
ORIGINAL RESEARCH PAPER

Real-time extraction of surface patches with associated
uncertainties by means of Kinect cameras

Søren Maagaard Olesen • Simon Lyder •

Dirk Kraft • Norbert Krüger • Jeppe Barsøe Jessen

Received: 15 November 2011 / Accepted: 14 June 2012 / Published online: 6 July 2012

� Springer-Verlag 2012

Abstract In this paper, we present our work on GPU-

based real-time extraction of surface patches by means of

Kinect cameras. This paper makes four contributions: (1)

we derive an uncertainty model for pixel-wise depth

reconstruction on Kinect cameras; (2) we implement a real-

time algorithm for surface patch (here called ‘texlet’)

extraction based on Kinect depth data on a GPU. For that

we compare and evaluate different implementation alter-

natives. (3) Based on (1) we derive and implement an

appropriate uncertainty model for texlets which is also

computed in real-time. (4) We investigate and quantify the

effect of interferences on the depth extraction process when

using multiple Kinect cameras. By these contributions we

present insights into the processing of depth and how to

achieve higher precision reconstructions by means of

Kinect cameras as well as extend their use for higher level

visual processing. The introduced algorithms are available

in the C?? vision library CoViS.

Keyword Surface patch � Kinect � Stereo �
Reconstruction � Uncertainty

1 Introduction

The Microsoft Kinect1 sensor is an RGB-D sensor which

provides RGB and depth information (see Fig. 1). It is

developed by the Israeli company PrimeSense and was

originally intended to be used with the Microsoft Xbox 360

gaming console. However, very soon after the launch of the

Kinect in November 2010 it became possible to gain access

to the Kinect functionality from a PC.2 The possibility of

using the Kinect with normal PCs made the Computer

Vision community highly interested because of its

impressive performance on depth extraction and relatively

low cost. Since the Kinect actively emits texture in the

infrared domain (see Fig. 1b, c), matching is possible on

homogeneous surfaces. This solves a major pitfall of

classical stereo vision approaches, and allows a more

complete 3D representation of the scene.

Meanwhile, a large amount of work has been done uti-

lizing the Kinect camera to its full extent, e.g., both PCL3

(see [25]) and ROS4 (see [23]), two major contributors in

the 3D Computer Vision and Robotics community, do

support the Kinect device. Recent application areas of the

Kinect include range flow estimation [5], human detection

using contours and 3D surface models [29], 3D object

detection [26], 3D modeling of indoor environments [7]

and dense surface mapping and tracking of scenes [19].

Recently, a significant number of papers have addressed

the calibration of Kinect cameras and their use for the

processing of depth descriptors. ROS and [16] contributed

general knowledge about Kinect cameras as well as cali-

bration procedures required. Calibration and the geometric

properties of depth measurements by the Kinect are also

investigated in [11, 28] (for a list of general parameters

derived from the Kinect calibration process see, e.g., [28]).

In [2], a Kinect calibration scheme is proposed which uses

a checkerboard with special materials that either reflects or

S. M. Olesen � S. Lyder � D. Kraft � N. Krüger �
J. B. Jessen (&)

The Mærsk Mc-Kinney Møller Institute, University of Southern

Denmark, Odense, Denmark

e-mail: jeje@mmmi.sdu.dk

1 See http://www.xbox.com/kinect.
2 See e.g., the LibFreenect driver http://openkinect.org.
3 Point Cloud Library, http://pointclouds.org.
4 Robot Operating System, http://www.ros.org.

123

J Real-Time Image Proc (2015) 10:105–118

DOI 10.1007/s11554-012-0261-x

http://www.xbox.com/kinect
http://openkinect.org
http://pointclouds.org
http://www.ros.org


deflects the infrared light, to make the pattern visible in

both the depth and RGB image. By that a normal stereo

calibration can be done using a binary version of the depth

image and the RGB image as left and right input. They also

systematically evaluate the degradation of the matching

and reconstruction under concurrent use of multiple

Kinects and show that blocking the infrared emitters,

enabling only one Kinect pattern at a single point in time

will actually degrade the results significantly. This indi-

cates that the Kinect depth processing relies on temporal

consistency in the IR image and are disturbed by the IR

patterns of the other Kinects depending on their relative

position. Calibration of time-of-flight (ToF) cameras and

sensor fusion systems have been studied extensively in,

e.g., [13, 27]. This is relevant here because many concepts

of the calibration can be transferred from sensors that

combine ToF and an RGB camera to Kinect cameras. Both

sensors can provide a dense depth image with the inherent

challenges of aligning that to a color image. Another

known problem of Kinect cameras is the problem of

dealing with depth discontinuities and surfaces with poor

reflectivity, which have also been addressed in studies of

ToF [24].

A primary goal of the Kinect is to be a low-cost device

for ‘natural interaction’ (according to PrimeSense) rather

than a precision tool in computer vision and robotics

research. OpenNI5 has been used to interface with the

Kinect sensor. However, the OpenNI driver handles the

modeling of the reconstruction process and the calibration

of the involved parameters in a suboptimal way. In order to

achieve more precise reconstructions, the pinhole model

used for back-projection in the OpenNI driver needs to be

extended and some imprecisions are identified and

corrected.

In this paper, we present a real-time algorithm for the

computation of local surface patches (in the following

called ’texlets’, see Fig. 2c, d) with Kinect cameras. A

texlet shares many properties with the patchlet feature,

presented in [18], and the surfel feature presented in [3]

and used in [7, 20].

In the context of deriving an uncertainty model for

texlets, we give both a qualitative and quantitative estimate

of the uncertainty distribution of point-wise depth recon-

struction with the Kinect camera. As a first contribution of

the paper, we provide a quantification of the uncertainty of

point reconstructions by deriving a polynomial approxi-

mation of the 3D point noise, and by means of Monte Carlo

simulation we can use this to compute texlet uncertainties.

