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Abstract This paper presents a novel fall detection sys-

tem based on the Kinect sensor. The system runs in real-

time and is capable of detecting walking falls accurately

and robustly without taking into account any false positive

activities (i.e. lying on the floor). Velocity and inactivity

calculations are performed to decide whether a fall has

occurred. The key novelty of our approach is measuring the

velocity based on the contraction or expansion of the

width, height and depth of the 3D bounding box. By

explicitly using the 3D bounding box, our algorithm

requires no pre-knowledge of the scene (i.e. floor), as the

set of detected actions are adequate to complete the process

of fall detection.

Keywords Kinect � Fall detection � Home assistance �
Real-time processing � 3D bounding box analysis

1 Introduction

Computer vision-based fall detection is a very important

application that has been used to save lives [21]. A fall

occurs when a person accidentally falls/slips while walking

or standing. Age is a significant factor that is closely linked

to severe falls [18]. Several studies have shown [12] that

elderly people experience at least one fall every year. Also,

falls are the main cause of accidental death in older adults

aged 65 or more, based on a review of 90 epidemiological

studies [10]. Other resources show the injuries caused from

falls in the general population [19].

A fall may be due to health and ageing-related issues,

abnormality of walking surface or even lack of concen-

tration. A falling person requires immediate assistance after

the incident. Therefore, an effective fall detection system

should accurately and robustly detect a fall when it occurs,

without false detections (e.g. lying on the floor for the

purpose of an exercise) for application in the general

population.

This work introduces a real-time algorithm that utilises

the human 3D bounding box, expressed in world coordi-

nates. Depth data are acquired using infrared (IR) signal

from Kinect which is not affected by lighting conditions.

Using the 3D bounding box our algorithm calculates the

first derivative (velocity) of width, height and depth to

determine whether a particular activity is a fall or not. Our

algorithm does not require any pre-knowledge of the floor

plane coordinates or the detection and tracking of a par-

ticular body part as other systems do [11, 17, 23].

Also, we have tested our algorithm to detect a range of

falls (backward, forward and sideways), while setting the

sensor to different positions (side view, frontal view and

back view) and different type of actions performed at dif-

ferent speeds. Those non-fall activities could cause a false

positive (FP) detection especially when a person is lying

down, crouching down, picking up an item from the floor,

etc. The main algorithm is designed as a simple two step

Boolean decision tree where several output data are

checked sequentially. The parameters of the decision tree

are estimated by random search optimisation. Furthermore,
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the usage of OpenNI [3] significantly helps the pre-pro-

cessing of the depth data in terms of background subtrac-

tion and user identification.

Other existing approaches share limitations regarding

privacy issues since the captured video contains visual

information of the involved person in a falling incident. A

solution towards protecting privacy is the analysis of data

that does not reveal any facial characteristics. Depth data

that are derived from the Kinect sensor and used in our

system do not contain any identifiable visual information.

1.1 Related work

There is an endless list of fall detection systems which use

different technologies and techniques. We will discuss

some of those technologies and list them in two different

groups, one for non-vision-based solutions and another for

vision based. Since our work is specifically based on 3D

vision we will also extend our discussion to this particular

area.

1.1.1 Non-vision systems

Normally, such systems use wearable motion detectors

with accelerometers and gyroscopes [7, 20] capable of

detecting the rapid motion changes of the person who

wears them. The problem with such detectors is that the

person who is supposed to use the device usually forgets or

ignores the importance of wearing it. Therefore, no fall is

detected as the device is not activated.

Push-alarms [15] are also devices carried by the person

prone to falls and can be activated by pushing the alarm

after the fall. Similarly, this technology can be very weak

as the person may not be carrying the device or may be

unable to push the button if the person is unconscious due

to the fall.

Acoustic and ambience sensors systems use micro-

phones or vibration sensors. Such systems detect the

loudness and height of the sound to recognise a fall [22].

Others, detect the floor vibration [5]. Such systems are

limited to indoor use only due to their restrictive applica-

tion range.

1.1.2 Vision systems

Such systems use image analysis to detect falls for the

elderly and general population. They require one [8, 33]

or several cameras [6, 9]. They do not require a device

attached to the person as they are able to detect the

human motion, using computer vision algorithms. Ther-

mal cameras are also used to locate and track a thermal

target and analyse its motion to detect a fall’s character-

istic dynamics and then to monitor target’s inactivity [26].

