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Abstract The identification of moving objects is a basic

step in computer vision. The identification begins with the

segmentation and is followed by a denoising phase. This

paper proposes the FPGA hardware implementation of

segmentation and denoising unit. The segmentation is

conducted using the Gaussian mixture model (GMM), a

probabilistic method for the segmentation of the back-

ground. The denoising is conducted implementing the

morphological operators of erosion, dilation, opening and

closing. The proposed circuit is optimized to perform real

time processing of HD video sequences (1,920 9 1,080 @

20 fps) when implemented on FPGA devices. The circuit

uses an optimized fixed width representation of the data

and implements high performance arithmetic circuits. The

circuit is implemented on Xilinx and Altera FPGA.

Implemented on xc5vlx50 Virtex5 FPGA, it can process

24 fps of an HD video using 1,179 Slice LUTs and 291

Slice Registers; the dynamic power dissipation is

0.46 mW/MHz. Implemented on EP2S15F484C3 StratixII,

it provides a maximum working frequency of 44.03 MHz

employing 5038 Logic Elements and 7,957 flip flop with a

dynamic power dissipation of 4.03 mW/MHz.

Keywords Image motion analysis � Image segmentation �
Morphological operations � High definition video � Field

programmable gate arrays

1 Introduction

Motion detection is one of the most important tasks in

computer vision. Segmentation algorithms able to find

moving objects (Foreground, Fg) in video sequences have

been developed in the past and electronic systems have

been implemented and employed in applications like video

surveillance [1–4], and traffic monitoring [5–8].

A segmentation algorithm begins with an identification

phase that detects objects supposedly belonging to the Fg

[9]. The input data of a segmentation algorithm are a video

sequence that can be both a grayscale image or a RGB

image. The output of the segmentation algorithm is a video

sequence composed of binary images in which a pixel is

represented with one bit that is equal to ‘0’ if the pixel is

classified as background or ‘1’ if the pixel is classified as

foreground (or viceversa). The identification is usually

followed by a denoising phase that uses morphological

operators to remove noise and enhance the appearance of

the binary images [10].

The literature reports various contributions for the initial

segmentation of the Fg pixels [11–22]. Some of the seg-

mentation algorithms, named background subtraction

methods, compare the frame with a reference model

(background, Bg) [14–21]. Target of these algorithms is the

determination of the Bg model. Further, this model has to

be updated to track the background scene.

Chien et al. [14] builds a Bg model starting with the

assumption that, if a pixel is stationary for a prefixed

number of consecutive frames, the probability that it

belongs to the Bg is high and, therefore, the pixel can be

included in the Bg model. Ridder et al. [15] and Karmann

and Brandt [16] use a Kalmann filter while Toyama et al.

[17] employs a Wiener filter. Jacques et al. [18] proposes an

algorithm based on median filtering to adapt the Bg model.
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Algorithms [15–18] take into account changes in the

lighting of the Bg and the eventuality of moving objects that

become static and exhibit low computational complexity.

Statistical Bg models have been proposed in Refs. [19–

21]. The identification method, proposed in [19], models

the fluctuations in a pixel value with a statistical model

based on a single Gaussian distribution. This allows a pixel

by pixel representation of the Bg with larger variance for

pixels that experience wide change of lighting.

The algorithms in Refs. [15–18] and the statistical

method of Wren et al. [19] are not suited to describe

multimodal backgrounds in which a pixel oscillates

between two or more values (e.g. moving leaves).

Stauffer and Grimson [20, 21] propose a statistical

model, known as Gaussian mixture model (GMM), similar

to [19] with the difference that each pixel is modeled with a

mixture of Gaussian distributions to provide good perfor-

mances in both presence of illumination changes and

multimodal backgrounds.

The GMM is the Bg detection algorithm adopted in the

OpenCV (Open Source Computer Vision) library [22]

developed by Intel to provide a common base of computer

vision instruments able to extract relevant details from the

images and to process them in automatic way. The Op-

enCV library is becoming a widely used standard. At the

time, the version 2.2 of the library is available, it includes

more than 2,000 software algorithms, has been downloaded

more than two million times and its user group is composed

of more than 40,000 people. The importance of the Op-

enCV library is demonstrated by the fact that most (if not

all of them) of the companies working on electronic sys-

tems for computer vision are now studying or implement-

ing the OpenCV libraries to provide systems that can be

easily transferred to new applications.

The GMM algorithm proposed in the OpenCV library

modifies the algorithm of Stauffer and Grimson [20] to

improve the initial learning phase.

Main drawback of the GMM algorithm is the number of

complex non linear computations required for each pixel of

the image to generate the updated Bg model. The calcu-

lations increase with the number of Gaussians per pixel

and, fixed the number of Gaussian distributions, grows with

the number of pixel per frame. The computational

requirements, in conjunction with the target of processing

high definition (HD) video streams, require a hardware

implementation since a software implementation does not

meet the required performances.

The actual trend is towards high performance systems

with increased functionalities and towards lightweight and

portable systems. The increased functionalities are, as

example, higher video resolution and stereoscopic vision

conjugated with the algorithmic smartness that makes the

system able to adapt to variable conditions. The reduction

in cost and the shift to portable systems are mainly targeted

through the extensive use of integrated digital electronic

systems and, very often, FPGA-based platforms.