A texlet is a local surface descriptor consisting of a 3D

center point P and a surface normal N, both with associated

uncertainties (see Fig. 2c). In addition, information about

size and appearance are associated. Texlets allow for a

semantically richer and more condensed representation at

smooth 3D surfaces than point clouds [21]. The texlet

descriptor is part of the Early Cognitive Vision (ECV)

system [22]. The ECV system is a hierarchical system

Fig. 1 a Kinect device without

cover (image from

http://www.ifixit.com/) and b
recording of projected IR pat-

tern. c Triangulation with the

Kinect: (1) the known IR pattern

is projected on the scene. (2)

The IR image is recorded. (3)

Matching of (1) and (2) is per-

formed to achieve (4) a disparity

value, which is transformed to a

depth value

5 See http://www.openni.org/.

106 J Real-Time Image Proc (2015) 10:105–118

123

http://www.ifixit.com/
http://www.openni.org/


consisting of visual descriptors of different abstraction

level (such as texlets, surflets and surfaces) and has been

used in particular in robotic applications (see, e.g., [21]).

Figure 3 shows a robot platform realizing an intelligent

work-cell with two arms which is also used for quantifi-

cations in this paper. The workspace is observed by three

pairs of Kinect and stereo cameras (see sub-figure on

bottom left in Fig. 3).

Texlets as described here can be extracted both from

Kinect cameras as well as stereo cameras. Since entities of

higher abstraction level in the ECV system are dependent

on the texlets, the derivation of an appropriate uncertainty

model of texlets as well as real-time capabilities are of

importance. Real-time processing is achieved by means of

a Graphics Processing Unit (GPU) which is now widely

used in computer vision.

We use GPUs to extract texlets in real-time from the 3D

information provided by the Kinect camera. Our approach

can be used also for any other 3D sensing device—such as

a standard stereo cameras—provided an appropriate noise

model exists. We compare three different methods to

compute the texlet position P and the associated surface

normal N. By this, we can indicate two methods with

similar reconstruction quality from which one is more

Fig. 2 a RGB scene image obtained by Kinect and b the corre-

sponding depth map (colored for visualization purposes) from the

OpenNI driver. c Texlet representation and parameterization. Red and

green lines indicate principal axes of position and orientation

uncertainty, respectively. d Example of extracted texlets, with details

of a flat surface (including uncertainty visualization) and curvature

Fig. 3 Robotic setup with multiple stereo and Kinect cameras

J Real-Time Image Proc (2015) 10:105–118 107

123



suitable to be transferred to a GPU due to its non-iterative

nature. As a second contribution, we achieve a processing

speed for texlet computation (including an associated

uncertainty based on the uncertainty model of point

reconstruction) of up to 30 Hz, thus utilizing the full frame

rate of the Kinect. As a reference, the same algorithm as

described here applied to 3D point clouds extracted from

stereo camera input (with approx. double resolution com-

pared to the Kinect camera) achieves a processing speed of

up to 10 Hz. Based on the pixel-wise uncertainty model

and the texlet extraction mechanism, we—as a third con-

tribution—derive an uncertainty model for texlets (also

computed in real-time) which is crucial for higher level

processes such as temporal accumulation (see [9]) and

optimal parameter estimation (see, e.g., [1]).

The fact that depth reconstruction by means of Kinect

cameras, is based on a projection of an infrared pattern,

results in interferences when multiple Kinect cameras are

used at the same time, since the projected patterns overlap.

This potentially reduces the matching quality, and as a

consequence also the reconstruction quality. In this con-

text, as a fourth contribution we quantify—in terms of

known geometric relations of a test object—the degrada-

tion of the quality of the texlet reconstruction on an

example scene when using one, two and three Kinect

cameras simultaneously. Thus, we are able to investigate

the effect of the interference of multiple Kinect cameras for

depth extraction.

The paper is structured as following: In Sect. 2, we

describe the geometry and reconstruction with Kinect

cameras including the indicated simplifications in the

available drivers and the way we correct these. In this

context, we also perform a modeling of the uncertainty of

point reconstruction. In Sect. 3, we describe our work on

texlet reconstruction and its associated uncertainty as well

as the real-time implementation on GPUs. In Sect. 4, we

then discuss and quantify the effect of the interference

when using multiple Kinect sensors for scene

reconstruction.

2 Reconstruction with Kinect cameras

Multiple drivers are available for using the Microsoft Ki-

nect. The first major initiative resulted in the unofficial

Open Source driver LibFreenect. PrimeSense later on

released their own driver and initiated a new Open Source

framework called OpenNI, which easily enables the func-

tionality of their RGB-D sensors including the one in the

Kinect. These drivers are still under constant development.

LibFreenect has the advantage of providing support for the

hardware not related to the PrimeSense chip (e.g., the

motors and LEDs of the Kinect), whereas OpenNI shows a

more complete interface to the features of the PrimeSense

chip. We prefer the latter to have easy access to both RGB

image, IR image and depth image, hence this is considered

to be the driver of choice. In the following section, we deal

with the reconstruction process realized in Kinect cameras

and in Sect. 2.2 we address the point-wise uncertainty

computation.

2.1 Reconstruction of 3D points

We first describe the 3D reconstruction process realized in

the OpenNI driver in the following section and then

describe our approach to correct inaccuracies in

Sect. 2.1.2.

2.1.1 Reconstruction of 3D points using the OpenNI driver

The Kinect consists of two sensors and one emitter in order

to provide color and depth information. Figure 1a shows

the different components. It possesses a standard RGB

camera, which is horizontally aligned to an IR camera with

a baseline of approximately 2.5 cm. It has an IR projector

which emits a pattern of speckles as shown in Fig. 1b. The

IR projector and IR camera have a baseline of approxi-

mately 7.5 cm.