One approach of fall detection is to analyse the velocity

of the falling person as proposed by biomechanics [30]. In

[24], head’s velocity is used to detect a fall using 3D

tracking. Their approach may not be robust as they detect

two out of three falls but it can differentiate between the

actual falls and the fall-like events i.e. sitting. Other

vision approaches focus on posture-based events as in

[14]. In that study, the authors focus on three types of

falls (forward, backward and sideways). While their

approach is robust as they can differentiate between

falling and lying/sitting, it is considered also limited as

the raw data used for their analysis are captured only

from the side-view.

1.1.3 3D vision systems

Vision depth image systems use 3D cameras or depth

sensors to track and analyse the human motion. Depth

image analysis has an important advantage regarding

identity protection and privacy, since the delivered data

reveal no facial characteristics. There are only a few

other previous studies that use a 3D/depth camera/sensor

[11, 17, 23]. In the next section, we will further discuss

those approaches, as our work lies within this particular

area.

1.2 Technical criticism of 3D methods

Since our system analyses the depth information using

Kinect’s IR sensor we will give a more detailed analysis to

emphasise the benefits and weaknesses of the existing

approaches. In [17] the authors use a 3D camera to develop

an elderly monitoring system, which is also capable of

detecting falls. Their approach involves fitting an ellipse

around the subject after a series of pre-processing steps

(image thresholding, smoothing, eroding and dilating) to

have resulting images with fewer blobs (assuming that the

biggest blob defines the human silhouette). Further, their

algorithm maps the centre of the blob into world coordi-

nates by a linear calibration method. For distinguishing

activity patterns of fall-like actions the authors use an

online-learning method described in [16].

However, their methodology requires considerably more

processing time due to the online-learning process; it

requires pre-knowledge of the scene (world coordinates),

which depends on the visibility of the floor (occlusions and

objects laid). Also, the description of falls or other activi-

ties is not defined in their work i.e. one can brutally sit on a

sofa; the viewing position may be different; the ‘‘lying

sequence’’ comprised of several different postures not

properly defined. Finally, there is no proper evaluation of

their algorithm, as it is tested only on one subject, without

consideration of FPs or missed detections.
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Diraco et al. [11] describe an approach based on the

distance of a falling person from the floor, inactivity and

pose estimation. The floor is detected using RANSAC [13]

which fits a plane to a 3D point cloud that covers the

largest area. This off-line process requires extra time to

perform and is required whenever the camera is installed. It

is a complex process that requires the detected planes and

the external calibration parameters and is performed in two

steps: first detecting large enough planes and second fil-

tering those planes. Next, their method calculates the 3D

centroid of a person and measures its distance from the

floor. If this distance is below a certain threshold the

algorithm checks whether there is any further motion/

activity. A fall is detected by combining the distance of the

body’s centre from the floor, the inactivity of the fallen

person and the orientation of the body spine as derived by a

3D pose estimation (Reeb Graph [31]). However, the latter

is computationally expensive.

Rougier et al. [23] propose a Kinect-based system to

detect falls. Their system first uses the subject’s centroid to

measure the distance from the floor. Then, they use the

centre of mass to calculate the velocity. A fall is detected

when the velocity is above a certain threshold while the

distance of the centre of mass to the floor is below another

certain threshold. The floor is detected by a histogram

analysis of a V-disparity image [32]. The authors claim that

their algorithm is able to identify a fallen person while

occluded, based on the velocity detection. However, their

evaluation is limited to a small number of experiments with

no indication about the number of subjects performing. In

addition, there is no clear description of the type of falls

and their experiments do not include fall-like activity

patterns i.e. when someone is picking up something very

fast from the floor or lying very fast on the floor or brutally

sitting on a sofa. Therefore, there is no proof that a FP is

avoided when a person performs a fall-like activity.

As an overall criticism, we can say that all the described

systems require floor coordinates to operate. Furthermore,

they do not provide any specific information regarding

tracking the subject or any further information regarding

how the activity patterns have been defined. Also, another

important point is the rather limited number of experiments

(raw dataset) used for evaluating those methods except

[11].

2 Kinect and OpenNI

Released in 2010 by Microsoft, Kinect is the fastest selling

consumer electronics device [1]. Kinect is the first game

console that does not require any push remote/joistick or

any other form of control device as it is designed to

accurately recognise the human motion and translate it into

commands/actions. Kinect uses three types of sensors: an

RGB camera, an IR and an acoustic sensor; all developed

by PrimeSense [4]. Our system uses the IR sensor. Our

captured videos have 640 9 480 resolution at 30 fps,

although the maximum resolution delivered by Kinect is

1,200 9 960 at 30 fps. The maximum range of Kinect’s IR

sensor is 10 m but the actual effective range depends on the

environment. Practically, depth images appear noisy

enough to cause misinterpretations beyond 7 m.

