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Abstract Object detection and tracking are main tasks in

video surveillance systems. Extracting the background is

an intensive task with high computational cost. This work

proposes a hardware computing engine to perform back-

ground subtraction on low-cost field programmable gate

arrays (FPGAs), focused on resource-limited environ-

ments. Our approach is based on the codebook algorithm

and offers very low accuracy degradation. We have ana-

lyzed resource consumption and performance trade-offs in

Spartan-3 FPGAs by Xilinx. In addition, an accuracy

evaluation with standard benchmark sequences has been

performed, obtaining better results than previous hardware

approaches. The implementation is able to segment objects

in sequences with resolution 768� 576 at 50 fps using a

robust and accurate approach, and an estimated power

consumption of 5.13 W.

Keywords Field programmable gate arrays �
Fixed-point arithmetic � Real-time image processing �
Video surveillance

1 Introduction

There has been an increasing interest in the application of

computer vision methods to video surveillance issues. The

main interest of video analytics systems is the detection of

people who appear in a scene and behaviors that can lead to

alarm situations. For that reason, background subtraction

(BGS) is usually considered a necessary initial phase in this

kind of system [6]. This technique consists of analyzing a

video stream to detect which regions of each frame belong

to objects in movement and which ones are parts of the

background. BGS is an intensive pixel-wise processing

stage. Its efficient implementation can lead to a dramatic

reduction in the system computing power requirements.

This can allow stand-alone video-analytic platforms on

remote places where low power consumption may be a

critical requirement. Higher-level stages can be signifi-

cantly simplified if this BGS is done accurately.

1.1 Related work

The current state of the art of background segmentation

algorithm is able to deal not only with static backgrounds,

but also with moving ones (such as waving trees, escala-

tors, etc.). In order to model these complex scenarios, many

models have been developed. The generalized mixture of

Gaussians, MOG, presented in [27], has been used to

model non-static backgrounds with multiple values per

pixel. The more advanced methods have adapted MOG

features to different specific scene characteristics and have

incorporated methods that use Bayesian frameworks [21],

and edge and region-based information [14, 33].

However, the large amount of operations of these

intensive pixel-wise models often prevent from reaching

real-time requirements on small processors (suitable for
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embedded applications) or significantly reduces the scala-

bility of the system on commodity processors if the number

of cameras grow beyond few units. In this contribution, we

focus on a distributed architecture based on embedded

systems and low-power devices such as field programma-

ble gate arrays (FPGAs). Much work can be found in the

literature about FPGA implementations for vision appli-

cations, such as object recognition [4], object tracking [7]

or image segmentation [29].

On the other hand, hardware acceleration with dedicated

computing architectures (for instance, ASIC or FPGA

devices) may lead to a considerable loss of accuracy due to

necessary simplifications to achieve real-time requirements

at affordable computing resources. The complexity that

characterizes those models makes them difficult to imple-

ment in environments with limited resources. For that

reason, several less complex approaches can be found in

the literature, as FPGA-oriented simplifications of MOG

[1, 15], a spatial BGS technique [17], a DSP-embedded

implementation [11], a memory reduction scheme [16] or

static algorithms where it is assumed that the background is

fixed as the one proposed by Karaman et al. [18] and

Horprasert et al. [9], which has been implemented on

FPGA in [25].

In this work, we describe a novel FPGA-based video

BGS architecture based on the Codebook algorithm pro-

posed by Kim et al. [19]. This algorithm has been classified

by many authors [12, 30] as a good trade-off between

accuracy and efficiency. This has motivated our choice as a

target model for implementation even though it is a much

more complex model than the previous hardware imple-

mentations available in the literature. With this architec-

ture, we can accomplish real-time requirements with a very

small loss of accuracy compared to the software imple-

mentation and it is very well suited for integration into

smart cameras or for utilization as system coprocessor in

power-aware multi-camera systems.

Therefore, the paper presents two important contribu-

tions to the state of the art. Firstly, to our knowledge, it is

the first time that the foreground–background segmentation

using a codebook-based model is implemented on FPGA,

and specific datapaths have been developed to perform this

task in real time on a resource-constrained FPGA device.

Secondly, a proper combination of co-design strategies has

been used, as well as high abstraction level and RT level

datapaths. This allows us to achieve a very high-perfor-

mance system finely tuned to the proposed algorithm,

enabling small resources consumption. The novel meth-

odology is seldom applied in the literature and is the reason

that our system overcomes other approaches regarding

accuracy results.

The paper is organized as follows. In Sect. 2, we

describe the original codebook model, specifying the

construction, detection and update phases. In Sect. 3, we

indicate and justify the simplifications made to adapt the

model to limited resources environments. We show, in

Sect. 4, the customized architecture for algorithm imple-

mentation and how each stage has been developed.

In Sect. 5, results are shown and analyzed taking into

account system resources, performance and accuracy of

the segmentation evaluated using a standard bench-

mark. Finally, conclusions and discussion are presented in

Sect. 6.

2 Codebook background estimation model review

The Codebook algorithm, as proposed by Kim et al. [19], is

based on the construction of a background model adopting

a quantization/clustering technique described by Kohonen

[20] and Ripley [24]. The above-mentioned work shows

that the background model for each pixel is given by a

codebook consisting of one or more codewords. Code-

words are data structures that contain information about

pixel colors, color variances and information about how

frequently each codeword is updated or accessed.

The different stages of the Codebook algorithm are

described below:

2.1 Construction of the initial codebook

Given a set of N time steps (frames), a training sequence S

is used for each pixel consisting of N RGB vectors. Each

pixel has a different codebook, represented as C ¼
fc1; c2; c3; . . .; cLg; consisting of L codewords, where L can

be different for each pixel. Each codeword ci; i ¼ 1. . .; L;

consists of an RGB vector vi ¼ ð �Ri; �Gi; �BiÞ and a 6-tuple

auxi ¼ h�Ii; Îi; fi; ki; pi; qii; described as follows:

• vi ¼ ð �Ri; �Gi; �BiÞ; average value of each color

component.

