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Abstract Polar harmonic transforms (PHTs) are orthog-

onal rotation invariant transforms that provide many

numerically stable features. The kernel functions of PHTs

consist of sinusoidal functions that are inherently compu-

tation intensive. We develop a fast approach for their

computation using recursion and 8-way symmetry/anti-

symmetry property of the kernel functions. The clustering

of pixels at eight radially symmetrical locations enhances

the speed of computation. Experimental results show that

the proposed method is faster by a factor lying between

three and four compared to the existing fast method.

Keywords Orthogonal transforms � Orthogonal

moments � PHTs � Rotation invariance

1 Introduction

Region-based image descriptors capture the global prop-

erties of the pixel distribution in the entire image, and

hence they are extensively used in many pattern recogni-

tion and computer vision applications. Rotation invariant

pattern representation is an essential requirement because

images that are rotated versions of each other perceived to

be the same by human beings. Therefore, the pattern rec-

ognition systems should mimic the human perception by

presenting methods that handle rotation, change in size and

location. Rotation invariant moments and transforms are

such processes, which successfully deal with these situa-

tions. There are two types of rotation invariant moments

and transforms: orthogonal and non orthogonal. The

orthogonal rotation invariant moments (ORIMs) and

orthogonal rotation invariant transforms (ORITs) are more

effective in performance because they have minimum

information redundancy and hence better information

compactness. A few low order moments and transforms are

sufficient to capture the essential features of an image.

Among the ORIMs Zernike moments (ZMs), pseudo Zer-

nike moments (PZMs) and orthogonal Fourier Mellin

moments (OFMMs) [1, 2] are the most popular. The ORITs

that were introduced recently by Yap et al. [3] include the

polar complex exponential transforms (PCET), polar

cosine transforms (PCT) and polar sine transforms (PST).

These transforms are collectively known as PHTs. The

difference between ORIMs and ORITs is that the radial

parts of the kernel functions in ORIMs are polynomials and

in ORITs these are sinusoidal functions. The PHTs are

preferred to ORIMs because PHTs are computationally

very fast [4] and the high order transforms are numerically

stable, where as the ORIMs are less efficient and high order

moments are numerically unstable. Because of their

attractive features, PHTs have recently been used in many

image processing applications. Liu et al. [5] observed that

PHTs-based features yield results comparable to state-of-

the-art methods for fingerprint classification. An extensive

evaluation of invariance property of PHTs for image rep-

resentation in terms of rotation, scale and noise has been

conducted by Li et al. [6]. The authors observed that the

ORITs are more suitable than ORIMs for applications,

which require many features. The results are compared

with ZMs and PZMs, and it is observed that the perfor-

mance of PHTs is better than that of ZMs and PZMs.

Recently, Miao, et al. [7] have applied PHTs on Radon
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images for object recognition. They have also compared

their results with that obtained by ZMs, OFFMs and Radial

Fourier Mellin moments. Through the theoretical analysis

and experimental results, it is observed that the perfor-

mance of PHTs for image description is much better than

the three moments especially under noisy conditions. Ho-

ang and Tabbone [8] introduce a class of harmonic radial

kernels that satisfy orthogonality conditions and derive

PCET as a special case. Experimental results prove the

effectiveness of this class of transforms for the description

performance and pattern recognition ability. Singh et al. [9]

perform the image reconstruction analysis of PHTs and

show that PCET provide much better reconstructed images

than ORIMs and other types of PHTs.

In this paper, we propose a method for the fast com-

putation of the PHTs by developing recursive relations for

the radial and angular parts of the kernel functions of the

transform. An 8-way symmetry/anti-symmetry property is

used to enhance the speed of the algorithm. The clustering

of pixels at eight radially symmetric location’s results in a

fast algorithm. These algorithms can be used for invariant

pattern and shape recognition problems in real-time envi-

ronment or on devices with low computation power.