First attempt to use Kinect in non-gaming applications

was achieved by reverse engineering at the end of 2010 [2].

Since then, numerous applications have been developed for

action recognition and augmenting reality.

One of the most important development tools for Kinect

is OpenNI [3]. OpenNI is an open source tool also provided

by PrimeSense. With OpenNI, the developer can access the

depth information of a human subject and estimate and

track its articulate pose which can be used for human

tracking, gesture and motion recognition. Furthermore,

OpenNI allows the developer to change and add new

routines and processes to enhance or extent the capabilities

of the existing tools. Nevertheless, OpenNI does not pro-

vide access to the motor, hence, no information about the

tilt angle or accelerometer can be delivered.

3 Methodology

In this section, we will describe our technique for fall

detection. Our algorithm analyses the depth information of

the subject (3D bounding box). OpenNI provides a method

(UserGenerator) to analyse the depth information of the

scene. UserGenerator performs background subtraction and

motion tracking. For our analysis we use only three

parameters as estimated by OpenNI, i.e. the width, height

and depth of the human posture, which define a 3D

bounding box. This simplified set of parameters delivers a

more reliable result than articulated pose estimation. From

our early experiments we found that pose estimation may

fail during the fall and is not possible to recover a fallen

posture at its final state. Also, further analysis of the 3D

articulated model requires significantly more computa-

tional power than the 3D bounding box analysis. The next

section discusses in more detail the 3D bounding box

extraction, while in the following sections we describe how

the 3D bounding box’s parameters are used to detect a fall.

It is not a requirement for our algorithm to calculate and

use the floor coordinates as previous approaches do (see

Sect. 1.2). Further to that, we must note that a fall is a fast

activity and a high frame rate in real-time systems is

advisable to avoid missed detections.
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3.1 Overview

The 3D bounding box is created using OpenNI’s Depth-

MetaData process to contain the depth map of the user with

world coordinates Xmax, Ymax, Zmax, and Xmin, Ymin, Zmin.

The width, height and depth of the 3D bounding box are

estimated as the differences of the maximum and minimum

points along the X, Y and Z dimensions, respectively.

Hence, width W = |Xmin - Xmax| , height H = |Ymin -

Ymax| and depth D = |Zmin - Zmax|. The initial subject’s

detection and tracking are operated by a standard OpenNI

function as we see in Fig. 1. Traditionally, the position of

the 3D bounding box is tracked to estimate the motion of

humans or other objects. In our approach, a fall is detected

by analysing the 3D bounding box’s width, height and

depth and ignoring the global motion of 3D bounding box.

The operation of our algorithm runs inside OpenNI’s

main loop of the depth map process. In Algorithm 1 we

describe the operation of our method. The next section

explains the different steps of our algorithm.

3.2 3D Bounding box data analysis

As we described in the previous section, each user is

wrapped into a 3D bounding box. The dimensions of the

3D bounding box is the only input our algorithm requires to

operate with. OpenNI analyses each frame and a new 3D

bounding box is fitted every time with a new set of width,

height and depth values. Our algorithm analyses those

values, as well as their first derivatives at each frame to

detect a fall.

Several studies discuss the fact that during the fall, the

width of the 2D bounding box is expanding, while the

height is contracting [27, 28]. Those studies require the

initial and final aspect ratio of the 2D bounding box to

confirm a fall, while our approach does not measure the

initial/final bounding box dimensions. Figure 2 shows a

fall detected by a sensor placed from a side view. In our

case, we will use a 3D bounding box which behaves

Fig. 1 Depth map of the scene. User is identified by OpenNI
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similarly but uses three dimensions instead of two. The

height of the 3D bounding box will contract during the fall

and the width and/or the depth will expand. We combine

the two expanding dimensions of the 3D bounding box W

and D. The composition of depth–width WD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þW2
p

:

We have split the fall event into states S = S1, S2,

S3, S4. For each state we have the height H = H1, H2,

H3, H4 and the width–depth WD = WD1, WD2, WD3, WD4.