High speed Fg/Bg processors have been proposed in

Refs. [20, 23–36]. Between the referenced papers, it is

possible to find implementations of the GMM algorithm

that improve the method in various aspects such as scala-

bility, quality of the segmented image, shadow removal,

ghost detection, etc.

Stauffer and Grimson [20] proposes an implementation

of the GMM algorithm able to process 11 fps for a small

frame size of 160 9 120 on an SGI 02 workstation with a

RIOOOO processor. The implementation proposed in [20]

is. therefore, able to process 0.2 Mps (Mega pixels per

second). Minghua and Bermak [23] proposes an ASIC

implementation of a pattern recognition system based on a

GMM classifier that, implemented in 0.25 lm technology

is able to run at 80 MHz. Silicon area occupation is

1.69 mm2. The GMM classifier of [23] is not applied to Fg/

Bg identification but provides an indication of the expected

performance for an ASIC implementation.

Varcheie et al. [24], Lin et al. [25] and Suhr et al.[26]

propose improved GMM algorithms. The authors of [24]

combine a GMM model with a region-based algorithm

based upon color histograms and texture information. In

their experiments, the proposed method outperforms the

original GMM algorithm but with considerable computa-

tional cost. The algorithm proposed in [24] processes

2.2 Mps with an Intel Xeon 5150 processor.

Lin et al. [25] improves the GMM algorithm by adding

further information to each processed pixel. This allows a

different learning rate for each pixel and a better adaptation

to the dynamic of the scenes. The paper shows that the

quality of the segmented videos overcome the conventional

GMM algorithm. No info is provided in [25] with respect

to the computation requirement or the bandwidth of the

method. It is expected that the required bandwidth is higher

than what requested by the conventional GMM algorithm.

Suhr et al. [26] proposes a GMM algorithm that is able

to directly process Bayer-pattern color images (avoids the

RGB conversion). The proposed method requires a CPU

time slightly larger than the conventional GMM and has

been implemented on 2.8 GHz Intel I7 platform.

Kristensen et al. [27], Jiang et al. [28, 29], Minghua and

Bermak [30] and Genovese et al. [31] propose different

FPGA implementation of the GMM algorithm. In [27], the

design of an automated digital surveillance system running

in real-time on an embedded platform is presented. The

circuit proposed in [27] is able to process 25 fps with frame

size 320 9 240 and hence reaches 1.9 Mps.

In [28], the research group of [27], proposes a circuit

with improved processing capabilities. When implemented

on VirtexII FPGA platform, it processes 1,024 9 1,024

390 J Real-Time Image Proc (2013) 8:389–401

123



images at 38 fps. Processing capabilities of Jiang et al. [28]

are, therefore, 39.8 Mps.

The algorithm of Jiang et al. [29] improves the memory

throughput with respect to [28] employing a memory

reduction scheme. This entails an increase of the hardware

resource utilization. The resulting processing capabilities

are, however, reduced with respect to [28] and only reach

7.68 Mps.

In [30], an architecture for a GMM-based classifier based

on distributed arithmetic is developed. The implementation

is carried out on the Celoxica-RC1000 board equipped with

the Xilinx XCV2000E FPGA. The maximum working fre-

quency of the circuit proposed in [30] is 27.01 MHz. It is

able to process 27 Mps. Kristensen et al. [27], Jiang et al.

[28, 29] and Minghua and Bermak [30] are not able to

process 41.5 Mps and, unfortunately, they do not provide

information regarding pipeline levels or power dissipation

of the systems. Further, the implementations of [20, 23–30]

do not comply with the OpenCV GMM algorithm.

In [31], an hardware implementation of the GMM

algorithm that complies with the OpenCV algorithm and

processes HD videos has been proposed. The circuit of [31]

exploits fixed width arithmetic and minimizes the data

bandwidth towards the memory.

Additional Fg/Bg identification algorithms are proposed

in [32–36]. As example, in [35], a hierarchical method for

foreground detection that is able to remove the shadows is

proposed. Being block based, the algorithm of Guo et al.

[35] can trade off processing need with the quality of the

detection. When implemented on 2.4 GHz Intel I7 plat-

form, the proposed algorithm is able to process from a

minimum of 2.3 Mps to a maximum of 6.8 Mps.

Barnich and Van Droogenbroeck [36] proposes the ViBe

algorithm. It is based on integer calculation and hence does

not need a floating point unit and provides a random

updating of the background that makes the algorithm

adaptable to various situations. ViBe does not rely on a

particular pdf distribution for the background model and

also provides a technique for the fast adaptation of sudden

changes of the background. Other characteristics are the

resilience to camera displacement and the different adap-

tion time for foreground and ghost images. ViBe has been

tested on an Intel 2.67 GHz I7 CPU which provides a

processing speed of 61.4 Mps and has also been imple-

mented on a low speed ARM processor with a reasonable

processing speed of 0.46 Mps.

Table 1 summarizes the performance of the previously

proposed foreground identification processors. In this

paper, it has been chosen to focus on the implementation of

an FPGA-based processor that implements the GMM

algorithm since this is the algorithm proposed in the Op-

enCV library. As a consequence, Kyrkou and Theocharides

[32], Aguilar-Ponce et al. [33], Juvonen et al. [34], Guo

et al. [35] and Barnich and Van Droogenbroeck [36] are not

considered as a comparison in this paper.