The rest of the paper is organized as follows. An over-

view of PHTs with their discrete computational framework

is presented in Sect. 2. The fast recursive relations, 8-way

symmetry/anti-symmetry, and clustering of image pixels

are discussed in Sect. 3. The speed performance experi-

mental results are given in Sect. 4. Conclusion is discussed

in Sect. 5.

2 Polar harmonic transforms

Polar harmonic transforms consist of the polar complex

exponential transform (PCET), PCT and PST [3]. They

have identical mathematical representation with a differ-

ence in the radial part of the kernel function. Let f ðr; hÞ be

a continuous image function defined on a unit disk

D ¼ fðr; hÞ 0� r� 1; 0� h� 2pg. The PHTs of order n

and repetition m are defined by

Anm ¼ k
Z2p

0

Z1

0

f ðr; hÞV�nmðr; hÞ rdrdh ð1Þ

where n, m = 0, ±1, ±2,.... The kernel function V�nmðr; hÞ
is the complex conjugate of the function Vnmðr; hÞ
determined by

Vnmðr; hÞ ¼ RnðrÞejmh ð2Þ

with j ¼
ffiffiffiffiffiffiffi
�1
p

. The radial part of the kernel function and

the parameter k are expressed as

PCET : RnðrÞ ¼ ej2pnr2

; k ¼ 1

p
ð3Þ

PCT and PST : RnðrÞ ¼
cosðpnr2Þ; for PCT

sinðpnr2Þ; for PST

(
ð4Þ

k ¼

1

p
; n ¼ 0

2

p
; n 6¼ 0

8><
>: ð5Þ

The radial part of the kernel function satisfies the

orthogonality condition

Z1

0

RnðrÞ Rn0 ðrÞ½ ��rdr ¼ 1

2
dnn0 ð6Þ

where dnn0 ¼ 1 if n ¼ n0, and 0 otherwise.

Also, the complete kernel function Vnmðr; hÞ satisfies the

orthogonality condition

Z2p

0

Z1

0

Vnmðr; hÞ Vn0m0 ðr; hÞ½ ��rdrdh ¼pdnn0dmm0 ð7Þ

The orthogonality property of the kernel function

enables the image function f ðr; hÞ to be reconstructed

f̂ ðr; hÞ ¼
Xnmax

n¼�nmax

Xmmax

m¼�mmax

AnmVnmðr; hÞ ð8Þ

where nmax and mmax are the highest allowed values of n

and m, respectively. Greater number of transform coeffi-

cients used in the reconstruction helps f̂ ðr; hÞ to be closer to

f ðr; hÞ.
The magnitude of transform coefficients is rotation

invariant. Let Aa
nm be the transform coefficients of the

image function f ðr; hþ aÞ obtained by rotating an image

by an angle a about its center, then it can be shown that

Aa
nm ¼ Anme�jma ð9Þ

Thus, yielding a very important property of rotation

invariance of its magnitude, namely, Aa
nm

�� �� ¼ Anmj j:
Deriving PHTs using Eq. (1) is difficult because in

digital image processing, the image function f ðr; hÞ is

discrete, and defined in rectangular coordinates system. Let

N 9 N be an image with (i, k) representing a pixel at the ith

row and jth column. We perform a mapping of pixel’s grid

from N 9 N square domain to [-1,1] 9 [-1,1] with the

help of the following transformations

xi ¼
2iþ 1� N

N
; yk ¼

2k þ 1� N

N
; i; k ¼ 0; 1; . . .;N � 1

ð10Þ

with Dx ¼ Dy ¼ 2
N
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The unit continuous disk D ¼ ff ðr; hÞ 0� r� 1;

