 0.020 0.5451 0.019 0.6467 0.022 0.5179 0.020 0.7135

30 0.021 0.5137 0.021 0.6259 0.023 0.5094 0.022 0.6939

Bold values indicate the best results for each noise level
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Fig. 5 The PSNR for the different methods applied to a Salesman (pn = 5%) and b Flowers (pn = 20%)

Fig. 6 The MAE for the different methods applied to a Stefan (pn = 15 %) and b Miss America (pn = 10 %)

Fig. 7 Filtered 40th frame of Flowers (first row) and the respective error images (second row) for the case of 10 % intensity noise obtained using

the a 3D FD, b FRINR_seq and c proposed FMINS filters. To distinguish the details, each error pixel is amplified 3 times
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of noise intensities and preserved edges and fine features.

Based on results for the PSNR, MAE, NCD and SSIM

criteria and a visual analysis of the filtered video sequen-

ces, the novel approach was extremely efficient at repro-

ducing the chromatic characteristics of images. In addition,

some techniques were implemented on a DSP platform and

an analysis of the processing speeds of several promising

3D algorithms and computation times were presented in

this study. Future work should be done on the improvement

of the current method incorporating more information for

better distinguishing between noisy pixels and image fine

features adding other fuzzy rules. Additional efforts will be

Fig. 8 Filtered 57th frame of Miss America (first row) and the respective error images (second row) for the case of 10 % intensity noise obtained

using the a 3D FD, b FRINR_seq and c proposed FMINS filters. To distinguish the details, each error pixel is amplified 5 times

Fig. 9 Filtered 50th frame of Stefan (first row) and the respective error images (second row) for the case of 15 % intensity noise obtained using

the a 3D FD, b FRINR_seq and c proposed FMINS filters. To distinguish the details, each error pixel is amplified 3 times
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done in increasing the algorithm speed by performing the

processing for several pixels in parallel.
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