The binary mask provided by the segmentation circuit is

usually noisy with Fg objects that are often split into

several parts. The second step of the segmentation proce-

dure, the denoising phase, processes the binary mask of the

Fg/Bg tags employing morphological operators with the

target of removing the noise and generating solid and

separated blocks for the moving objects.

The mathematical morphology [37, 38] is derived from

set theory and provides powerful tools for geometrical

image analysis, image and video compression, error cor-

rection, noise suppression and video segmentation.

Morphology operators can be employed to process

binary, gray-scale and color images [39–41]. The archi-

tectures that implement morphological operators can be

divided into two large classes: systolic arrays [42, 43];

pipelined systems [44].

This paper proposes a hardware system that carries out

the phases of identification and denoising. The hardware is

composed of the identification block that implements the

GMM algorithm and a morphological unit that implements

opening and closing operations. Compared with the pre-

viously reported contributions, the proposed circuit is able

to process HD (1,920 9 1,080 frame size) video streams in

real time when implemented on FPGA circuits, while

reducing the programmable logic occupation. Further, the

proposed circuit is compatible with the OpenCV imple-

mentation of the GMM algorithm, a feature that improves

both the accuracy of the system and makes the circuit

useful for a wide base of OpenCV developers. The circuit

is implemented on different FPGA devices varying the

number of pipeline levels. In every case, the programmable

logic occupation, the speed and the dynamic power dissi-

pation of the implementation are reported. As example,

when implemented on xc5vlx50 Virtex5 FPGA, the pro-

posed circuit works at 50.5 MHz. Programmable logic

occupation and power dissipation are 4.09% of the FPGA

and 0.46 mW/MHz. Implemented on StratixII, the circuit

can process HD videos at 21 fps using 5,038 Logic Ele-

ments, 7,957 flip flop and exhibiting a dynamic power

dissipation of 4.03 mW/MHz.

The paper is organized as follows. In Sects. 2 and 3 the

GMM algorithm and the Morphological operation are

described. The proposed hardware implementation and its

performance are detailed in Sects. 4 and 15.

2 Gaussian mixture model

The GMM algorithm [20] is a probabilistic algorithm par-

ticularly suited to identify moving objects in multimodal

backgrounds in which shadows and objects showing
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repetitive motion (e.g. rippling waves or wishing leaves) are

present. The statistic of each pixel is modeled with a mix-

ture of K Gaussian distributions. Each Gaussian has a dif-

ferent mean variance and a different weight. The sum of the

K Gaussian distribution represents the probability distribu-

tion of the intensity of a given pixel. In this way, a pixel

exhibiting a fixed intensity will be represented with a

Gaussian with weight equal to one centered at the pixel

intensity and with very small variance, while the remaining

K- 1 Gaussian distribution will have weight equal zero. A

pixel whose intensity oscillates between two values is per-

fectly modelled with two Gaussians, centered on the two

values and whose weight is 0.5. The number of Gaussian

distributions is fixed and equal for each pixel of the frame.

The proposed implementation employs three Gaussian

distributions to process grayscale 8 bit per pixel HD images.

2.1 Statistical model

Each Gaussian is represented by its weight (w), by the

mean (l) and by the variance (r2). These parameters differ

for each Gaussian of each pixel and change for each frame

of the video sequence. Their values must be updated to

adapt the background model to the changes of the scene.

In the following, the Gaussian parameters for each pixel

are defined by two indexes: k is the index for the Gaussian

distribution and t is the index that refers to the time instant

of the considered frame.

2.2 Parameters update

The following procedure is performed for each pixel of a

new frame:

1. The K Gaussian distributions are sorted according to

a priority parameter named Fitness (F) and given by:

Fk;t ¼ wk;t=rk;t ð1Þ

The fitness value is a measure of how much a Gaussian

distribution is representative of the background and is

based on the fact the ideal Gaussian distribution rep-

resenting a background pixel with a fixed intensity will

have large weight and very small variance.

2. A match condition is verified between the pixel value

and the K Gaussian distributions that model its

statistics. The match condition is:

Mk ¼ 1 if j ðpixel� lk;tÞ j\2; 5rk;t ð2Þ

A pixel can verify (2) for more than one Gaussian. The

Gaussian that matches the pixel (Mk = 1) and has the

highest F value is considered as the ‘matched distribution’.

3. The parameters of the ‘matched distribution’ are

updated as follows:

lk;tþ1 ¼ lk;t þ ak;t � ðpixel� lk;tÞ
wk;tþ1 ¼ wk;t � aw � wk;t þ aw

r2
k;tþ1 ¼ r2

k;t þ ak;t � ½ðpixel� lk;tÞ2 � r2
k;t�

ak;t ¼ aw=wk;t

matchsumk;tþ1 ¼ matchsumk;t þ 1

ð3Þ

where matchsum is a counter introduced in the Op-

enCV algorithm [22] to obtain a faster initial learning

phase with respect to the algorithm of Stauffer and

Grimson [20]. aw and ak,t are the learning rates for the

weight and for the mean and the variance, respectively.