0� h� 2pg is now approximated by a unit digital disk

D0 ¼ ff ði; kÞ; x2
i þ y2

k � 1g: The mapping process allows

only those pixels to belong to D0 whose centers ðxi; ykÞ lie

within the unit disk D0. This approximation is depicted in

Fig. 1a and b, where Fig. 1a is an 8 9 8 pixels grid and the

continuous unit disk D and Fig. 1b represents the approx-

imated unit disk D0 and the pixels whose centers lie within

the unit disk D0 are shaded with gray color. Thus, Eq. (1)

for the computation of PHTs assume the form

Anm ¼ k
Z1

x¼�1

Z1

y¼�1

f ðx; yÞV�nmðx; yÞdxdy

x2
i þ y2

k � 1

ð11Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and h ¼ tan�1ðy=xÞ; and V�nmðx; yÞ

derives from Eq. (2) with the change of coordinates from

polar system to Cartesian system.

The image function f ðx; yÞ is discrete. Assuming that the

function value f ðx; yÞ ¼ f ði; kÞ is constant over a pixel grid

xi � Dx
2
; yk � Dy

2

h i
� xi þ Dx

2
; yk þ Dy

2

h i
, then Eq. (11) can

be approximated by

Anm ¼ k
XN�1

i¼0

XN�1

k¼0
x2
i
þy2

k
� 1

f ði; kÞ
ZxiþDx

2

xi�Dx
2

ZykþDy
2

yk�Dy
2

V�nmðx; yÞdxdy ð12Þ

No analytical solution exists for double integration

involved in the right hand side of Eq. (12), therefore,

normally a zeroth order approximation is used [3].

Anm ¼
4k
N2

XN�1

i¼0

XN�1

k¼0
x2
i
þy2

k
� 1

f ði; kÞV�nmðxi; ykÞ ð13Þ

Alternatively, PHTs can be computed in polar

coordinates as suggested by [10, 11] for ORIMs such as

the ZMs, PZMs and OFMMs. However, like ORIMs,

computation of PHTs in polar coordinates requires

reconfiguration of image pixels in polar coordinates. This

process involves interpolation error because the pixel

intensities are required to be determined at new locations

[10, 11]. Therefore, normally PHTs are computed using Eq.

(13) as explained in [3].

3 Fast computations of kernel functions

An attractive characteristic of PHTs is their low compu-

tation requirement of kernel functions as compared to

ORIMs whose kernel functions are computation intensive

because of the presence of high order of polynomials and

factorial terms. Nevertheless, the kernel functions of PHTs

comprise the sinusoidal functions. The computation cost of

these functions is still high. In a recent paper by Yang et al.

[4], 8-way symmetry/anti-symmetry is used for the calcu-

lation of the radial and angular sinusoidal functions, which

increases the computation speed by a factor of six to eight.

The time taken for the evaluation of trigonometric func-

tions is very high. Thus, the computation of sinusoidal

functions even in an octant of an image is time consuming.

The high time requirement is gauged from the fact that the

evaluation of cosine and sine functions of an image of size

N � N pixels (with N ¼ even) is required to be com-

puted at NðN þ 2Þ=8 locations over an octant and if the

maximum order and repetition are nmax and mmax, respec-

tively, then the time complexity is O(N2nmaxmmax) which is

very high. This time complexity cannot be reduced even

after saving these values in tables. We propose recursive

algorithms for the calculation of trigonometric functions

Fig. 1 a An 8 9 8 pixel grid

and the continuous inscribed

circle D, and b the

approximation of the circle D0
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for the radial and angular parts of the kernel functions. It is

shown that while the angular part does not involve the

computation of trigonometric functions through inbuilt

library functions even for once, the radial part requires

their evaluation only once at a pixel location and the higher

order trigonometric functions are computed recursively.

The proposed method is similar to the recursive approach

adopted for angular functions for the calculation of ZMs by

Singh and Walia [12].