3D Bounding box’s height first derivative is defined

by vH ¼ Hi�Hi�1

ti�ti�1
in a particular state Si with Hi. Similarly,

the velocity of the composition is defined as vWD ¼
WDi�WDi�1

ti�ti�1
:

In Fig. 3 we see the change of width, depth, height and

width–depth composition of the bounding box as well the

first derivatives of the height and the composition of

width–depth during a fall. We have also noticed that the

signal delivered by OpenNI is quite noisy, especially in

regard to Z dimension, therefore, we use a Kalman filter

[29] to smooth the velocities as seen in Fig. 3.

3.2.1 Fall initiation by velocity

Human motion is articulated and therefore quite complex.

However, it has been seen that a falling activity can be

differentiated from other activities such as sitting, bending

or lying mainly by the velocity of the centre of mass [30].

However, estimating the centre of mass may be very

complicated. Instead, our algorithm measures the velocities

of height and the composite vector of width and depth. The

resulted vWD and the vH are checked during N sequential

frames. The velocity thresholds for the height TvH and the

width–depth composite vector TvWD of the bounding box,

as well the duration of the fall (N frames) are estimated by

performing random search [25] that optimises the classifi-

cation score in a training dataset.

Fig. 3 Width, height, depth distances and width–depth, height veloc-

ities of the 3D bounding box during a sideways view fall. Smoothed

velocities for WD and H show the improvement of the signal

a

b

Fig. 2 2D Bounding box during a fall; the height reduces while the

width increases (a) as seen in [27, 28], where the initial and final

bounding box dimensions are required. Our approach using a 3D

bounding box of the height and the composition of width and depth (b)
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When both velocities (vWD, vH) exceed particular

thresholds (e.g. 3D bounding box’s height velocity, etc.),

fall initiation is detected. The next paragraph discusses the

final step. In Fig. 4b we see the visual result of velocity

detection for side fall, captured sideways.

3.2.2 Completion state of a fall by inactivity detection

A fall always ends at an inactivity state where no motion is

detected (i.e. resting place). Therefore, the fall completion

is detected by checking the appropriate velocity condition.

Specifically, our method involves monitoring the subject

for some time (e.g. 2 s) to detect any motion (Figs. 4c,

6c, 12c). If no motion is occurred then the algorithm is

flagged as ‘‘Fall Detected’’ (Figs. 4d, 6d, 12d). It is only

required for the height velocity (vH) to be less than a certain

threshold to declare the state as inactive.

4 Experimental results and discussion

4.1 Experimental setup and dataset

The initial step for setting such a system requires direct

view of the scene where a fall is possible to occur. For that

reason, Kinect has been attached to a tripod at the height of

204 cm and inclined to the floor plane. Due to the sensi-

tivity of the sensor, Kinect has been placed at a distance no

farther than 7 m from the area of a possible fall.

For our evaluation we captured 184 video samples of

actions that included: 48 falls (backward, forward and

sideways), 32 seating activities, 48 lying activities on the

floor (backward, forward and sideways) and 32 ‘‘picking up

an item from the floor’’ activities, performed by eight

different subjects. Other activities that change the size of

the 3D bounding box were also performed (i.e. sweeping

with a broom, dusting with a duster).

In addition, we instructed two subjects to perform in

slow motion to imitate the behaviour of an elderly person.

Therefore, slow falls and other actions were performed to

demonstrate how the algorithm operates in such cases. We

believe that this approach (i.e. adult subjects performing

Fig. 4 Side view of a sideways

fall. Bounding box already

detects the user (a), fall initiated

by calculating velocity (b),

inactivity detected (c), fall

detected (d)
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Fig. 5 Circles indicate 100 triplets estimated by random search.

Their median (tvH = 1.18m/s, TvDW = 1.20m/s, N = 8 frames) is

marked as a cross and is used for our experiments
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slow activities) is more feasible and ethical in an effort to

simulate falls within the elderly population. We captured

12 such videos of slow falls and another 12 videos of other

slow activities (sitting, sweeping, lying down etc).

Those videos were captured from three different angles

to imitate several different views of an activity in a real

environment. Subjects performed the fall actions on a

30-cm thick mat to allow realistic performance of falls.

4.2 Training

The dataset was split into a training and a testing set; the

former consisted of 12 falls and 22 non-fall video samples

from four subjects, while the latter consisted of all the rest.

We ensured that some extreme cases (slow/fast falls, sit-

ting, lying etc.) were included in the training set to cover

all the intermediate case activities.