For the unmatched Gaussian distributions, mean and

variance are unchanged while the weights are updated:

Table 1 Synthetic characteristic for a selection of previously proposed foreground detection algorithms and GMM processors

Ref. no. Performance

(Mps)

Technology Bandwidth

(GB/s)

Energy

(mW/MHz)

GMM

based

OpenCV

compatible

Ref. [20] 0.2 CPU N.A. N.A. Yes No

Ref. [24] 2.2 CPU (Xeon 5150) N.A. N.A. Yes No

Ref. [25] N.A. N.A. Higher than GMM N.A. Yes No

Ref. [26] N.A. CPU (I7 2.8 GHz) N.A. N.A. Yes No

Ref. [27] 1.9 FPGA N.A. N.A. Yes No

Ref. [28] 39.8 FPGA N.A. N.A. Yes No

Ref. [29] 7.68 FPGA 0.17 N.A. Yes No

Ref. [30] 27.0 FPGA N.A. N.A. Yes No

Ref. [31] 47.0 FPGA 1.08 0.59 Yes Yes

Ref. [35] 2.3–6.8 CPU (I7 2.4 GHz) N.A. N.A. No No

Ref. [36](a) 61.4 CPU (I7 2.67 GHz) N.A. N.A. No No

Ref. [36](b) 0.46 ARM N.A. N.A. No No

Additional info regarding [31] is in Table 2

N.A. not available
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wk;tþ1 ¼ wk;t � aw � wk;t ð4Þ

If no Gaussians verify condition (2), a specific ‘no_

match’ updating procedure is executed. The parameters

of the Gaussian with smallest F value are updated as:

lk;tþ1 ¼ pixel

wk;tþ1 ¼ 1=ðmatchsum tot þ 1Þ
r2

k;tþ1 ¼ variance init

matchsumk;tþ1 ¼ 1

ð5Þ

where variance_init is a fixed initialization value and

matchsum_tot is the sum of the matchsum of the K-1

Gaussians with highest F. The weights of the other K-1

Gaussians are decremented as in (4); means and vari-

ances are unchanged.

2.3 Background identification

The Bg identification is performed adding in succession the

weights of the first b Gaussian distributions beginning from

the one with highest F value, until their sum is greater than

a fixed threshold (T) belonging to the (0,1) interval:

B ¼ arg min
b

R
b

k¼1
wk;t [ T

� �
ð6Þ

The set of Gaussian distributions that verify (6) represents

the Bg and a pixel that matches one of these distributions is

classified as a Bg pixel.

3 Morphology

Mathematical morphology [37, 38] provides a wide range

of operators for the image processing, all based around the

set theory. The common usage includes edge detection,

noise removal, image reconstruction, and image segmen-

tation. The operators are particularly useful for the analysis

of binary images but they have been extended and applied

to gray scale [39, 40], and color images [41].

Erosion and dilation are the two most basic operators.

They take as input the image (I) to be eroded or dilated and

a structuring element (SE) that determines the effect of the

operators on I. The SE can be viewed as a small binary

image, represented as a set of pixels on a grid, assuming the

values 1 if the pixel belongs to SE and 0 otherwise (Fig. 1).

An origin of the SE must be identified. When a morpho-

logical operation is carried out, the SE is superimposed on

I so that its origin coincides with the input pixel. The origin

of the SE is shifted on I, the points within SE are compared

with the underlying image and a decision is taken based on

the comparison.

The effect of erosion on I is to erode the boundaries of

foreground regions. Thus, the area of Fg regions decreases

and holes within Fg objects become larger. To compute the

erosion, the origin of SE is superimposed on each pixel in

I. If, for every pixel in SE, any of the corresponding pixels

in I belongs to the Bg, the input pixel is also set to the Bg

value, otherwise it remains unchanged.

The effect of the dilation on I is to enlarge the bound-

aries of foreground objects. Thus, the area of foreground

regions grows while the holes within those objects become

smaller. To compute the dilation, the origin of SE is

superimposed on each pixel in I. If at least one pixel in SE

coincides with a Fg pixel in the image underneath, the

input pixel is set to the Fg value, otherwise it remains

unchanged.

Figure 2 illustrates the effect of the erosion (Fig. 2c)

and of the dilation (Fig. 2d) on a binary image (Fig. 2a)

with a cross shaped 3 9 3 SE (Fig. 2b). In Fig. 2, the Fg

regions are represented with white pixels (binary value 1),

while black pixels (binary value 0) denote Bg. The effect

of the erosion on a single Fg pixel surrounded by Bg

pixels, is the removal of the Fg pixel. In Fig. 2c, one row

and one column are removed from each side of the square

of Fig. 2a. The effect of the dilation on a single Fg pixel

surrounded by Bg pixels, is the transformation of the Fg

pixel in a cross equal to the SE. In Fig. 2d, one row and

one column are added on each side of the square of

Fig. 2a.