3.1 Computation of angular functions

The angular functions ejmh ¼ cosðmhÞ þ j sinðmhÞ can be

computed efficiently for m ¼ 0; 1; 2; . . .;mmax at a pixel

location (i, k). For this purpose, we use the following

recurrence relations to evaluate cosðmhÞ and sinðmhÞ:
cosððmþ 1ÞhÞ ¼ cosðhÞ cosðmhÞ � sinðhÞ sinðmhÞ ð14Þ
sinððmþ 1ÞhÞ ¼ sinðhÞ cosðmhÞ þ cosðhÞ sinðmhÞ ð15Þ

where m ¼ 0; 1; 2; . . .;mmax; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ y2
k

p
; cosðhÞ ¼ xi=r;

sinðhÞ ¼ yk=r; xi and yk are given in Eq. (10), and

cosð0Þ ¼ 1:0 and sinð0Þ ¼ 0:0: We use two tables, say,

cos_theta[mmax ? 1] and sin_theta[mmax ? 1] , to save the

values in memory. The extra space required for saving the

tables is 2ðmmax þ 1Þ words. We compute cosðmhÞ directly

using library function and through recursion for

m ¼ 15 and 40, and h ¼ p=8; p=7; p=6; p=3; and p=2: The

computation is performed in Microsoft’s Visual C ??6.0

under Windows environment with double precision arithmetic,

which provides accuracy up to 15 decimal places. The results

are quoted in Table 1 and show that the error accumulated

during recursion is negligible. The differences in results are

very small, which are of the order between 10�15 and 10�16

and consistent with the finite precision arithmetic being used.

3.2 Computation of radial functions

We now focus toward the computation of radial function of

PCET. The calculation for PCT and PST follows the

similar steps. The radial functions ej 2pnr2 ¼ cosð2pnr2Þ þ
j sinð2pnr2Þ can be computed recursively for different

orders n. For the order n ¼ 1, the computation of cosð2pr2Þ
and sinð2pr2Þ is performed directly using the library

functions. For orders n [ 1, Eqs. (16) and (17) are used to

compute cosð2pnr2Þ and sinð2pnr2Þ recursively.

cosð2pr2ðnþ 1ÞÞ ¼ cosð2pr2Þ cosð2pr2nÞ
� sinð2pr2Þ sinð2pr2nÞ ð16Þ

sinð2pr2ðnþ 1ÞÞ ¼ sinð2pr2Þ cosð2pr2nÞ
þ cosð2pr2Þ sinð2pr2nÞ ð17Þ

where n ¼ 1; 2; 3; . . .; nmax T
a

b
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1
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3.3 Eight way symmetry/anti-symmetry of radial

and angular functions

The radial functions ej2pnr2

of PCET assume the same

values at 8-radially symmetric locations denoted by P1

through P8 within a circle as shown in Fig. 2. Let the center

of the circle be at origin (0,0) with the digital radius

R = N/2. Let a pixel P1ði; kÞ; i ¼ 0; 1; 2; . . .;R� 1; k ¼
0; 1; 2; . . .; i be given in the first octant of the circle with the

coordinates of its center (the center of (i,=k) pixel grid)

xi ¼ ð2iþ 1Þ=N; yk ¼ ð2k þ 1Þ=N, mapped within the

unit disk, then r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ y2
k

p
: The seven other pixels

located at radially symmetric locations P2 through P8 are

given byP2ðk; iÞ; P3ð�k � 1; iÞ; P4ð�i� 1; kÞ; P5 ð�i�
1; �k � 1Þ; P6ð�k � 1;�i� 1Þ; P7ðk;�i� 1Þ; and

P8ði;�k � 1Þ: It can be easily verified that the centers of

these pixel grids have the same values of r. Since we are

referring the pixels w.r.t. the center of the digital image

assumed to be at (0,0), we have negative indices while

referring them. In actual implementation, we add R with

each pixel location. For example, the pixel P1ði; kÞ will be

referred to as P1ðRþ i;Rþ kÞ; i ¼ 0; 1; 2; . . .;R� 1; k ¼
0; 1; 2; . . .; i; meaning thereby that the origin of the image is

at the top left corner of the square domain. When k ¼ i, 4-

way symmetry is considered instead of 8-way symmetry

because of the digital nature of the circle. Moreover, in the

above discussion, we have assumed N to be even. How-

ever, the treatment is the same for odd N except for a pixel

at the center of the image for which the computation

is performed separately. Also for odd N, 4-way symme-

try exists for k ¼ 0 (along axes) and k ¼ i (along

diagonals).