Since the projected IR pattern is known to the Kinect,

this serves as a virtual second image. The recorded IR

image will contain a distorted version of the projected

image allowing for calculations of disparities between

the image pairs by means of matching. The exact process

of matching and the extraction of depth information

through triangulation (see Fig. 1c) is undisclosed and

protected by a PrimeSense patent. Reverse engineering

efforts have revealed some of the details though (see [16,

28]).

When using the OpenNI driver, the depth map (Fig. 2b)

can be acquired directly. The depth map is a per pixel map

containing a 16-bit depth value zdepth (with 11-bit resolu-

tion) at each pixel point (xpixel, ypixel) of the IR camera. If

coordinates are needed in 3D space and not as image

coordinates, they can be transformed by the driver to real-

world points relative to the IR camera coordinate system.

OpenNI uses a simplified pinhole model (assuming

undistorted images and that the principal point is at

the image center) when doing the conversion from

(xpixel, ypixel, zdepth) to (x, y, z) coordinates as described

in Eqs. (1–3).

x

y

z

0
@

1
A ¼

xnorm � tanðh
IR
FOV

2
Þ

ynorm � tanðv
IR
FOV

2
Þ

1

0
B@

1
CA � zdepth ð1Þ

108 J Real-Time Image Proc (2015) 10:105–118

123



Where:

xnorm ¼ 2� xpixel

rx

� 0:5

� �
ð2Þ

ynorm ¼ 2� 0:5� ypixel

ry

� �
ð3Þ

Here rx and ry are the resolution of the depth map in x and

y, respectively. hFOV
IR and vFOV

IR are the horizontal and ver-

tical field of views of the IR camera, which are stored in the

Kinect devices. hFOV
IR is displayed in Fig. 1c.

2.1.2 Improving reconstruction quality

Equation (1) assumes that the principal point of the IR

camera is in the center of the image. This simplification

leads to some inaccuracy in the reconstruction of real-

world points derived from the depth map.

The driver also provides the functionality to align the

depth map and the RGB image, a process called registration,

giving the ability to associate a color to each real-world

point. Registration is a well-known concept from the cali-

bration of, e.g., ToF cameras, and is studied in, e.g., [12].

When aligning the depth map obtained from the IR

camera with the RGB image using OpenNI, the depth map

coordinates (xpixel, ypixel, zdepth)T are first projected into the

RGB camera coordinate system. This is necessary since the

distance between the RGB camera and the IR sensor gives

slightly different views. The FOV value is used, as this can

be read from the sensor device. One error we encountered

arose when these new re-projected depth map coordinates

were back-projected into real-world points. Here, the field

of view of the IR camera hFOV
IR and vFOV

IR from Eq. (1)

should be replaced with the FOV of the RGB camera (hFOV
RGB

and vFOV
RGB).

The identified problems can be solved in several ways.

One method is to simply use the correct FOV when back-

projecting the aligned points, which however is still a

simplification.

When we are anyway calibrating the Kinect, the preci-

sion of reconstruction can be further increased by doing

individual monocular calibration of the RGB camera. The

depth data, once registered to the RGB camera, are in this

viewpoint, and the reconstruction must thus be done with

the RGB camera intrinsics. Having the calibration matrix

of the RGB camera, the vector representing the back-pro-

jection ray going from the focal point through the image

point (xpixel, ypixel), can be calculated (see, e.g., [6]). Since

the depth is known, the originating 3D point can be

reconstructed. Calibration of the RGB camera was done as

discussed in [28].

2.2 Uncertainty model for point reconstructions

with Kinect cameras

In the ECV system [21, 22] the texlets represent only the

initial state of a processing hierarchy. For the computation

of entities at higher levels, it is crucial to propagate the

uncertainty associated with the entities at lower levels of

the hierarchy to higher levels for spatial–temporal disam-

biguation (see [9]), as well as numerical optimization

purposes when estimating properties of higher level entities

(see [1]).

Since the details of the matching process as well as the

reconstruction process are not completely known, it is

difficult to derive an analytical model for the uncertainty of

depth reconstruction with Kinect cameras and we rely on a

Gaussian distribution model estimated experimentally for

our uncertainty computations. A series of experiments were

conducted to estimate the varying noise at all positions in

the depth image returned from a Kinect sensor. The Kinect

was pointed towards a flat wall and for a number of

specified distances and orientations 100 depth maps were

computed. From these depth recordings a standard devia-

tion (SD) was calculated for each pixel position. Figure 4

shows the SD images obtained at 0� at 2 different depths.

The SDs computed are for visual purposes normalized to

gray-scale values (with white as zero deviation and black

as the maximum deviation recorded) and printed for each

pixel position.

From the recordings it is clearly visible how the SD

increases with distance. Furthermore, it seems that there is

a radial dependency, where the noise increases with larger

distance from the center of the depth map. This is expected

since the reconstruction process is based on the very same

geometric relations as a normal stereo setup. It is, however,

also noticeable that straight vertical lines appear in the

images in Fig. 4a, b. These vertical artifacts are also

observable in the raw depth map. The depth map seems to

be divided into vertical slices. Between two such slices

there seems to be a static depth offset. Since the size and

appearance of these slices are temporally dependent they

also appear in the SD images, generating larger variations

in the transition areas. The vertical slices can also be seen

in Fig. 4c. Here, the Kinect is again pointed against a flat

wall and all valid points are fitted to a plane. The errors in

each point are then depicted with green representing points

in front of the plane and red representing points behind.

It has not been possible to determine a deterministic

behavior of these lines as they seem to show up at different,

seemingly random, places (see the difference in Fig. 4a, b)

and are temporally dependent. The static difference

between two slices, however, seems to be at the magnitude

J Real-Time Image Proc (2015) 10:105–118 109

123



of the discretization level. These lines are not accounted for

in the final uncertainty model for the Kinect since their

appearance is not predictable. For a further investigation in

the residual errors see [28], where a learning process is

utilized to learn tendencies, and correct some of the static

error present.