It is worth highlight that erosion and dilation are dual

operators and eroding Fg pixels is equivalent to dilating the

Bg pixels. Dilation and erosion operators are indicated with

the � and �; respectively. The combination of dilation and

erosion forms other morphological operations such as the

opening, denoted with �; and the closing, denoted with •:

I � SE ¼ ðI � SEÞ � SE

I � SE ¼ ðI � SEÞ � SE
ð7Þ

Fig. 1 Examples of SE. The origin (crossed element) is in the center

of the SE
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4 Hardware implementation

The block diagram of the proposed circuit is shown in

Fig. 3. The architecture is divided into the identification

block that implements the OpenCV version of the GMM,

and the morphological unit, that implements erosion,

dilation, opening and closing operations.

The proposed HW design is described in VHDL code

and has been accurately optimized to achieve real time

processing of HD (1,920 9 1,080 frame size) video

sequences. The target devices for the implementations are

commercial FPGA devices. The identification block

implements the OpenCV version of the GMM algorithm

making it useful for a wide base of designers. The per-

formances of the identification block, optimized for the

FPGA implementation, to the best of our knowledge,

overcome the performance of previously proposed circuits.

The morphological unit allows the transparent denoising

operation. The proposed implementation of the morpho-

logical unit provides useful information regarding the

feasibility of the circuit and its performance when imple-

mented on the most commonly available FPGA devices.

Additional feature of the proposed circuit is the reduced

bandwidth toward the external memory. To reduce the

memory bandwidth, the proposed circuit employs an opti-

mized fixed point representation instead of the floating

point one used in the OpenCV algorithm. Figure 4 shows

that the difference (Fig. 4c) between the Fg mask obtained

with a software floating point implementation of the

OpenCV algorithm (Fig. 4a) and the Fg mask obtained

with the fixed point hardware implementation (Fig. 4b) is

very small. The percentage of differently classified pixels

between Fig. 4a, b, for the last frame shown in Fig. 4, is

3%. The use of fixed point representation on a reduced

number of bits has also allowed the design of the pro-

posed high performance arithmetic circuit through the

Fig. 2 a Original Fg mask; b structuring element with a cross shape in which the origin element is at the center of the cross; c eroded mask; d
dilated mask. Crossed pixels in c are the eroded pixels. Crossed pixels in d are the dilated pixels

Fig. 3 Block diagram. The

identification circuit implements

the GMM algorithm while the

morphological unit implements

erosion, dilation, opening and

closing operations
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implementation of non linear arithmetic operations with a

ROM-based approach.

4.1 Identification circuit

The input data of the identification circuit are the 8 bit

luminance of the input pixel (Pixel), and the statistical model

of the pixel for the given frame (lk,t, rk,t
2 , wk,t, matchsumk,t, k

= [1,2,3]) while the outputs are the updated statistical model

(lk,t?1, rk,t?1
2 , wk,t?1, matchsumk,t?1) and the Bg/Fg tag for

the input pixel. The identification circuit implements the

equations reported in Sect. 2. In the following, a description

of the circuital blocks that compose the identification circuit

is given.

Fitness Computes the Fitness factor using (1) for the

three Gaussian distributions. Equation (1) requires both a

binary inversion and a square root operation. The proposed

implementation uses a ROM, in which the pre-calculated

Fig. 4 Frames taken from processed video sequences. a The result of

the original OpenCV algorithm; b the result of the HW implemen-

tation that uses the binary multipliers; c the difference between a and

b frames; d the result of the HW implementation that uses the shifters;

e the difference between b and d frames
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outputs for the inverse of the square root of the variance

input are stored, and a multiplier, that multiplies the ROM

output by the weight of the Gaussian. Since the variance

and the inverse of the standard deviation are represented on

12 bit and 8 bit, respectively, ROM size is 212 9 8 bit. The

logic utilization on Virtex5 xc5vlx50 is 132 FPGA slices.

Maximum combinatorial delay and power dissipation are

6.41 ns and 0.05 mW/MHz, respectively. For a target

speed of 41.5 Mps, the allowed combinatorial delay of the

circuit is 24 ns and hence the Fitness block accounts for

26.6% of the maximum circuit delay.

Match Verifies the match condition of (2). The imple-

mentation is:

Mk ¼ 1 if ðpixel� lk;tÞ2\6:25r2
k;t ð8Þ

The circuit requires a subtractor, a squarer, a multiplier,

and a comparator. Its logic utilization is 30 LUT and 2 DSP

blocks when implemented on xc5vlx50 Virtex5 FPGA. The

maximum combinatorial delay is 6.88 ns that accounts for

28.6% of the maximum allowed circuit delay.

Matchsum The matchsumk,t signal is a counter associ-

ated to each Gaussian that has been introduced in the

OpenCV algorithm. The Matchsum block increments the

matchsumk,t of the matched Gaussian. In [20], the match-

sumk,t is not used and, when no match is verified, the

weight is initialized to a fixed (very small) value. Using the

matchsumk,t value the OpenCV GMM method allows a fast

identification of the initial Bg of the scene [31].

Control logic Sorts the Gaussians according to F value

and establishes which Gaussian is updated as in (3), (4), (5).

Learning rate computes the learning rate ak,t as in (3).

Updates mean and variance of the matched distribution.