Further, if the pixel (i, k) makes an angle h with x-axis

with h ¼ tan�1ðyk=xiÞ, than the seven radially symmetric

pixels P2 through P8 will make angles p
2
� h; p

2
þ h; p�

h; pþ h; 3p
2
� h; 3p

2
þ h; and 2p� h; respectively. There-

fore, if cosðmhÞ and sinðmhÞ are evaluated at P1, then their

values can be used for locations P2 through P8 as shown in

Tables 2 and 3. This situation is further explained in Sect.

3.4. The symmetry/anti-symmetry property reduces the

requirement of performing the calculations from N2 loca-

tions to NðN þ 2Þ=8 locations.

3.4 Clustering of image pixels

Significant enhancement in speed can be achieved by

clustering the eight symmetrically located pixels. The

clustering of pixels is achieved using 8-way symmetry/

anti-symmetry property of radial and angular parts of

kernel functions, explained by rewriting Eq. (13) in the

form

Anm ¼
4k
N2

XN�1

i¼0

XN�1

k¼0
x2

i
þy2

k
�1

f ði; kÞ

�
fcosð2pnr2

ikÞ cosðmhikÞ � sinð2pnr2
ikÞ sinðmhikÞg�

jfsinð2pnr2
ikÞ cosðmhikÞ þ cosð2pnr2

ikÞ sinðmhikÞg

2
64

3
75

ð18Þ

where r2
ik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ y2
k

p
; hik ¼ tan�1ðyk=xiÞ: The 8-way

symmetry/anti-symmetry property leads Eq. (18) to

Anm ¼
4k
N2

XR�1

i¼0

Xi

k¼0

X8

u¼1

fu cosðhuÞ
 !

cosð2pnr2
ikÞ �

X8

u¼1

fu sinðhuÞ
 !

sinð2pnr2
ikÞ

( )
�

j
X8

u¼1

fu cosðhuÞ
 !

sinð2pnr2
ikÞ þ

X8

u¼1

fu sinðhÞu

 !
cosð2pnr2

ikÞ
( )

2
666664

3
777775

ð19Þ

where f1¼ f ðRþ i;RþkÞ; f2¼ f ðRþk;Rþ iÞ; ...; f8¼ f ðRþ
i;R�k�1Þ;h1¼mhik; h2¼mðp

2
�hikÞ; . . .;h8¼mð2p�hikÞ;

Fig. 2 8-way symmetry of a pixel P1ði; kÞ with xi ¼ ð2iþ
1Þ=N; yk ¼ ð2k þ 1Þ=N: The origin of the coordinate system is at

the center of the image

Anm ¼
4k
N2

XR�1

i¼0

Xi

k¼0

½fF1 cosðmhikÞ þ F2 sinðmhikÞg cosð2pnr2
ikÞ � fF3 cosðmhikÞ þ F4 sinðmhikÞg sinð2pnr2

ikÞ��
j½fF1 cosðmhikÞ þ F2 sinðmhikÞg sinð2pr2

ikÞ þ fF3 cosðmhikÞ þ F4 sinðmhikÞg cosð2pnr2
ikÞ�

" #
ð20Þ
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xi ¼ ð2i þ 1Þ=N; yk ¼ ð2k þ 1Þ=N: After simplification,