• �Ii; Îi; minimum and maximum brightness, respectively,

of all pixels assigned to codeword ci:

• fi; the frequency (number of frames) with which

codeword ci has been updated.

• ki; the maximum negative run-length (MNRL), defined

as the longest interval of time during which the

codeword ci has not been updated.

• p; q; the first and last updating access times of

codeword ci:

The detailed algorithm for codebook construction (CBC) is

given in Fig. 1.

Conditions (a) and (b) in step 2(ii) must be evaluated to

determine if a pixel xt ¼ ðR;G;BÞ matches the codeword

cm: These two conditions and k parameter are explained in

44 J Real-Time Image Proc (2015) 10:43–57

123



detail in [19]. Summarizing, we can say that the evaluation

of color distortion basically consists of determining the

distance between the color of an input pixel xt ¼ ðR;G;BÞ
and vi ¼ ð �Ri; �Gi; �BiÞ of codeword ci; as indicated in (1).

kxtk2 ¼ R2 þ G2 þ B2

kvik2 ¼ �Ri
2 þ �Gi

2 þ �Bi
2

hxt; vii2 ¼ ð �RiRþ �GiGþ �BiBÞ2
ð1Þ

Color distortion d is calculated as indicated in (2).

p2 ¼ kxtk2
cos2h ¼ hxt; vii2

kvik2

colordist ðxt; viÞ ¼ d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kxtk2 � p2

q

ð2Þ

Now, condition (b) evaluates how brightness change of

xt ¼ ðR;G;BÞ lies within ½Ilow; Ihi� range for codeword ci:

In this way, we allow the brightness change to vary in a

certain range, as defined in (3).

Ilow ¼ aÎ

Ihi ¼ min bÎ;
�I

a

� � ð3Þ

Typically, a is in the interval [0.4, 0.8], and b is in the

interval [1.1, 1.5]. The brightness function is defined in (4).

brightnessðI; h�I; ÎiÞ ¼
true if Ilow�kxtk� Ihi

false otherwise

�

ð4Þ

The set of codebooks obtained from the previous step

(codebooks construction) may include some moving

foreground objects as well as noise. To obtain the true

background model, it is necessary to separate the

codewords containing foreground objects from the true

background codewords. This true background includes

both static pixels and background pixels with quasi-

periodic movements (for instance, waving trees in

outdoor scenarios). The background model M obtained

from the initial set of codebooks C is given in (5).

M ¼ fcmjcm 2 C ^ kM � TMg ð5Þ

kM (MNRL) is defined as the maximum interval of time

that the codeword has not been updated during the training

period. TM is the time threshold set equal to half the

number of training frames, N=2: Thus, codewords having a

large kM (larger than TM) will be eliminated from the

corresponding codebook.

2.2 Foreground detection

Subtracting the foreground from the current image is

straightforward once we have obtained the background

model M: The algorithm performing this task is detailed in

Fig. 2.

2.3 Background modeling updating

The original model assumes that the background obtained

during the initial background modeling is permanent. To

improve the model, making it more useful in a surveillance

system, Kim et al. [19] have proposed a layered modeling

and detection scheme. The initial scene can change after

initial training. Therefore, these changes should be used to

update the background model M: This can be done by

defining an additional model H; called cache, where the

new codewords are stored. Three new parameters

(TH ; Tadd; Tdelete) are also defined. The periodicity of a

codeword hi stored in cache H is filtered by TH ; as we did

previously with TM in the background model M: The

codewords hi remaining in cache H for a time interval

larger than Tadd are added to the background model M:

Codewords of M not accessed for a period of time (Tdelete)

will be deleted from the background model.

Fig. 1 Algorithm for codebook construction

Fig. 2 Algorithm for background subtraction stage
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In our case, we have considered that the background

model can be subject to total changes and, therefore, the

initial codewords can be replaced as a whole by new

codewords from cache H: In addition, to adapt the algo-

rithm to the hardware implementation, allowing an easier

use of the external memory, we have only layers of

background (M and H). The details of the algorithm for

layered modeling and updating are given in Fig. 3.

3 Model simplifications towards a hardware-friendly

approach

The original model by Kim et al. [19] needs to be sim-

plified to arrive at an affordable high-performance hard-

ware system. The main stages suitable for simplification

issues can be summarized as follows:

• Storage and memory management. The amount of

memory required to store the codebooks may change

because the total number of codewords may increase or

decrease dynamically. As described in Sect. 4, our

system uses a DDR2 memory, which provides high

bandwidth, but it needs a regular access to reach the

maximum performance, which complicates the

dynamic management of the set of codebooks.

• Color distortion and brightness distortion computation.

Equation (2) requires square root and division opera-

tions, which are expensive on resources-constrained

hardware devices.

• Model accuracy degradation due to fixed point arith-

metic. Customized hardware systems normally use

fixed-point data representation to reduce hardware

resources utilization. However, this strategy requires

careful analysis to avoid any degradation in accuracy.

As described below, we have carried out a detailed analysis

to determine the modifications required to address the

conversion to fixed point arithmetic.

3.1 Maximum number of codewords per pixel

To adapt the algorithm to the hardware implementation,

allowing an easier use of the external memory containing

the codewords, we have limited the number of codewords

in each pixel. To establish the maximum number of

codewords, we have carried out a detailed study in which

we look at the optimal number of codewords, without

significantly compromising the accuracy of the model and

with a moderate consumption of hardware resources. To

determine the number of necessary codewords, we have

done a comprehensive testing ground using the Wallflower

test database [28], which tests different algorithms in

several problematic situations from which the ground truth

(foreground) is known. Since the target is the segmentation

of two elements, foreground and background, the com-

parison metric is obtained from the total sum of false

positives (FP) and false negatives (FN) in a particular

frame in each of the Wallflower [28] test sequences. The

original version of the algorithm, which does not have a

maximum number of codewords, is compared with another

version in which we will modify the maximum number of

codewords allowed. The total number of errors (FP ? FN)

will be equal to the number of different pixels existing

between the binary mask image of the original version and

the binary mask image of the version containing a limited

number of codewords. Figure 4 shows the percentage of

errors from the total number of pixels of the evaluation

frame in each of the Wallflower test sequences, depending

on the maximum number of codewords. If we limit the

number of codewords to two or three in sequences with

non-static backgrounds (waving trees), our architecture

performs similarly to unimodal models [9]. After an in-

depth analysis of accuracy and resources consumption, our

choice of optimal number of codewords for a wide range of

possible scenes is set to 5.