The implementation of (3) and (4) implies the use of

multipliers. In the proposed implementation, the aw and ak,t

values are quantized as power of two (aw = 2nw and

ak,t = 2nk), allowing the replacement of the multipliers

with shifters. The nw value is hardwired while the nk

values that better approximate ak,t as a function of wk,t are

stored in a small ROM that uses few LUTs of the target

FPGA. The quantization of the learning rate introduces a

small approximation on the GMM algorithm. The result of

the processing of a sample video using the shifters is shown

in Fig. 4d. The difference with the result of the processing

using the multipliers is shown in in Fig. 4e. It is possible to

note that the output of the circuit is very similar to the Bg

mask obtained with the use of multipliers. The percentage

of differently classified pixels is 0.4%.

Background identification Checks condition (6) calcu-

lating the Bg/Fg tag.

Parameter update and output selection Weight, mean,

and variance blocks of the parameter update unit, update

the parameters according to (3), (4) when the match

condition is verified. If no Gaussian matches the pixel, the

No_match block updates mean, variance and weight of the

Gaussian with smallest F value according to (5). The

parameter update unit uses nk and nw values to perform the

shift operations instead of multiplications. The output

selection unit establishes the values of the updated

parameters depending on whether the match condition is

verified or not.

The proposed GMM block improves the hardware

implementation of the single channel, luminance based,

OpenCV version of the GMM algorithm proposed in [31]. In

[31], the GMM has been implemented using three Gaussians

per pixel and processes HD video on xc5vlx50 Virtex5

FPGA. The circuit proposed in [31] processes 22 fps with a

dynamic power dissipation equal to 27.6 mW@47MHz and

using 5.5% of the available LUT. The implementation pro-

posed in this paper, on the same target FPGA and with the

same number of Gaussians per pixel, is able to process

24 fps, reduces the power dissipation up to 0.46 mW/MHz

that corresponds to 21.62 mW@47MHz, and uses 3.70% of

the Slice LUT in the FPGA. The comparison of the perfor-

mances together with the percentage improvement on each

value, are reported in Table 2. Table 2 refers to the identi-

fication unit of the proposed circuit (see Fig. 3).

The improvement in performance with respect to [31] is

mainly due to the substitution of some of the multipliers

present in [31] with shifters. This only requires the

approximation of certain circuit internal variables to the

nearest power of two. The worsening in the accuracy of the

circuit has been tested comparing videos processed with

both circuits. The results of Fig. 4 show that the worsening

in accuracy is negligible and can be surely recovered

through the morphological unit. As example, in a sample

video composed of 300 frames (272 9 176), the average

number of differently classified pixels per frame is 186 that

corresponds to the 0.4% of the pixels.

4.2 Morphological unit

The morphological unit of Fig. 3 implements erosion,

dilation, opening and closing operations. The input signal

of the circuit are the Bg/Fg tag, the SE and two control

signals (SEL1 and SEL2) and provides the Bg mask (BM)

as output. SEL1 and SEL2 are two binary signals that

establish the operation to be performed according to

Table 3. Opening and closing can be derived by erosion

and dilation as in (7). Moreover, the erosion and dilation

operations are one the dual of the other. It is, therefore,

possible to obtain the erosion of the image I using the

dilation operator if the input image I and the result of the

dilation are inverted. As a consequence, all the considered

morphological operators can be implemented using only

the dilation operator.
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I � SE ¼ ðI0 � SEÞ0

I � SE ¼ ðI0 � SEÞ0 � SE

I � SE ¼ ððI � SEÞ0 � SEÞ0
ð9Þ

E/D is the circuital block that implements the dilation

operation. It is duplicated, as shown in Fig. 3, in order to

allow closing and opening operations. Depending on the

SEL1 value, Bg/Fg tag or its binary inversion are sent as

input to the E/D unit (Table 3). The Bg/Fg tag is a binary

value: ‘0’ if the pixel has been classified as Bg; ‘1’

otherwise.

The E/D unit is based on a delay line architecture. The

input binary values Fg/Bg are stored in some shift registers

as shown in Fig. 5. If SE size is equal to m9 n and I size is

i 9 j, m shift registers are employed. (1 shift register n bit

long; m - 1 shift registers j bit long). When all the shift

registers are full (Fig. 5b), as an incoming pixel is shifted

in, the oldest pixel is shifted out. The pixels covered by the

SE are stored using flip flops while the other pixels are

stored in FIFOs (Fig. 6). In order to reduce the register

utilization, when the circuit is implemented on Virtex or

Spartan FPGA, the FIFOs are implemented with LUT

(Table 4) instead of flip flops. The dilation is performed on

the pixels stored in the flip flops using the logic shown in

Fig. 6.

One E/D unit is needed to perform erosion and dilation.

Opening and closing require the implementation of a second

unit to process the output of the first one, as highlighted in

(9). The implementation of the morphological operators at

the boundary of the figure is different from those in the

interior of the frame (Fig. 7a). Usually, two solutions are

adopted. The first one is to add extra control logic to avoid

the boundary pixel processing. The second one is the pad-

ding technique, Fig. 7b that increases the frame size. Addi-

tional pixel are inserted outside the boundary of I. Since they

should not affect the result of the operations, the padding

area is filled with ‘1’ for the erosion and ‘0’ for the dilation.