Since the reconstruction process on the Kinect cameras

is comparable to a standard stereo reconstruction (see

Sect. 2.1), an uncertainty model n = f(r, d) which models

the variance of Gaussian noise depending on the radial

distance r from the center and the depth d were chosen. We

made experiments for fitting the function f using different

polynomial degrees which shows that a second order

polynomial approximation is optimal.

Altogether six sets of recordings were made at different

depths, starting from around 70 cm and up to approx.

175 cm. It was not possible to include sets at larger dis-

tances, i.e., utilize the full range of the Kinect, since this

requires a very large planar surface. Each set includes

measurements where the Kinect were placed in seven dif-

ferent orientation configurations.

The first configuration is frontal parallel to the wall,

referred to as 0�. In another two configurations the Kinect

is tilted 15� relative to the wall, in either the horizontal or

vertical direction. The next two configurations are similar,

but the angle is increased to 30�. In the final two config-

urations the Kinect was tilted both horizontally and

vertically so the combined angle relative to the wall would

be either 15� or 30�. The polynomial fit of some of the data

sets sorted by orientation configurations (0�, 30� horizontal

and vertical and 30� diagonal) are shown in Fig. 5. Inter-

estingly, we see that the 3D reconstruction quality does not

significantly depend on the orientation of the wall, within

the tested orientations, indicating that the angle is not

required as a third parameter of the noise model. This

might be connected to the (unfortunately undisclosed)

matching function used in the Kinect camera, which pos-

sibly has an inbuilt invariance towards changes in the

infrared pattern caused by slanted surfaces in the scene.

Figure 6 shows the fitted uncertainty model based on all

orientation measurements. The parametrized model is as

follows:

f ðr; dÞ ¼ p00 þ p10 � r þ p01 � d þ p20 � r2 þ p11 � r � d

þ p02 � d2

ð4Þ

where

p00 ¼ 2:344; p10 ¼ �1:202e�2; p01 ¼ �2:734e�3;

p20 ¼ 1:818e�5; p11 ¼ 6:516e�6; p02 ¼ 1:233e�6:

Figure 7 shows the depth quantization as a function of

distance, which was measured by recording a number of

Kinect images of a frontal parallel wall. The smallest

Fig. 4 a and b Recorded image of SD. Black means higher. a Distance between camera and wall 1.5 m. b Distance between camera and wall

2.5 m. c Residuals of plane fitting against flat wall

Fig. 5 Polynomial fittings using data acquired with a 0� measurements, b 30� measurements in either horizontal or vertical direction,

c 30� diagonal (combined vertical and horizontal) measurements

110 J Real-Time Image Proc (2015) 10:105–118

123



change of depth value of a pixel at a given distance are

regarded as the quantization step. Comparing Figs. 6 and 7,

we conclude that a significant part of the measured noise

are in the vicinity of the discretization step.

3 Texlet extraction with Kinect cameras

The texlet feature consists of appearance and geometry

information and is extracted from a hexagonal grid of 2D

locations in the image (see [22]). The hexagonal grid is

chosen since it, contrary to a square grid, ensures a more

uniform distance to all neighboring texlets [17]. Appear-

ance is not of focus here and can be expressed in different

ways (e.g., by using a color histogram computed from the

RGB image or even simpler a mean color value, see e.g.,

[21]). The geometric information include the surface patch

parameters P and N, which is the 5D pose, represented here

by a point in 3D space, and a normal vector of the plane,

respectively. For each parameter we associate an uncer-

tainty estimate represented using covariance matrices

RP 2 R
3 � R

3 for the position and RN 2 R
2 � R

2 for the

angular equivalent representation of the orientation vector.

The texlet parameterization is shown in Fig. 2c.

To extract the texlet geometry from 3D point data, usually

total least squares methods are used (see e.g., [18]) to com-

pute the surface patch parameters. Such methods minimize

the orthogonal distance between the plane and every point

associated with the patch. This least square optimization is

often computed by SVD or other iterative algorithms.

Unfortunately, such iterative approaches do not map very

well to GPUs except for very large design matrices.6 Two

non-iterative methods—in the following called ‘normal

vector averaging’ [15] and ‘PCA’ [8]—are compared in the

following section, with an SVD approach as a reference. In

Sect. 3.2, we describe our GPU implementation.

3.1 Comparison of methods for least square fitting

of planes

The averaging method [15] is a very lightweight imple-

mentation. It uses a center point and the six surrounding

neighbors in the hexagonal grid. The normal vectors of the

six patches, created by two adjacent neighbor points and

the center point, are found and the average is calculated

and used as the orientation n.

n ¼ 1

n

Xn�1

i¼0

ðpi � pcÞ � ðpiþ1 � pcÞ ð5Þ

where pc is the center point, p0 to pn-1 are the neighboring

points in a counter clockwise direction around pc, with the

last point pn wrapping around and being equal to p0. This

vector combined with the center point constitutes the texlet

orientation N and position P (see Fig. 2c). Note that this

approach is only suitable for small neighborhood sizes.

The PCA method minimizes the variances of the points

instead of the orthogonal distance. All 3D points within a

certain neighborhood of the center point are used, and the

covariance matrix is calculated for those. Since the

covariance matrix is symmetric and positive semi-definite,

the eigenvalue decomposition gives real and non-negative

Eigenvalues. The Eigenvalue decomposition of a matrix A

can be written as

A ¼ VRVT ð6Þ

where R contains the Eigenvalues and V contains the

Eigenvectors of A. The covariance matrix represents the

Fig. 6 Uncertainty model using two second degree polynomials to fit

radius in pixels (x-axis) and distance in mm (y-axis). z-axis is the SD

of the uncertainty in mm. Sub-sampled original data are marked with

dots (red 0�, green 15� and blue 30�)

Fig. 7 Depth quantization as a function of distance

6 see e.g., CULA tools (http://culatools.com).