Fig. 6 Fall detected in a front

(angled) view

Fig. 7 Lying on the floor
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The threshold values for velocity TvH, TvWD as well as

the duration N of the fall in frames were estimated by

performing random search on the training dataset multiple

(100) times. Since the fall and non-fall sequences of the

training dataset were separable, many triplets that gave

100% classification score were found. We analysed

the testing set using the median values of those triplets

which are considered reliable estimates of our method’s

parameters (see Fig. 5). The velocities derived from our

training confirm the values obtained from [30] where fall-

related velocities are above 1 m/s.

4.3 Results

We have measured the per frame processing time and we

found it to be around 0.3–0.4 ms (Intel Core Duo,

Fig. 8 Sitting brutally on a

chair

Fig. 9 Picking up an item from

the floor in fast motion
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2.4 GHz). We have produced a series of visual results to

demonstrate the variety of our experiments: forward fall,

front view (Fig. 6), lying on the floor, front view (Fig. 7),

sitting on a sofa, side view (Fig. 8), picking up an item

from the floor, side view (Fig. 9). All falls were accurately

detected (i.e. no missed detections).

Another set of experiments includes more specific

actions, such as sweeping (Fig. 10) and brutally sitting

(Fig. 11). Sweeping, changes the 3D bounding box mostly

in Z, X while the velocity is not reaching any of the

thresholds (TvH, TvWD). Brutally sitting is a case where the

motion is not lengthy enough in time to be detected as a

fall, as the subject’s motion is halted when sitting on the

sofa. Therefore, no fall is detected in either actions.

To further test our algorithm we have performed a set of

slow falls (Fig. 12) to imitate an elderly person’s actions.

Fig. 10 Sweeping activity

Fig. 11 Brutally sitting on a

sofa
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An elderly person’s fall is slower at the beginning of the

action. However, as the falling action progresses, gravity

and lack of balance increases the velocity of the fall and

therefore, these kind of falls are detected by our algorithm.

Finally, we tested our algorithm with additional non-fall

scenarios to see how it behaves when the subject is lifting

an object and then placing it back on the floor or on a table.

For those experiments, we captured 40 additional videos

from three subjects in actions such as lifting a chair and

placing it back, lifting and rotating a chair and similarly

placing it back, lifting a box and either placing it on the

floor or on the table and then moving away. During these

experiments, although the bounding box may increase or

decrease in width and/or depth, no significant change in

height dimension is observed. Therefore, although the vWD

velocity may be increased the vH remains at normal levels,

Fig. 12 Slow fall

Fig. 13 Picking up and

dropping a box
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hence, no fall detection is initiated. We used a large box to

investigate how our method performs in those scenarios,

since the box would dramatically change the size of the 3D

bounding box. Figures 13, 14 show two of the set images

from the above experiments.

The algorithm was proved stable, even when half of the

subject’s body was occluded by the box. This is because

the vWD remains at normal levels (i.e. well below the TvWD)

while the vH exceeds the TvH. Therefore, a fall detection

will not be initiated since both vWD, vH must be above their

thresholds.

The bounding box as we see in Figs. 13, 14 will split

into two different bounding boxes (one for the subject and

the other for the object) when the user places the object on

the floor/table. This is caused by the fact that the current

OpenNI version initialises separate bounding boxes using a

motion detector. The system will still be able to track the

subject and if a fall occurs, it will raise an alarm. However,

if for any reason the object (i.e. box) falls too, this may also

be detected as a fall.

5 Conclusion

We have developed a robust walking fall detection system

that requires no pre-knowledge of the scene. We have

managed to isolate and analyse the fall event as an inde-

pendent activity without specifying or detecting any

external parameter set such as the floor plane coordinates.

The simple and lightweight algorithm has negligible

computational time (0.3–0.4 ms) and is capable of

detecting any walking fall without FPs caused by non-fall

actions, i.e. sitting brutally on a chair, lying on the floor or

crouching down (i.e. fast action).

While previous fall detection approaches use a particular

point of the body such as the head or the centre of mass to

measure the falling velocity, our approach is based on the

analysis of the 3D bounding box’s first derivatives.

Taking the above into account, our algorithm can be

characterised as one of the reduced complexity that

requires three parameters to operate; the width, height and

depth of the subject. Our system is fast, robust and uses an

inexpensive sensor, therefore, it can be easily applied on a

large scale for reliable fall detection. With its generic

application, our system can be used in the general popu-

lation and also contribute in supporting independent living

of the elderly.
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