Padding increments the output delay and, more important,

fragments the dataflow. In this paper, a technique that

combines the two methods is adopted. It allows the pro-

cessing of the boundary pixels without stopping the data-

flow. In the proposed technique, a control logic is activated

when a boundary pixel has to be processed and fixes some

nodes, originally connected to the output of registers, at logic

value ‘0’. The required logic consist of two counters and

some comparators to identify the boundary pixel. This

entails an increase of circuit area but does not increase the

output delay that can be very high when HD videos are

processed. The same counters are used to synchronize the

two E/D units when opening and closing are performed.

Figure 8 shows frames on which Erosion, Dilation, Opening

and Closing operations have been performed.

5 Results and performances

The proposed circuit has been implemented on Virtex5,

VirtexII, Virtex4 and Spartan3 Xilinx FPGA and on

StratixII and CycloneII Altera FPGA. The synthesis for

Virtex5, Virtex4 and Spartan3 has been conducted using

Synplify while XST has been used for VirtexII synthesis.

Fitting and P&R have been conducted using ISE in all the

Table 2 Comparison between the proposed identification circuit and

Ref. [31]

Virtex5

implementation

# LUT Energy

(mW@47MHz)

Frame rate

(fps)

Ref. [31] 1,572 27.60 22

Proposed

identification 1,066 (-32%) 21.62 (-22%) 24 (?9%)

circuit

Table 3 Operators performed by the morphological unit of Fig. 3 as

a function of the signals SEL1 and SEL2

SEL1 SEL2 Operation In1

0 0 Erosion Not (Bg/Fg)

1 0 Dilation Bg/Fg

0 1 Opening Not (Bg/Fg)

1 1 Closing Bg/Fg

Fig. 5 Example of delay lines used to perform morphological operations. In a, the input image is shifted into three buffers (SE size 3 9 3)

whose width depends on the image size (6 9 9). When the buffers are full (b), the first pixel is discarded
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cases. The synthesis for StratixII and CycloneII has been

conducted using QuartusII. Circuit simulations use Mod-

elSim XE and ModelSim Altera for Xilinx and Altera

FPGA, respectively. Both simulation tools also generate

the ‘vcd’ files necessary for the accurate determination of

the power dissipation. Power dissipation has then been

computed using XPower Analyzer software (Xilinx) and

PowerPlay Power Analyzer tool (Altera).

The proposed circuit, for every pixel that is processed,

fetches from the memory 108 bit for the background model

and 8 bit for the pixel value. Afterward, the circuit stores

the updated background model, composed of 108 bit, into

the memory. The total number of bit transferred, for each

pixel, is therefore 224 (28 bytes). Since in the considered

applications the frame rate is always 20 fps (independently

on the maximum working frequency of the background

identification circuit) this implies that the processed pixels

per second are 41.5 9 106 (20 fps multiplied by

1,920 9 1,080) each one requiring 28 bytes of data. Hence

the proposed circuit features a 1.08 GB/s bandwidth

toward the memory (calculated as 41.5 9 106*28/1,0243).

The analyses have been conducted including input and

output registers that synchronize the circuit and provide

timing performances that are not dependent on the I/O

pads. The circuit has been tested using artificial videos,

computer animated videos with simple backgrounds and

through video sequences taken from real surveillance

cameras. The circuit performs optimally and run smoothly

without showing reliability problems.

In order to fairly compare the proposed circuit, an

analysis of the performances as a function of the number of

pipeline levels present in the identification part of the cir-

cuit (see Fig. 3) has also been carried out. The placing and

the number of pipeline registers have been optimized using

the retiming feature of Synplify synthesizer.

Table 5 shows the performances of the proposed circuit

as a function of the target FPGA, of the number of pipeline

levels and of the frame size. The bandwidth toward the

memory for the circuits reported in Table 5, assuming that

the circuit process the target HD video stream of 20 fps, is

always 1.08 GB/s since the required bit of data for each

pixel is fixed to 224. If a different frame rate or a different

image resolution is needed, the bandwidth scales propor-

tionally. As example if a video stream with 320 9 240

image resolution is processed at 10 fps, the required

bandwidth toward the memory is 20.5 MB/s.

5.1 Virtex5 xc5vlx50 speed grade-3 implementations

As shown in Table 5, the proposed circuit implemented on

Virtex5 FPGA without pipeline has a maximum working

frequency of 50.5 MHz when implemented to process both

1,920 9 1,080 frames. It uses 1,179 Slice LUT that is

4.09% of FPGA logic resources and 236 LUT are used as

memory to implement the shift registers of the morpho-

logical unit. The power consumption is 0.46 mW/MHz.

With one level of pipeline, the number of Slice register

increases up to 492, and the number of Slice LUT and the

power dissipation are 1,182 and 0.22 mW/MHz,

respectively.

5.2 VirtexII xc2v1000 implementation

In [28], a Fg/Bg and denoising architecture, implemented

on VirtexII xc2v1000 FPGA, is proposed. The maximum

clock frequency is 40 MHz that allows the circuit to pro-

cess 38 fps with 1024 9 1024 frame size. No information

regarding the number of pipeline level of the architecture is

given.

As shown in Table 5, when the identification circuit is

implemented with one level of pipeline, the proposed cir-

cuit outperforms the circuit of [28]. The proposed circuit

has a maximum working frequency of 50.1 MHz; uses

1646 LUT and 460 Slice registers. The dynamic power

dissipation is 4.90 mW/MHz.