As stated before, the number of codewords assigned to a

pixel will be limited to facilitate hardware implementation,

without significantly compromising the accuracy of the

system. With this simplification, it may happen that the

memory space of certain codebooks is already full (maxi-

mum limit reached) when new codewords are created.

Then, it is necessary to replace an existing codeword. If

this is the case, the replaced codeword will be the one not

having been accessed for the longest time period. This

condition will be added in step 2(iii) (Fig. 1), when new

codewords are created.

3.2 Color distance and brightness computation

As we will detail in the description of the architecture, all

the codewords cm are compared with the incoming pixelFig. 3 Layered modeling and updating scheme
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xt ¼ ðR;G;BÞ in parallel, using a colordistðxt; viÞ and

brightnessðI; h�I; ÎiÞ block for each codeword cm: Both

division and square root operations implemented in these

blocks represent a considerable consumption of hardware

resources. Therefore, it is desirable to avoid these calcu-

lations in the FPGA implementation without significantly

affecting the accuracy of the algorithm, using in some

cases multipliers which are optimized with the embedded

resources of the FPGA DSP48 for a Xilinx Spartan-3A

DSP [31].

With respect to color distortion d; we have implemented

the modifications indicated in (6).

kvik2
p2 ¼ hxt; vii2

kvik2d2 ¼ kvik2kxtk2 � kvik2
p2 ¼ kvik2kxtk2 � hxt; vii2

ð6Þ

Condition (a) in Fig. 2 will remain as (7).

kvik2kxtk2 � hxt; vii2� �2kvik2 ð7Þ

With respect to brightness, we have established values a ¼
0:5 and b ¼ 1:25; so that calculations in (3) can be easily

computed by means of bit shifts, as follows in (8).

Ilow ¼ aÎ ¼ Î � 1

Ihi ¼ min bÎ;
�I

a

� �

¼ minfÎ þ ð̂I � 2Þ;�I � 1g
ð8Þ

In this way, we have reduced the consumption of hardware

resources by avoiding the use of two multipliers and one

division.

During the updating process of vm; there is a division for

each color component. To reduce the consumption of

resources in the FPGA, we have approximated f ; which is

the denominator of these fractions, to its nearest power of

2. This approximation allows for the use of shift operations

instead of divisions. The implementation details of this

modification can be seen in Fig. 5.

3.3 Fixed point arithmetic: bit-width optimization

The software implementation has been developed using

double floating point representation, which enables a high

accuracy (at the expense of using high cost computing units

with high resources consumption). For FPGA hardware

implementation with constrained resources, a fixed-point

data representation is usually adopted, as it is more suitable

for the type of resources in FPGA devices. In addition,

specific purpose architectures cannot afford floating point

arithmetic when implementing long-datapath pipelined

computing architectures that may have a large number of

processing elements. In this case, a detailed study is

required to optimize the trade-off between accuracy and

hardware resources utilization. We must bear in mind that

using an insufficient number of bits will produce inaccurate

results with a high level of quantization noise. On the other

hand, using too many bits leads to a considerable increase

Fig. 4 Percentage of errors rate (total sum of false positives FP and

false negatives FN) for a frame taken from the Wallflower test

sequences, depending on the maximum number of codewords

allowed. For the sake of clarity, a and b are separated due to the

different error ranges. Our choice (set to 5) has been marked with a

big open square

Fig. 5 Updating process of vm: f is approximated to its nearest power

of 2 to reduce hardware resources consumption
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in the consumption of hardware resources, making the

system implementation in the FPGA unfeasible.

To establish the appropriate number of bits of the

fractional part of vi ¼ ð �Ri; �Gi; �BiÞ and ð�I; ÎÞ variables par-

ticipating in the calculation of colordist and brightness, we

have used a simulator of our architecture with different bit-

width configurations and we have compared them with the

results obtained from the version using double floating

point data representation. This simulator is provided by

ImpulseC [13] to check the system degradation due to

fixed-point operations. To carry out this comparison, we

also use the Wallflower test database. Again, the compar-

ison metric measures the total sum of FP and FN. Figure 6b

shows that with regards to vi ¼ ð �Ri; �Gi; �BiÞ variables used

in the calculation of colordist. The best representation is

5 bits for the fractional part and 8 bits for the integer part.

According to Fig. 6a with regards to the ð�I; ÎÞ variables for

brightness evaluation, it is appropriate to use 3 bits for the

fractional part and 9 bits for the integer part. Furthermore,

an in-depth analysis shows how the increase in the vi ¼
ð �Ri; �Gi; �BiÞ variables bit-width leads to an increase in the

consumption of hardware resources.

With these choices in Table 1 we see the main algorithm

data structures (system registers) and the associated bit-

width choices, fixed after the study explained in this sec-

tion. Along the pipeline datapath, each data structure has a

different bit-width which is optimized to the type of

performed operations (multiplications, additions, subtrac-

tions, etc.). This approach allows researchers to tune

resources and accuracy of the system in a much finer way.

The choice of this bit-width is also due to the possibility

of maintaining a compact organization of the external

memory, as the codeword data size is 4 words of 32 bits.

Once we have established the bit-width of the fractional

part of vi ¼ ð �Ri; �Gi; �BiÞ and ð�I; ÎÞ; we have also evaluated

the degradation of our design combining all the modifica-

tions required to obtain a hardware-friendly model. These

results are shown in the final evaluation (Sect. 5.3).