J Real-Time Image Proc (2015) 10:105–118 111

123

http://culatools.com


variance ellipsoid spanned by the points. The Eigenvectors

are the principal components of this ellipsoid and the

Eigenvalues represent the variances in these directions.

Assuming that the noise perpendicular to the true plane is

smaller than the in-plane variance (which should be

determined by the neighborhood size), the Eigenvector

corresponding to the smallest Eigenvalue is the normal

vector of the plane patch. The Eigenvalues of a matrix A

can be found by solving

detðA� rIÞ ¼ 0 ð7Þ

with r being the variable (Eigenvalues), and I being the

identity matrix. Since the points are in R
3; Eq. (7) can be

solved as a cubic function, and since A was symmetric and

positive semi-definite Eq. (7) gives 3 non-negative solu-

tions7 for r. This reduces the computation complexity. The

texlet orientation N is thus the Eigenvector corresponding

to the smallest Eigenvalue. During the covariance calcu-

lation the average of the neighborhood points are already

calculated. This is more suitable to be used as the texlet

position P than just the center point, as it represents the

point’s center of gravity.8 As the average is already cal-

culated, this choice does not impose extra computational

complexity on the algorithm.

An emulation of the two algorithms, with SVD as a

reference has been done in order to investigate the stability

of the calculated orientation N, when exposed to noise on

the input points. The mean and variance of the angular

difference between ground truth plane normal and esti-

mated plane normal over 100 runs for increasing added

noise can be seen in Fig. 8a, b.

It is clear that the non-iterative PCA method can com-

pete with regular SVD when calculating the normal vector.

The very lightweight normal vector averaging is too

influenced by even small amounts of noise to be used in our

context.

3.2 GPU implementation

In order to acquire the texlets in real-time, the CUDA

platform associated with NVIDIA graphics cards has been

utilized. The data independence of the computation of each

texlet fits very well to the SIMT (Single Instruction

Multiple Threads) architecture used in CUDA. The calcu-

lation is done in three steps as outlined below. Here, we

mention a few parameters that have an impact on the per-

formance (see also Table 1). First, the grid spacing between

texlets is relevant, since with smaller spaces more texlets are

computed. Each texlet is then calculated at the chosen

location using a surrounding neighborhood of image points.

The second parameter is thus a radius that defines the size of

the texlet neighborhood. This determines the number of

points used in the computation of each texlet. This is further

discussed after the description of the texlet extraction

process based on RGB-D data from the Kinect.

Fig. 8 Mean angle error and variance of unit normal vectors with varying noise

Table 1 Performance parameters of the GPU implementation when

varying grid spacing or neighborhood radius

Variable

parameter

Total time Texlets

created

Inliers

(%)

Texlet spacing

2 px 288.7 ms 3.5 Hz 3,8321 61.8

6 px 89.8 ms 11 Hz 9,814 61.7

8 px 33.1 ms 30 Hz 2,430 61.4

Neighborhood radius

4 px 68.1 ms 15 Hz 10,715 48.3

6 px 89.8 ms 11 Hz 9,814 61.7

8 px 127.7 ms 8 Hz 9,060 75.1

7 Some of the solutions might be coinciding or zero.
8 Some points in a neighborhood might be discarded as a result of

outlier rejection.

112 J Real-Time Image Proc (2015) 10:105–118

123



Step 1 Transformation to real-world coordinates The

depth map coordinates acquired from the Kinect (aligned to

the RGB image) is transformed into real-world coordinates,

using intrinsics and distortion coefficients for the RGB

camera to obtain a back-projection ray, and intersect this at

the known depth. If multiple Kinects are used, the data sets

are aligned to a common reference coordinate system. This

can be done pixel-wise, and thus, in this step, one pixel

calculation maps to one thread on the CUDA GPU.

Step 2 Removing outliers from texlet neighborhoods

Before the actual reconstruction is done, RANSAC [4] is

used to remove any of the 3D points which are classified as

outliers. This is done locally using the 3D point associated

with each of the pixels in the neighborhood; we iteratively

choose three points randomly as shown in pseudo code in

Algorithm 1. Each set of three points span a plane, and the

outlier criterion for the rest of the points is defined as the

distance between a point and the plane. If the distance

exceeds a threshold value, the point is considered as an

outlier. To achieve good performance when mapping the

RANSAC algorithm to the GPU architecture, we choose a

finite number of iterations and omit a step of refitting the

plane to the current set of inlier points. For GPU execution,

the responsibility of each texlet is divided amongst threads.

This means that a thread will be responsible for the pro-

cessing of the RANSAC algorithm for one texlet

neighborhood.

Step 3 Calculating texlets from neighborhood points The

orientation N of the texlet is found by applying PCA on the

3D points still remaining after applying RANSAC in each

texlet neighborhood. The position P is set to the average of

these remaining points. The uncertainties associated to

each texlet’s orientation and position are calculated by

Monte Carlo simulation [14], which is a computationally

heavy method, compared to an analytical derivation. Monte

Carlo on the other hand, gives us the advantage of easy

adaptation to other feature types or input data where we

want to propagate input uncertainties that might be given in

another space, e.g., 2D points of stereo images.9 This is the

case in our setup shown in Fig. 3, where the amount of

input data makes a fast GPU implementation beneficial. On

the GPU Monte Carlo is preferred over, e.g., SVD for

propagating uncertainties, because of the complexity of the

algorithms and how they map to the architecture.

To compute the uncertainties of the texlet parameters,

the texlet is created multiple times, each time with noise

from the uncertainty model derived in Sect. 2.2 added

to each 3D point. The uncertainty representation for the

texlet is the covariance matrices RP 2 R
3 � R

3 and

RN 2 R
2 � R

2 calculated from this Monte Carlo set. They

are visualized in Fig. 2c, and the left highlight in Fig. 2d,

using red lines and green lines for the principal axes of the

Gaussian distribution model, for position and orientation,

respectively.