Eq. (19) becomes

The trigonometric functions cosðhuÞ and sinðhuÞ; u ¼
1; 2; . . .; 8 are converted to cosðmhikÞ and sinðmhikÞ for

various values of m according to Tables 2 and 3, respec-

tively. The pixels are clustered in blocks represented by

F1; F2; F3 and F4 expressed in pixel values f1 through

f8 as given in Table 4. Corresponding to each pixel location

in an octant there are N(N ? 2)/8 blocks. When k = i there

is a 4-way symmetry (along diagonals of the square image),

which can be treated separately or this case can be solved

using Eq. (20) itself by letting f2 ¼ f4 ¼ f6 ¼ f8 ¼ 0:

4 Experimental results

We analyze the results by implementing three algorithms.

The first algorithm implements the traditional algorithm of

PHTs. The second algorithm uses the 8-way symmetry/

anti-symmetry properties of the radial and angular func-

tions [4]. The third algorithm, proposed in this paper, uses

recursion for the kernel functions and clusters the image

pixels and uses the symmetry/anti-symmetry properties.

These algorithms are called algorithm A, B, and C, respec-

tively. Clearly algorithm C will provide the improvement in

speed performance over the existing fast method, represented

by the algorithm B. These algorithms are implemented in

Visual C ?? 6.0 under Microsoft Windows environment on

a PC with 3.0 GHz CPU and 2 GB RAM. Since the CPU

elapse time depends on the size of the image N, not on image

contents, we do not mention any particular image in our

experimental results. Further, the kernel functions of PCET,

PCT and PST have similar forms; the results are presented for

PCET only. The qualitative trend of CPU elapse time will be

the same for PCTs and PSTs.

The growth of the CPU elapse time for the transform

order n and repetition m is shown in Fig. 3a and b for

N = 256. Figure 3a depicts CPU elapse time for the three

algorithms. To highlight differences in CPU elapse time

between Algorithm B and Algorithm C, Fig. 3b is used.

The results show that the proposed algorithm reduces the

CPU elapse time for all orders. The quantitative values of

the CPU time are given in Table 5. The proposed algorithm

is faster by a factor of three to four which is evident from the

Table 2 Values of cosðmhÞ at eight symmetric/anti-symmetric locations P1 through P8:

mod (m,4) Values of cosðmhÞ at locations P1 through P8

P1 P2 P3 P4 P5 P6 P7 P8

mh m p
2
� h

� �
m p

2
þ h

� �
mðp� hÞ mðpþ hÞ m 3p

2
� h

� �
m 3p

2
þ h

� �
mð2p� hÞ

0 cosðmhÞ cosðmhÞ cosðmhÞ cosðmhÞ cosðmhÞ cosðmhÞ cosðmhÞ cosðmhÞ
1 cosðmhÞ sinðmhÞ � sinðmhÞ � cosðmhÞ � cosðmhÞ � sinðmhÞ sinðmhÞ cosðmhÞ
2 cosðmhÞ � cosðmhÞ � cosðmhÞ cosðmhÞ cosðmhÞ � cosðmhÞ � cosðmhÞ cosðmhÞ
3 cosðmhÞ � sinðmhÞ sinðmhÞ � cosðmhÞ � cosðmhÞ sinðmhÞ � sinðmhÞ cosðmhÞ

Table 3 Values of sinðmhÞ at eight symmetric/anti-symmetric locations P1 through P8

mod (m,4) Values of sin (mh)at locations P1 through P8

P1 P2 P3 P4 P5 P6 P7 P8

mh m p
2
� h

� �
m p

2
þ h

� �
mðp� hÞ mðpþ hÞ m 3p

2
� h

� �
m 3p

2
þ h

� �
mð2p� hÞ

0 sin(mh) - sin(mh) sin(mh) - sin(mh) sin(mh) -sin(mh) sin(mh) -sin(mh)

1 sin(mh) cos(mh) cos(mh) sin(mh) -sin(mh) -cos(mh) -cos(mh) -sin(mh)