4 Hardware architecture

The proposed architecture has been developed using EDK

(Embedded Development Kit) and ISE Foundation of

Xilinx Inc. [31]. The EDK environment facilitates the

design of complex and completely modular system-on-chip

architectures able to support embedded microprocessors

(MicroBlaze, PowerPC), peripheral and memory control-

lers, and interconnecting buses, whilst IP cores for specific

processing can be designed using hardware description

language (HDL) in the ISE tool. For a better understanding

of the designed architecture using EDK, it is important to

highlight the use of a ViSmart video processing board from

Seven Solutions S.L. [26], including: two Xilinx

XC3SD3400aFG676 FPGAs, two 256 MB DDR2 DIMM

memory modules, four independent analog video inputs,

two gigabit ethernet connections, 485 connection, a 3G

connection module, a 64 MB Flash memory, and two

1 MB� 36 bits ZBT (Zero-Bus Turnaround) memories. In

our case, we have only used one of the FPGAs included in

the ViSmart board.

This architecture consists of several modules and

interconnecting buses, as shown in Fig. 7. Processing

modules, peripherals and a Microblaze processor are

Table 1 Bit-width of each variable taking part in the calculation of

colordist and brightness

Variable Bits

Ri;Gi;Bi [8 0]

�Ri; �Gi; �Bi [8 5]

�I; Î xtk k [9 3]

hxt; vii2 kvik2kxtk2 � hxt; vii2 kvik2kxtk2 [36 5]

kvik2 kxtk2 [18 5]

�2kvik2 [26 5]

The first value represents the integer part and the second value, the

fractional part

Fig. 6 Percentage of errors considering different bit-width of the

fractional part of ð�I; ÎÞ and vi ¼ ð �Ri; �Gi; �BiÞ; a and b, respectively. In

the figure, we use only the Wallflower test sequences with a

significantly representative error when the fractional part changes

(WavingTrees, Camouflage, Bootstrap and Foreground Aperture)
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connected to the system bus (PLB, Processor Local Bus).

Through the PLB bus, Microblaze has access to memory

regions, configuration registers of the peripherals and the

ethernet interface for data and image sending/receiving. In

addition to the construction of codebooks, the BGS and

blob (group of connected foreground pixels) detection

module, seen in Sect. 4.1, performs an intensive processing

on the pixels of each image to separate foreground and

background, and then proceeds to the blob extraction of the

different objects. The MPMC module, DDR2 memory

controller presented in [32], provides an easy access to the

external DDR2 memory, which stores all the codebooks

and offers efficient high bandwidth access, thus providing a

feasible use for applications requiring real-time processing.

In the following subsections, all details regarding the

‘‘background subtraction and blob detection’’ IP core are

explained. These details include memory management and

access to input images and model information, as well as

every computation related to the different stages of the

Codebook algorithm [19].

4.1 Memory management

The hardware description language that we have used to

implement this IP core is ImpulseC [13], which allows us

to work at a high level of abstraction, enabling the con-

struction of a multi-stage pipelined architecture running in

parallel. The parallel execution of these stages is the key

point for the high performance obtained in our system.

Figure 8 shows the proposed architecture for this IP core.

Before getting into the details of this architecture, it is

important to remark that memory has a key role in the per-

formance of the system and requires an efficient memory

accessing scheme. The codebook model requires an intensive

utilization of memory resources and poor system memory

architectures drastically reduce the system performance. This

has motivated the utilization of high-performance multi-

port memory controllers (Xilinx MPMC for DDR2 and

XPS_EMC_MCH for SSRAM) as well as very specific and

optimized memory ports such as NPI (Native Port Interface)

for DDR2 and MCH (Xilinx Multi-Channel) for SSRAM.

To integrate this IP core into the EDK environment, we

have developed low level and optimized VHDL interfaces

Fig. 7 Scheme of the complete architecture, including connections

between the ‘‘background subtraction and blob detection’’ modules,

peripherals, memory and processor

Fig. 8 Simplified datapath

architecture for background

subtraction and blob detection

core with five scalar units

(C1, C2, C3, C4, C5). The

architecture works in two

different modes: CBC

(codebook construction) and

BGS (background subtraction)
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between the NPI and MCH ports on the one hand, and the

IP core input and output streams, on the other hand

(ImpulseC description was not adequate for these mod-

ules). This interface allows us to read and write efficiently

on the codebooks and image memory map, as well as

creating separate blocks running at different clock fre-

quencies. The input image pixels, which are stored in the

ZBT memory in YUV format, are obtained through the

XPS EMC memory controller MCH port. These pixels

are converted into RGB format before introducing them

into the IP core input pixel stream.

On the other hand, to obtain the codewords for each

pixel which are stored in the DDR2 memory, we will use

the DDR2 MPMC memory controller NPI ports. For an

efficient use of the NPI port, which makes use of all the

available bandwidth, we have configured its interface to

allow for reading and writing data bursts at the same fre-

quency (133 MHz) as the DDR2 memory. In addition, the

NPI port bit-width has been set at 64 bits and the burst size

at 64 words. With this NPI port configuration, Xilinx states

[32] that 923 MB/s can be obtained as maximum total data

throughput. We check this data later on, in the performance

evaluation section.

Sequential and burst access to the DDR2 memory pro-

vides high bandwidth access. However, there is the disad-

vantage of inefficient access to random positions. In Sect. 3,

we explain that a key simplification for our hardware archi-

tecture is the assignment of a maximum number of code-

words per pixel, thus facilitating the efficient use of memory

and caching techniques. As explained in Sect. 3 we limit the

number of codewords to 5, distributed all along the back-

ground model M and cache H: Figures 8 and 9 show the

datapath and memory map configuration where the list of

codebooks is stored. These figures illustrate the processing

elements of the architecture as well as memory interfaces

required, showing multiple parallel modules to point up the

superscalar units used in the architecture. The different ele-

ments represent the computation modules described in

Sects. 2 and 3. In Fig. 8 ,we can see that an image pixel is

read from ZBT memory using the MCH–EMC interface and

at the same time the associated codeword is read from DDR2

using the NPI interface. Each pixel has a minimum of one

codeword (C1) and a maximum of five codewords (C1, C2,

C3, C4, C5), which may belong to M or H:According to this,

up to five comparison units run in parallel using the colordist

and brightness to determine if the current pixel matches any

of the stored codewords (this is represented by the pink box

on the left side of the figure). Purple, orange and brown boxes

represent the computing units that update codewords, after

which this information is stored in the DDR2 memory using

the NPI interface. Finally, the green module is the one that

generates the binary foreground image. These data are also

stored by the NPI interface. Finally, information about the

different clock domain required for the architecture is also

included in this figure.