Fig. 6 Delay lines implementation with a 3 9 3 SE

Table 4 Performances of

morphology unit implemented

on Virtex5 FPGA

Frame size 1,920 9 1,080

Circuit FIFO implementation Frequency (MHz) Slice register Slice LUT Slice

E/D Flip flop 374.25 1.946 227 542

E/D LUT 432.71 30 173 51

Morphology unit Flip flop 263.37 3,898 494 1,078

Morphology unit LUT 341.53 56 361 106
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5.3 Virtex4 xc4vfx12 implementation

Not pipelined circuit implemented on Virtex4 xc4vfx12

FPGA allows to process 18 fps with 1,920 9 1,080 frame

size. The resulting implementation uses 2,248 Slice LUT

and 291 Slice registers. The dynamic power dissipation is

1.38 mW/MHz.

5.4 StratixII EP2S15F484C3 implementation

Maximum frequency is 44.03 MHz, faster than the circuit

implemented on Virtex4 but slower than the one imple-

mented on Virtex5. The logic utilization is equal to 40.37

% of the total number of Logic Elements and 7,957 of

12,480 flip flop are employed. The power dissipation is

Fig. 7 a Boundary problem.

SE stretches outside the image

borders. b Frame padding

necessary for an SE whose

size is m 9 n

Fig. 8 Results of morphological operators on the frames shown in Fig. 4. The frames are the output of the identification circuit of Fig. (3).

a Erosion, b dilation, c opening, d closing

Table 5 Performances of circuit of Fig. 3

FPGA (Xilinx) Pipe

levels

Frame size Frequency

(MHz)

# Slice LUT employed

as:

# Flip flop # Slice # DSP-

MULT

Dynamic power

(mW/MHz)

fps

Logic Memory

Virtex5 xc5vlx50 0 1,920 9 1,080 50.5 943/28,800 236/28,800 291/28,800 452/14,400 10 0.46 24

1 1,920 9 1,080 90.9 942/28,800 240/28,800 492/28,800 476/14,400 10 0.22 43

VirtexII xc2v1000 1 1,024 9 1,024 50.1 1,390/10,240 256/10,240 460/10,240 1121/5,120 10 4.90 47

Virtex4 xc4vfx12 0 1,920 9 1,080 38.9 1,348/10,944 900/10,944 291/10,944 1264/5,472 10 1.38 18

Spartan3 xc3s1000 0 1,920 9 1,080 22.3 1,412/15,360 900/15,360 291/15,360 1253/7,680 7 0.89 10

1 1,920 9 1,080 37.2 1,457/15,360 900/15,360 476/15,360 1347/7,680 7 0.41 17

FPGA (Altera) Pipe

levels

Frame size Frequency

(MHz)

# Logic

element

# Flip flop # DSP Dynamic

power (mW/MHz)

fps

StratixII EP2S15F484C3 0 1,920 9 1,080 44.03 5,038/12,480 7,957/12,480 11 4.03 21

CycloneII EP2C15AF484C6 0 1,920 9 1,080 30.47 9,192/14,448 7,957/14,448 11 1.61 14
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4.03 mW/MHz and it is comparable with the power dissi-

pation of the Virtex2 implementation.

5.5 Spartan3 xc3s1000 implementation

The proposed circuit has been implemented on Spartan3

with zero and one levels of pipeline. The maximum clock

frequency and the number of frame per second that the

circuit can process with frame size 1,920 9 1,080 and with

one pipeline level are 37.2 MHz and 17 fps, respectively.

Area utilization is 15.35% of total number of LUT and

3.10% of the total number of Slice registers.

5.6 CycloneII EP2C15AF484C6 implementation

The performances on Cyclone EP2C15AF484C6 FPGA are

9,192 Logic Elements equal to 63.6% of total Logic Ele-

ments of the FPGA, 7,957 Flip Flop, dynamic power dis-

sipation is 1.61 mW/MHz. The implemented circuit,

without pipeline levels, provides a maximum frequency

higher than not pipelined low cost Xilinx Spartan3 imple-

mentation but also an higher resource utilization.

6 Conclusions

This paper presents an hardware system, implemented on

FPGA circuits, to perform segmentation and morphology

phases of an identification system. The proposed circuit

improves the GMM implementation proposed in [31] and is

able to process HD video streams in real time. The GMM

algorithm is based on the OpenCV algorithm and has been

implemented with particular attention to the reduction of

the bandwidth toward the memory and to the optimization

of hardware utilization. Thus, the circuit exploits fixed

point arithmetic (instead of the double precision floating

point one used in the OpenCV) and the multipliers in some

of the equations have been replaced with shifters. The

morphological unit is based on a delay line architecture

where, whenever possible, shift registers have been

implemented with LUT to process HD videos with a

reduced resource utilization.

The performances of the architecture on different FPGA

are provided. The use of pipeline levels is also considered

as a method to optimize circuit performances.

The circuit implemented on Virtex5 (xc5vlx50) without

levels of pipeline allows a maximum working frequency

of 50.5 MHz and is hence able to process 24 fps for

an HD video with frame size 1,920 9 1,080. The logic

utilization is 1,179 slice LUT (4.09% of the available

LUT) while the dynamic power dissipation is 0.46 mW/

MHz.
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