2 sin(mh) sin(mh) -sin(mh) -sin(mh) sin(mh) sin(mh) -sin(mh) -sin(mh)

3 sin(mh) -cos(mh) -cos(mh) sin(mh) -sin(mh) cos(mh) cos(mh) -sin(mh)

Table 4 Clustering of image pixels of 8-radially symmetrical locations

mod (m,4) F1 F2 F3 F4

0 (f1 ? f2 ? f3 ? f4 ? f5 ? f6 ? f7 ? f8) 0 (f1 - f2 ? f3 - f4 ? f5 - f6 ? f7 - f8) 0

1 (f1 - f4 - f5 ? f8) (f2 - f3 – f6 ? f7) (f2 ? f3 - f6 - f7) (f1 ? f4 - f5 - f8)

2 (f1 - f2 - f3 ? f4 ? f5 - f6 - f7 ? f8) 0 (f1 ? f2 - f3 - f4 ? f5 ? f6 - f7 - f8) 0

3 (f1 - f4 - f5 ? f8) (-f2 ? f3 ? f6 - f7) ( - f2 - f3 ? f6 ? f7) (f1 ? f4 - f5 - f8)
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table. This is a significant improvement over the 8-way

symmetry/anti-symmetry property represented by Algorithm

B. To show the variation of the CPU elapse time w.r.t the size

Table 5 CPU elapse time (s) for the computation of PCET for Algorithms A, B, and C for image resolution 256 9 256 pixels and for various

order and repetition of transforms from nmax = mmax = 2 through nmax = mmax = 24

PCET order n and

repetition m (n = m)

Algorithm A

(traditional

approach) (s)

Algorithm B

(8-way symmetry/

anti-symmetry)

Algorithm C

(proposed

method) (s)

Percentage saving

in time by Algorithm C

w.r.t Algorithm B

2 0.205 0.032 0.001 96.875

4 0.797 0.078 0.016 79.487

6 1.672 0.156 0.047 69.872

8 2.828 0.266 0.078 70.677

10 4.328 0.406 0.109 73.153

12 6.125 0.578 0.157 72.837

14 8.250 0.766 0.219 71.409

16 10.688 1.000 0.265 73.500

18 13.453 1. 235 0.329 73.360

20 16.531 1.516 0.422 72.164

22 19.953 1.843 0.500 72.870

24 23.578 2.172 0.593 72.698

Fig. 3 CPU elapse time (s) for the computation of PCETs for image

resolution 256 9 256 pixels and various orders and repetitions of

transforms from nmax = mmax = 2 through nmax = mmax = 24,

a comparison among Algorithms A, B, and C, and b comparison

between Algorithms B, and C

Fig. 4 CPU elapse time (s) for the computation of PCETs for fixed

order and repetition nmax = mmax = 24 and various resolutions from

64 9 64 pixels through 512 9 512 pixels, a comparison among

Algorithms A, B, and C, and b comparison between Algorithms B,

and C
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of the image, we consider various values of N ranging from 64

through 512. The results are shown in Fig. 4a and b, where

Fig. 4a depicts the CPU elapse time for all three algorithms

and Fig. 4b highlights the difference between Algorithm B

and Algorithm C. The proposed method is much faster than

the existing fast method.

5 Conclusion

A fast method is developed in this paper for the calculation

of PHTs, which uses recursion for the evaluation of the

sinusoidal functions that comprise the kernel of the trans-

forms. Additional enhancement in speed is achieved by

clustering the image pixels that lie at eight radially sym-

metric locations of an octant of an image. The results of the

algorithm are compared with an existing fast method,

which uses 8-way symmetry/anti-symmetry property of the

radial and angular parts of the kernel function. The pro-

posed method provides a speed enhancement by a factor of

three to four, a significant improvement over the existing

fast method. This shows that the proposed method is suit-

able for applications where PHT coefficients are used as

features in real-time environment involving large databases

or on devices with low computation power.
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