The amount of memory required to store the codebooks

may change, as the total number of codewords may

increase or decrease dynamically; in order to facilitate the

use of this memory, we have to make sure that all the

codewords are lined up consecutively in memory,

depending on the pixel they belong to, always bearing in

mind that both data reading and writing are performed in

bursts and in consecutive addresses. To maintain this order

without moving large amounts of data nor compromising

the use of the DDR2, we have used two different memory

regions to store the codebooks. During the processing of

frame n; region 1 will be the read buffer and region 2 will

be the write buffer; at the same time, the codewords

meeting condition in Sect. 2.3 will be eliminated and new

codewords will be created and stored in region 2; they will

modify the size of the memory in use. For the next frame

nþ 1; the two memory regions in use will swap, repeating

the same process: region 2 will be the read buffer and

region 1 will be the write buffer.

As it will be detailed in Sect. 5.1, the maximum per-

formance frequency for the IP core has been set at

66.5 MHz. In order to introduce codewords data into the IP

core at the same speed as they are read by the DDR2

(133 MHz) without data input becoming a bottleneck in the

IP core input, we have used four input streams in parallel,

with a maximum of 32 bits of width for each of them. As

Fig. 9 shows, each codeword has a size of 4� 32 bits

words; therefore, thanks to the four input streams config-

uration, it is possible to introduce a codeword on each

clock cycle (66.5 MHz) with a 1,064 MB/s IP core input

bandwith. All the codewords will enter our IP core

Fig. 9 Memory map configuration. The set of codebooks is stored in

the external memory, and its size may change dynamically depending

on the total numbers of codewords. We can also see the variables for

each codeword and the way in which the fixed point representation

enables an efficient use of memory
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following the same order as they are read from the DDR2

memory. In addition to this, the number of valid codewords

for each codebook will be used as a control parameter for

this data input. There is also a fifth input stream with

24 bits of width, containing the pixels of the current image,

already converted from YUV format to RGB. The final

processing output also consists of four parallel streams

providing an updated codeword on each clock cycle.

Finally, there is an additional output stream containing the

blobs present in the binary image after background/fore-

ground segmentation.

This architecture is based on a multi-stage pipelined

structure running in parallel (Fig. 8). In addition, it is

controlled by an embedded Microblaze processor, with two

different operating modes: (1) CBC and (2) BGS. Micro-

blaze is in charge of controlling and commuting between

both modes through the PLB interface. During the con-

struction of the initial codebook, CBC mode, only the

following stages will remain active: match, selection,

updating and creation of new codewords. Once the training

frame is reached, Microblaze will perform step III of the

algorithm for CBC and then will filter the background

model M according to (5). The last two operations are done

only once, after the construction of the initial codebooks.

Since they are not expensive in terms of computation

resources, Microblaze is able to perform them easily, with

no increase in the hardware resources consumption.

Finally, once these tasks are performed, Microblaze will

commute to BGS operating mode.

4.2 Matching codeword selection

The first processing step (Fig. 10) consists of the parallel

evaluation of colordist and brightness for each codeword

and input pixel. Each codeword has its own datapath run-

ning in parallel with the rest, with five scalar units (C1, C2,

C3, C4, C5). The output of each unit consists of a bit which

indicates if codeword x with pixel i meets conditions col-

ordist and brightness. The number of evaluated codewords

changes in each pixel, based on the variations in the values

of the RGB components. A scene with little change will

have many pixels with only one codeword assigned to

them. In this case, our architecture will use just one eval-

uation scalar unit. On the other hand, scenes with a high

degree of changes will have pixels experimenting varia-

tions and, therefore, all its available memory may be used,

thus using all the evaluation scalar units. Figure 10 shows

the fine grain pipelined datapath for evaluating a codeword.

Value kxtk2
is intrinsic to every pixel and, therefore, it is

common to obtain it for each evaluation scalar unit. The

multipliers used to obtain vectors kvik2; kxtk2; hxt; vii2 are

optimized with the embedded resources (DSP48) of the

FPGA Spartan3A DSP. To calculate the square root of

kxtk2; representing the brightness of the current pixel, we

have used a Xilinx IP core generated by the Core Generator

tool and based on the CORDIC algorithm [31] (parallel

architectural configuration).

We use a fixed-point representation for each one of the

scalar units; after assessing accuracy versus consumption

of resources (Sect. 3), we decided the following represen-

tation for input components: ðR;G;BÞ 8 bits integer part

and 0 bits fractional part; ð �RiRþ �GiGþ �BiBÞ 8 bits integer

part and 5 bits fractional part, and for ð�I; ÎÞ; 9 bits integer

part and 3 bits fractional part.

The total number of stages (latency) for each scalar unit

is 18, with a rate (cycles/result) of 1. It must be highlighted

that the parallel CORDIC core has a total number of 12

pipelined stages, and is able to produce a new output data

in each clock cycle.

It might be the case that an input pixel meets the two

conditions (colordist and brightness) with different code-

words. In order to avoid competition between codewords, a

selection stage has been implemented to chose the most

likely codeword (largest f ), which will be updated in the

next stage with the new R;G;B values.

4.3 Update of the matching codeword

The previously selected codeword (Cx) is updated in this

stage following step II (stage iv of Fig. 1) of the algorithm

for CBC. In the case of vm; the update will be done by

using shift operations instead of divisions, allowing for a

low consumption of hardware resources. All variables are

updated in parallel, requiring four pipelined stages with a

rate of 1 cycle/result. During the construction of codebooks

Fig. 10 Fine grain pipelined datapath for evaluating a codeword Cx.

This stage corresponds to the implementation of colordist and

brightness. All these operations are computed using 18 pipelined

stages. The number of clock cycles is indicated in brackets
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(CBC), only the codewords in the background model M

will be updated. Once BGS starts, codewords within the

background model M and cache H are updated.