The spacing of the hexagonal grid (i.e., the distance

between the texlet center pixels) can be adjusted given the

desired resolution or performance demands. The impact of

spacing on the performance and number of created texlets

can be seen in Table 1. The effect of changing the neigh-

borhood size is also shown. All the data are obtained using

20 RANSAC iterations and 50 Monte Carlo simulations

which has been found experimentally to be adequate. The

data with varying spacing (rows 1–3) are obtained with a

neighborhood radius of 6 pixels, and the test of neighbor-

hood radius (rows 4–6) are obtained with a spacing of 6

pixels.

Fig. 9 Texlet relation (n(i,j), h) (normal distance and angle) between

texlet i and j

9 This is similar to the Unscented Transform method [10].

J Real-Time Image Proc (2015) 10:105–118 113

123



4 Quantification of texlet reconstruction with Kinect

cameras

As a final step we want to give a qualitative and quanti-

tative evaluation of the reconstruction precision of texlets

in a well defined setup. In addition, we want to measure the

effects of interference when using multiple (up to three)

Kinect cameras. As already mentioned in the introduction,

the fact that the Kinect camera is an active sensor which

emits light in the infrared domain might affect the

matching quality when multiple projection patterns over-

lay. Since multi-view reconstruction is a common method

in computer vision (e.g., to deal with occlusions), it is of

interest to measure these effects of interference.

In order to be able to evaluate the quality of extracted

texlets they need to be extracted from a known object. A

test setup was made, with three Kinect sensors, in a tri-

angular setup, observing a rectangular box, with known

side lengths as shown in Fig. 10a. Each texlet extracted

from the scene has a relation (n(i,j), h) to any other texlet in

the scene. n(i,j) is the normal distance (for parallel planes

the normal distance corresponds to the distance between

the planes) from texlet i to j, i.e., the orthogonal projection

of the center of one plane to the other plane (see Fig. 9). h
is the angular difference in the orientations. The computed

relations are expected to agree with the constraints shown

in Table 2.10 This is equivalent to the center of the green

areas in Fig. 10b: the two peaks at the top correspond to the

two side-widths of the object (texlets being parallel but

normal vectors pointing in opposite directions) while the

left bottom peak corresponds to all texlets in the same

plane, the bottom right peak corresponds to the relation

between the table and the top surface (texlets being parallel

and pointing in the same direction). The horizontal line at

90� angle corresponds to all 90� angles of texlet relations at

different non-parallel surfaces and naturally ends at a

normal distance corresponding to the height of the object.

The normal distances and angles from each texlet to all

other extracted texlets are plotted as 2D histograms. This

test was conducted with three Kinects calibrated to the

same reference frame. First each Kinect were turned on

individually in order to get a sample without interference.

This can be seen for neighborhood radius 2, 6 and 10 in

Fig. 11 a, b, c. For visual purposes, logarithmic values of

the histogram bins are plotted. As expected the larger the

radius of the texlets, the better the actual extraction quality

and hence the more entries in the histograms are positioned

in the expected areas indicated in Fig. 10b. The inlier

percentages can also be seen in Table 1. Figure 11d–f

shows the same diagram but with an additional Kinect

turned on to generate noise. The last row of Fig. 11g–i is

conducted with all three Kinects turned on at the same

time. The degeneration of precision of the reconstruction is

clearly visible in the larger variance when multiple Kinect

cameras are used at the same time.

In order to quantitatively compare the measurements

the threshold bounding boxes shown in Fig. 10b is

applied. All relations between texlets within the bounding

boxes shown in Fig. 10 (threshold of 10� and 5 mm), are

defined as inlier relations. The inlier relations counted

from scenarios with one, two and three simultaneously

Fig. 10 a Known object used in test setup. b Bounding boxes used to classify inliers

Table 2 Texlet relation constraints in test setup

Relation Angle (�) Distance (mm)

Top of box vs. ground 0 240

Opposite side 1 180 128

Opposite side 2 180 112

In same plane 0 0

From orthogonal planes 90 0–240

10 If only one or two Kinects were used, it would not be possible to

get all relations, due to an incomplete scene representation.

114 J Real-Time Image Proc (2015) 10:105–118

123



enabled Kinect cameras can be seen in Fig. 13. The

number of inliers are shown as a function of the size of

the texlet (neighborhood radius). It shows clearly that

using multiple Kinects synchronously degrades the overall

quality of 3D texlets. The lower inlier count when using

two or more Kinects are expected due to the overlap and

interference of the two infrared patterns. Accordingly,

more Kinects will add more interference. This interfer-

ence is also evident when looking at the raw depth maps

returned from Kinects in Fig. 12.

Figure 11 also indicates an important fact on the com-

plexity of generating an appropriate model for the inter-

ference of multiple Kinect cameras: since the number of

projections influences the reconstruction precision, the

effect of interference depends on the actual 3D geometry of

the scene. For example, the top surface and also most of the

base plane is subject to the infrared projections of all three

cameras. As a consequence, texlets extracted from these

areas are in particular affected. This is most visible (as

being expressed in the high variance) in the peak on the

bottom right (see Fig. 11i) which corresponds to the rela-

tion between the top surface and the base plate (see dif-

ference to Fig. 11c). For the side surfaces of the box, the

corresponding peaks (the two peaks at the top in Fig. 11i)

have a lower increase in variance (compared to Fig. 11c)

since the surfaces are only subject to projections by one or

maximally two Kinect cameras. This conclusion is also in

agreement with the work in [2] which states that the

reconstruction degradation depends on the relative orien-

tation of the concurrently running Kinects. Hence, any

Fig. 11 Quality histograms. a, b, and c Each Kinect individually (neighborhood radius 2, 6 and 10). d, e and f Two Kinects at the same time

(neighborhood radius 2, 6 and 10). g, h and i Three Kinects at the same time (neighborhood radius 2, 6 and 10)

J Real-Time Image Proc (2015) 10:105–118 115

123



uncertainty model would need to explicitly model the scene

geometry and the relative camera object relations.