4.4 Creation of new codewords

If no codeword meets conditions colordist and brightness,

a new codeword will be created by repeating the process

from step II(iii) (Fig. 1) of the algorithm for CBC. Since

we have limited the number of codewords, in the case of

reaching the maximum number of codewords permitted, it

will be necessary to replace the codeword Cx not accessed

for the longest period of time. This new codeword will be

created in the background model M during the CBC or,

otherwise, in cache H during BGS.

4.5 Update layered model

The update of the background model M with new code-

words, as well as the evaluation of conditions associated

with the parameters (TH ; Tadd; Tdelete) are described in

Sect. 2.3. The evaluation of these conditions is performed

in parallel for each codeword. Parameter TH is used for

evaluation only with cache H codewords, whereas param-

eter Tdelete is used for evaluation only with background

codewords in M: At a later stage, after evaluating the

above-mentioned parameters in parallel, the codewords in

cache H which fulfill the condition in parameter Tadd will

be added to the background model M:

4.6 Blob detection

After conducting BGS, the system generates a binary mask

image in which 0 and 1 represent background and fore-

ground, respectively. This binary mask image might include

noise and individual objects decomposed in multiple units;

this is due to the moving object having some similar colors

to the background. To remove noise and connect the

decomposed objects again, morphological operations (ero-

sion–dilation) are applied to the binary mask image, making

use of the resource-optimized architecture described by

Hedberg et al. [8], where a low complexity architecture

using structuring element decomposition is proposed.

Finally, once morphological operations have been con-

ducted, the binary mask image contains groups of con-

nected pixels representing different relevant objects

(blobs). To separate and differentiate these groups (labeling

stage), we will use the efficient run-length encoder (RLE)

algorithm described in Appiah et al. [2], which associates

each pixel to one label placing it into a particular group.

Both of these post-processing stages are included in the

approach described in this paper and therefore in the

evaluation of accuracy described in the next section.

5 Results

This section shows the results obtained by the proposed

implementation. Since this approach is a hardware imple-

mentation which targets low power devices, we have

analyzed the performance of the algorithm regarding sys-

tem resource consumption and real-time constraints, as

well as an objective accuracy evaluation based on the

Wallflower dataset [28].

5.1 System resources and performance

For the sake of hardware feasibility, hardware resources

constraints must be taken into account. In Sect. 3, we have

established the optimal number of codeword processing

units so that the accuracy of the model is not compromised

and the consumption of hardware resources is affordable

(see Fig. 4). In Fig. 11, we can see the consumption of

resources in the FPGA due to the maximum number of

codewords per codebook. In this case, the maximum

number of codewords per codebook is five. In addition,

input variables have been configured with their optimal

representation: [I:8, F:5] for ð �RiRþ �GiGþ �BiBÞ and [I:9,

F:3] for ð�I; ÎÞ: The number of slices grows generally in an

exponential way. This is mainly caused by the non-linear

stages whose expansion does not follow a linear trend.

Note that we have used dedicated DSP48 multipliers on the

system. Each processing codeword unit uses 16 DSP48

multipliers and, therefore, the BGS module has 80 DSP48

for all the Cx and 3 DSP48 which are used to calculate

kxtk2; thus having a total of 83 DSP48. Note that we have

used automatic inference of DSP48 multipliers on the

Fig. 11 Consumption of resources in the FPGA due to the maximum

number of codewords per codebook. Our choice has been marked

with a red rectangle, which corresponds to the configuration

described in Sect. 3
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system, which is the best option, avoiding the use of look-

up table (LUT), as DSP48 inference usually achieves

higher clock rates than LUT inference with considerably

less logic.

Figure 11 also shows the impact of different data bit-

width chosen for the vi ¼ ð �RiRþ �GiGþ �BiBÞ and kxtk2
on

the consumption of resources in the FPGA.

ViSmart video processing board has a DIMM DDR2

memory module whose configuration (detailed in Sect. 4)

enables a large bandwidth (920 MB/s, empirically tested),

which is equally distributed for the tasks of codeword

reading and writing (460 MB/s for each task). Since the

system performance in terms of frames per second depends

directly on the access to the memory module, enabling

large bandwidth is a key feature to reach a high frame rate.

With the proposed organization of dynamic memory, the

total amount of memory required for a particular scene may

vary significantly, depending on the number of necessary

codewords. If the required amount of memory changes, the

maximum frame rate will change too. Bearing all this in

mind, the total number of codewords is an important factor

to determine the processing performance of the system. A

scene with multiple backgrounds (waving trees) will have

more codewords than a scene with a static background with

hardly any change. Thus, the computational capability of

the system can be determined from the average number of

codewords per pixel. For example, with a 460 MB/s

reading bandwidth for the DDR2 memory, each codeword

requiring 16 B, an image resolution of 1;024� 1;024, and

being aware that the average of codewords is 1.20, the

frame rate is computed as follows (9).

Bandwidth DDR2

Image resolution� bytes

codeword
�ðAvg of codewords/pixelÞ

¼ 460MB=s

1;024�1;024�16�1:20
¼ 23:958 fps	 24 fps

ð9Þ

With image resolution of 768� 576, the architecture

reaches a frame rate between 50 and 60 fps depending on

the average of codewords. The tested image sequences

belong to the performance evaluation of tracking and sur-

veillance (PETS) [23] test and Wallflower [28] databases.

Note that the BGS IP core is modular and scalable,

enabling the reduction of the system’s parallelism (and

performance) to fit onto smaller devices. Xilinx XC3SD34

00aFG676 is a low-cost FPGA [3], but we could use

cheaper FPGAs with less logic resources (XC3SD1800A-

4CSG484C). For example, if we reduce the codewords

processing units to only one without reducing the maximum

number of possible codewords (5 in our case), we would

have to process sequentially each one of them to determine

which is the appropriate one. This loss of performance will

be steeper in sequences whose pixels are associated with a

higher number of codewords. Thus, considering the worst

case scenario, we have a factor 5 performance loss.

The whole system has different operating frequencies

(clock domains). Microblaze and the system buses operate

at a frequency of 66.5 MHz, ethernet at 25 MHz, the input

video modules at 13.5 MHz and, finally, the DDR2 inter-

face at 133 MHz. The maximum processing frequency of

our IP core background subtraction is 67.1 MHz; however,

we have configured it at 66.5 MHz (the same as Micro-

blaze’s) to avoid a higher complexity of the FPGA clock

distribution networks.

The system has been implemented and tested in the

ViSmart video processing board of Seven Solutions S.L.

[26], using the Xilinx XC3SD3400aFG676 FPGA.

Resource utilization of the entire implementation is sum-

marized in Table 2, taking into account that this total

resource consumption is determined based on the design

decisions taken earlier (bit-width optimization and maxi-

mum number of codewords per pixel).

We have also analyzed power consumption with the

Xpower tool [31] and reported the results in Table 2.

According to this value, the architecture can be used to

implement a stand-alone system and work on embedded

applications with reduced space occupation and low power

consumption compared to other approaches as high-per-

formance processors (software solutions) and GPUs. Our

system can afford at the same time three advantages: low

power consumption, high performance and physical size.

We have also addressed the evaluation of the real

hardware in comparison with software simulation to check

the final system degradation.

Table 3 shows the total errors obtained by the proposed

architecture, tested with the simulator and the real board, as

Table 2 Complete hardware resources required on a Xilinx

XC3SD3400aFG676 FPGA after place and route

Total system Background

subtraction

Slices 17,337 (73 %) 6,215 (26 %)

DSP48s 95 (75 %) 83 (66 %)

BRAM 44 (35 %) 0 (0 %)

DDR2 interface frequency

(MHz)

133

Microblaze/PLB frequency

(MHz)

66.5 66.5 (Max. 67.1)

Power (W) 5.13

The whole system includes processing modules (background sub-

traction and blob detection core), peripherals (ethernet, SSRAM ZBT,

DDR2), interconnect buses (PLB, NPI, MCH) and a Microblaze

processor
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well as the difference between them and the percentage of

different pixels. From these results, it can be seen that the

degradation is really small,\0.6 % in every test except for

waving trees. These differences are due to restriction of the

software simulator to emulate fixed-point arithmetic of the

hardware system.

5.2 Performance comparison with other approaches

The implementation of BGS algorithms has been addressed

by several authors in recent years, using different approxi-

mations. Jiang et al. [15] proposed an architecture to imple-

ment the MoG model. This architecture provides a calculation

capacity allowing real-time processing of relatively large

RGB images 1;024� 1;024 at a frame rate of 38 fps. To

reduce the large amount of required memory, a compression

scheme was proposed, using similarities for Gaussian distri-

butions in adjacent areas. In this way, they have managed to

save up to 60 % of the required memory bandwidth. Although

that approximation achieved high processing speed, there is

the disadvantage of a considerable loss of accuracy, due to the

compression scheme in use. Other relevant factors, such as the

consumption of resources, cannot be compared with our

approach, since the author does not provide these data.

Another architecture proposed by Appiah et al. [1] uses

a single-chip FPGA for the segmentation of moving objects

in a video sequence. The system performs 209 fps for

640 9 480 frame size and 145 fps for 768� 576 frame

size in RGB. In Sect. 5.3), we have evaluated (software

simulator) this simplification of MoG and it got worse

results than the approach described here.

Our system has been experimentally tested on real

hardware and, although it has a lower frame rate, it is able

to segment objects in complex sequences with resolution

768� 576 at 50 fps or at 24 fps with resolution 1;024�
1;024 as shown in (9), along with much higher accuracy.

5.3 Evaluation of the background subtraction method

In this work, a quantitative evaluation of the proposed

algorithm has been performed so that it can be compared

with other approaches in the literature. To perform a

quantitative analysis instead of qualitative, the use of a

benchmark database with information about the ground

truth is required. For that reason, the Wallflower dataset

has been used to evaluate the algorithms.

The algorithms which have been used for this compar-

ison are mixture of Gaussians (MoG) [27], a segmentation

method based on Bayes decision rules [21], the original

codebook model [19] and two hardware-friendly approa-

ches, a simplification of MoG for FPGAs [1] and a static

algorithm based on Horprasert et al. [9] and Karaman et al.

[18]. These models have been selected since they represent

different kinds of algorithms and they are among the most

frequently used.

The implementations of MoG and the Bayesian algo-

rithm that have been used are versions from the OpenCV

library [22], while the hardware-oriented approaches have

been developed from the information shown in their

respective papers. Each algorithm parameter has been fixed

for the entire benchmark to avoid over-fitting this specific

dataset.

To evaluate and compare various BGS algorithms,

relative measures have been calculated based on true and

false positives and negatives (TP, FP, TN and FN):

Recall;Precision;F1 and Similarity [10, 18].

Recall is the true positive rate R ¼ TP=ð TPþ FNÞ;
and it evaluates the capability of the algorithm to detect

true positives. Precision is the ratio between the number of

correctly detected pixels and the total number of pixels

marked as foreground P ¼ TP=ð TPþ FPÞ; being an

estimation of the capability to avoid false positives. These

metrics, despite offering objective evaluation regarding the

sensitivity of the algorithm to true positives and false

positives, respectively, are not reliable separately. For

example, an algorithm classifying every pixel as fore-

ground would have maximum Recall; although with many

false positives. For that reason, there are two accuracy

metrics, F1 and Similarity; which combine Precision and

Recall to evaluate an overall quality of the segmentation.

F1 ¼ 2
PR

Pþ R
ð10Þ

Similarity ¼ TP

TPþ FPþ FN
ð11Þ

These measures offer a balance between the ability of an

algorithm to detect relevant and non-relevant pixels and

have been widely used in the literature.