5 Conclusion and future work

In this paper, we have described an algorithm for the real-

time extraction of 3D surface patches (called ‘texlets’) with

an associated uncertainty model. To achieve high precision

it was required to be able to describe the reconstruction

process and the associated calibration problems in detail.

We pointed out a number of issues that lead to degenera-

tion of reconstruction quality which need to be taken care

of before using Kinect cameras when high precision of the

reconstruction is required. This requires in particular the

understanding of the geometry behind the reconstruction

process realized on Kinect cameras. To derive the uncer-

tainty model for surface patches we used an approximate

model for the uncertainty associated to a point-wise

reconstruction with Kinect cameras. Hence, besides

reaching the actual goal of real-time texlet extraction and

the associated uncertainty we could provide information

which will be of general use for the vision community and

which will further facilitate applications of Kinect cameras

requiring precise 3D reconstruction. This also includes the

analysis of the interference effects when using multiple

Kinect cameras. Here it would be interesting if new ver-

sions of the Kinect cameras would allow for a better con-

trol of the infrared projector to minimize these effects by

switching the projector on and off easily and fast. All

algorithms described in this paper are available via the

C?? vision library CoViS.11

Fig. 12 Interference from multiple Kinects shown on colored depth

map and texlets. a, d No interference. b, e Interference from one

additional Kinect. c, f Interference from two additional Kinects. Note

that in the top surface the degradation effect is largest since all Kinect

cameras project on the top surface while—due to occlusion—only

one or two Kinect cameras project on the surfaces on the side

Fig. 13 Percentage of inliers with one, two and three Kinects

11 See http://www.covis.org/.

116 J Real-Time Image Proc (2015) 10:105–118

123

http://www.covis.org/


In Fig. 12 the effect of interference on the reconstruc-

tion is shown. When multiple Kinects are introduced the

matching process seems to fail more often, giving empty

spots in the depth map as seen in Fig. 12a–c. The inter-

ference also propagates to the texlets giving a visual deg-

radation. This can be seen in 12d–f. Notice that the

degradation is not present on the leftmost visible side of the

box. Due to the triangular placement of the Kinects, only

one pattern is projected to this surface in all cases. The

rightmost visible side of the box suffers from the pattern of

up to two Kinects, where the top of the box may have all

three patterns interfering.

A particular challenge when using Kinect cameras is to

get reliable information at depth discontinuities, which is

also a problem with ToF cameras [24]. In [22], we have

presented a 3D edge descriptor (covering 3D point and

orientation information as well as a basic appearance

description in terms of phase and color information for the

left and right side of the edge) as part of our ECV system

which is so far based on stereo information only. Integra-

tion of Kinect cameras and stereo information will allow to

extend this edge descriptors by associating surface normals

on both sides of the edge structure. In this context, we aim

at addressing the issue of higher uncertainty at depth

discontinuities.

Acknowledgments This work has been supported by the IntellAct

project (FP7-ICT-269959).

References

1. Başeski, E., Pugeault, N., Kalkan, S., Bodenhagen, L., Piater,

J.H., Krüger, N.: Using multi-modal 3D contours and their rela-

tions for vision and robotics. J Vis Commun Image Represent

21(8), 850–864 (2010)

2. Berger, K., Ruhl, K., Brümmer C., Schröder, Y., Scholz, A.,

Magnor, M.: Markerless motion capture using multiple color-

depth sensors. In: Proceedings of Vision, Modeling and Visual-

ization (VMV) 2011, pp. 317–324, October 2011

3. Carceroni, R.L., Kutalakos, K.N.: Multi-view scene capture by

surfel sampling: From video streams to non-rigid 3D motion,

shape and reflectance. In: Proceedings of Eighth IEEE Interna-

tional Conference on Computer Vision, ICCV, vol. 2, pp. 60–67

(2001)

4. Fischler, M.A., Bolles, R.C.: Random sample consensus: A par-

adigm for model fitting with applications to image analysis and

automated cartography. Commun. ACM 24(6), 381–395 (1981)

5. Gottfried, J.-M., Fehr, J., Garbe, C.: Computing range flow from

multi-modal Kinect data. In: Advances in Visual Computing, vol.

6938 of Lecture Notes in Computer Science, pp. 758–767.

Springer, Berlin (2011)

6. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Com-

puter Vision. Cambridge University Press, Cambridge (2000)

7. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D

mapping: Using depth cameras for dense 3D modeling of indoor

environments. In: RGB-D: Advanced Reasoning with Depth

Cameras Workshop in conjunction with RSS (2010)

8. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle,

W.: Surface reconstruction from unorganized points. In: Pro-

ceedings of ACM SIGGRAPH (1992)

9. Jessen, J.B., Pilz, F., Kraft, D., Pugeault, N., Krüger, N.: Accu-

mulation of different visual feature descriptors in a coherent

framework. In: Scandinavian Conference on Image Analysis

(SCIA) (2011)

10. Julier, S.J., Idak Industries: The scaled unscented transformation.

In: Proceedings of IEEE Amer. Control Conf, pp. 4555–4559

(2002)

11. Khoshelham, K.: Accuracy analysis of Kinect depth data. In:

ISPRS Workshop Laser Scanning, vol. XXXVIII (2011)

12. Kim, Y.M., Chan, D., Theobalt, C., Thrun, S.: Design and cali-

bration of a multi-view TOF sensor fusion system. In: IEEE

Computer Society Conference on Computer Vision and Pattern

Recognition Workshops, 2008. CVPRW’08, pp. 1–7 (2008)