The Wallflower benchmark [28] consists of seven

sequences which test different capabilities from BGS algo-

rithms: ‘‘Bootstrap’’, ‘‘Camouflage’’, ‘‘Foreground Aper-

ture’’, ‘‘Light Switch’’, ‘‘Moved Object’’, ‘‘Time of Day’’

Table 3 Total error differences between simulation and real hard-

ware results, in number of pixels and percentage

Test Simulation Hardware Diff %

B 2,100 2,203 103 0.54

C 3,069 3,179 110 0.57

FA 2,806 2,848 42 0.22

LS 6,391 6,428 37 0.19

MO 4 10 6 0.03

TD 1,192 1,185 7 0.04

WT 682 917 235 1.22
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and ‘‘Waving Trees’’. Each of these sequences contains one

evaluation frame with ground truth information. This frame

is chosen so that it evaluates the performance against one

specific difficulty. For example, ‘‘Time of Day’’ sequence

tests adaptation of the algorithm to gradual lighting changes,

while ‘‘Waving Trees’’ contains quasi-periodic movements

in the background, which tests the multi-modal behavior of

the algorithm.

The test ‘‘Moved Object’’ cannot be evaluated using

these metrics, since the ground truth does not have any

foreground pixel. As a result, there are not true positives

(TP) or false negatives (FN), being impossible to compute

Precision or to get useful results from Similarity: For that

reason, the performance in this test is only studied in a

qualitative manner, by observing the resultant images

(Fig. 14).

Figure 12 shows the F1 and Similarity values obtained

by each algorithm in the dataset. From this figure, we can

see that the Codebook algorithm gets very good results,

being the best algorithm in two of the tests, and obtaining

very high marks in the others. Concerning hardware

approach presented in this paper, the accuracy decreases

minimally so that it gets slightly worse results than the

original software one (even though we have performed

many modifications for the sake of hardware resources

reduction). However, these results are in a similar order

with respect to the software implementation, and are far

better than the results offered by any other hardware-ori-

ented solutions available in the literature, such as the

simplification of MoG or the Horprasert implementation.

Considering the comparison with the hardware-oriented

algorithms [1, 9] our approach is better in all tests except

for ‘‘Light Switch’’, since this test requires fast adaptation

to sudden changes, and the adaptation rate has been fixed to

do this analysis. Thus, the implementation presented in this

work represents an improvement in accuracy over the other

state-of-the-art approaches.

Besides the general comparison, it is interesting to see

the accuracy of these algorithms in outdoor and indoor

situations. Instead of constructing figures for all the tests of

the benchmark, we have grouped the sequences in two

groups according to the characteristics of each one, and the

results are obtained as a weighted average of the results of

each test. In the indoor group, we have taken into account

the sequences ‘‘Bootstrap’’, ‘‘Foreground Aperture’’ and

‘‘Light Switch’’. In the outdoor group, the sequences are

‘‘Camouflage’’, ‘‘Time of Day’’ and ‘‘Waving Trees’’.

Figure 13 shows that the quality of the segmentation

provided by the proposed implementation is similar to the

one provided by the original algorithm, with results similar to

the obtained by Bayesian [21] and MoG [27] models, and

that this approach offers a great improvement against other

hardware solutions. In general, a loss of accuracy is shown in

the ‘‘Indoor’’ situation, due to bad results of the algorithms

Fig. 12 The overall performance evaluated using F1 and Similarity:
FGD is the Bayesian algorithm [21], MOG the mixture of Gaussians

[27], HWMOC the FPGA implementation [1], BCD is the approach

by Horprasert et al.[9], and CB soft [19] and CB hard the original and

proposed implementations of codebook Fig. 13 Performance in outdoor and indoor circumstances
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during the ‘‘Light Switch’’ test. However, the results obtained

by our approach are more accurate than the rest.

Finally, it is also important to remark that the final

hardware implementation has a very low degradation

compared with the original software approach [19]. From

Fig. 12 it can be seen that ‘‘Bootstrap’’, ‘‘Light Switch’’

and ‘‘Waving Trees’’ sequences show bigger difference

between both approaches, since those tests require a higher

number of codewords than average. Nevertheless, even

with that degradation, the results obtained by the proposed

architecture represent an improvement against the other

hardware-oriented implementations and are similar to the

results offered by the more advanced algorithms.

In Fig. 14, the evaluation images resultant from each

algorithm on the Wallflower dataset are displayed, as well as

the original frame and the ground truth to evaluate the quality

of the segmentation. This comparison allows us to see in a

qualitative manner the foreground–background segmentation

quality of the different approaches. This subjective evalua-

tion supports the conclusions of the quantitative analysis.

Regarding the ‘‘Moved Object’’ test, only a small region of

\10 pixels has been misclassified by the hardware approach,

being an unimportant mistake since this small area could be

removed by subsequent morphological filtering.

6 Conclusions

In this work, we have designed and analyzed an architec-

ture to carry out the BGS in video sequences. Our approach

is based on the Codebook algorithm, which allows us to

model dynamic and multimodal backgrounds and is well

known because of its robustness and good balance between

accuracy and efficiency.

The design techniques presented in this paper are of

general use and valid to many resource-constrained hard-

ware implementations. A detailed study has been per-

formed to improve the trade-off between accuracy and

computing resources, including model simplifications and

fixed-point operations.

An FPGA implementation of this algorithm has been

developed which offers very low degradation in compari-

son with the original software solution. Since the hardware

environment has limited resources, we have optimized

memory access, low-level interfaces with external memory

and storage of the background model. Thus, the proposed

architecture can use the hardware resources more effi-

ciently without a relevant decrease of accuracy. We have

also addressed the evaluation of the real hardware in

comparison with software simulation to check the final

system accuracy degradation.

We have evaluated the approach with the benchmark

Wallflower to test the quality of the segmentation. The

results are excellent in comparison with other hardware-

oriented approaches found in the literature, being similar

to the ones offered by advanced software algorithms such

as Bayesian and MoG. The implementation is able to

segment objects in complex sequences with resolution

768� 576 at 50 fps or at a higher speed with less reso-

lution sources. Concerning the cost of the system, the

architecture has been designed for low-cost FPGAs

Spartan-3 by Xilinx, with an estimated power consump-

tion of 5.13 W.

Future work will include improvements over the code-

book model with the incorporation of spatio-temporal

context described in [30], as well as the refinement of the

blob detection stage by using the architecture from [5].

Furthermore, the use of faster memory (DDR3, QDR-II) or

FPGAs with on-chip memory, such as Virtex-6, could

remove limitations related to bandwidth, allowing further

processing with the same board.
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