13. Kim, Y.M., Chan, D., Theobalt, C., Thrun, S.: Design and cali-

bration of a multi-view TOF sensor fusion system. In: IEEE

Computer Society Conference on Computer Vision and Pattern

Recognition Workshops, 2008. CVPRW ’08 (2008)

14. Kitagawa, G.: Monte Carlo filter and smoother for non-gaussian

nonlinear state space models. J. Comput. Graph. Stat. 5(1), 1–25

(1996)

15. Klasing, K., Althoff, D., Wollherr, D., Buss, M.: Comparison of

surface normal estimation methods for range sensing applica-

tions. In: Proceedings of the 2009 IEEE International Conference

on Robotics and Automation, ICRA’09, pp. 1977–1982, IEEE

Press, Piscataway, NJ, USA (2009)

16. Kramer, J., Burrus, N., Herrera D.C., Echtler, F., Parker, M.:

Hacking the Kinect. Apress (2012)

17. Middleton, L., Sivaswamy, J.: Hexagonal Image Processing : A

Practical Approach. Springer, London (2005)

18. Murray, D., Little, J.J.: Patchlets: Representing stereo vision data

with surface elements. In: Seventh IEEE Workshops on Appli-

cation of Computer Vision, 2005 (WACV/MOTIONS ’05 ), vol.

1, pp. 192–199 (2005)

19. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D.,

Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.:

Kinectfusion: Real-time dense surface mapping and tracking. In:

ISMAR ’11 Proceedings of the 2011 10th IEEE International

Symposium on Mixed and Augmented Reality, pp. 127–136

(2011)

20. Pfister, H., Zwicker, M., van Baar, J., Gross, M.: Surfels: Surface

elements as rendering primitives. In: ACM SIGGRAPH,

pp. 335–342 (2000)

21. Popović, M., Kootstra, G., Jørgensen, J.A., Kragic, D., Krüger,

N.: Grasping unknown objects using an early cognitive vision

system for general scene understanding. In: Proceedings of the

International Conference on Intelligent Robots and Systems

(IROS), September 25–30, San Francisco, CA (2011)

22. Pugeault, N., Krüger, N.: Temporal accumulation of oriented

visual features. J. Vis. Commun. Image Represent. 22(2),

153–163 (2011)

23. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs,

J., Berger, E., Wheeler, R., Ng, A.: ROS: An open-source Robot

Operating System. In: ICRA Workshop on Open Source Software

24. Reynolds, M., Dobos, J., Peel, L., Weyrich, T., Brostow, G.J.:

Capturing time-of-flight data with confidence. In: IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR)

(2011)

25. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL).

In: IEEE International Conference on Robotics and Automation

(ICRA), Shanghai, China, May 9–13 2011

26. Saenko, K., Karayev, S., Jia, Y., Shyr, A., Janoch, A., Long, J.,

Fritz, M., Darrell, T.: Practical 3-D object detection using cate-

gory and instance-level appearance models. In: IROS (2011)

J Real-Time Image Proc (2015) 10:105–118 117

123



27. Schuon, S., Theobalt, C., Davis, J., Thrun, S.: LidarBoost: depth

superresolution for ToF 3D shape scanning. In: Proceedings of

IEEE CVPR (2009)

28. Smisek, J., Jancosek, M., Pajdla, T.: 3D with Kinect. In: IEEE

Workshop on Consumer Depth Cameras for Computer Vision,

November 2011

29. Xia, L., Chen, C.-C, Aggarwal, J.K.: Human detection using

depth information by Kinect. In: International Workshop on

Human Activity Understanding from 3D Data in conjunction with

CVPR (HAU3D), June 2011

Author Biographies

Søren Maagaard Olesen received his B.Sc. and M.Sc. degree in

Computer Systems Engineering from the University of Southern

Denmark, Denmark, in 2009 and 2011, respectively. He is currently a

research assistant at the Mærsk McKinney Møller Institute, Univer-

sity of Southern Denmark. His research interests include real-time

computer vision and GPU computing.

Simon Lyder received his B.Sc. and M.Sc. degree in Computer

Systems Engineering from the University of Southern Denmark,

Denmark, in 2009 and 2011, respectively.

Dirk Kraft obtained a diploma degree in computer science from the

University of Karlsruhe (TH), Germany in 2006 and a Ph.D. degree

from the University of Southern Denmark in 2009. He is currently

employed as an assistant professor at the Mærsk McKinney Møller

Institute, University of Southern Denmark. His research interests lie

within cognitive systems, robotics and computer vision.

Norbert Krüger is a Professor at the Mærsk McKinney Møller

Institute, University of Southern Denmark. He holds a MSc from the

Ruhr-Universität Bochum, Germany and his Ph.D. from the Univer-

sity of Bielefeld. Norbert Krüger is leading the Cognitive Vision Lab

which is focussing on computer vision and cognitive systems, in

particular sensory-motor learning in the context of robot manipula-

tion. He has also been working in the areas of computational

neuroscience and machine learning.

Jeppe Barsøe Jessen received his B.Sc. and M.Sc. degree in

Computer Systems Engineering from the University of Southern

Denmark, Denmark, in 2007 and 2009, respectively. He is currently a

Ph.D. student at the Mærsk McKinney Møller Institute, University of

Southern Denmark. His research interests include computer vision

and GPU computing.

118 J Real-Time Image Proc (2015) 10:105–118

123


	Real-time extraction of surface patches with associated uncertainties by means of Kinect cameras
	Abstract
	Introduction
	Reconstruction with Kinect cameras
	Reconstruction of 3D points
	Reconstruction of 3D points using the OpenNI driver
	Improving reconstruction quality

	Uncertainty model for point reconstructions with Kinect cameras

	Texlet extraction with Kinect cameras
	Comparison of methods for least square fitting of planes
	GPU implementation

	Quantification of texlet reconstruction with Kinect cameras
	Conclusion and future work
	Acknowledgments
	References


