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Abstract Electrostatic halftoning is a high-quality method

for stippling, dithering, and sampling, but it suffers from a

high runtime. This made the technique difficult to use for

most real-world applications. A recently proposed minimi-

sation scheme based on the non-equispaced fast Fourier

transform (NFFT) lowers the complexity in the particle

number M fromOðM2Þ toOðM log MÞ:However, the NFFT

is hard to parallelise, and the runtime on modern CPUs lies

still in the orders of an hour for about 50,000 particles, to a

day for 1 million particles. Our contributions to remedy this

problem are threefold: we design the first GPU-based NFFT

algorithm without special structural assumptions on the

positions of nodes, we introduce a novel nearest-neighbour

identification scheme for continuous point distributions, and

we optimise the whole algorithm for n-body problems such

as electrostatic halftoning. For 1 million particles, this new

algorithm runs 50 times faster than the most efficient tech-

nique on the CPU, and even yields a speedup of 7,000 over

the original algorithm.

Keywords NFFT � GPU � Fast Summation Algorithm �
Sampling � Halftoning

1 Introduction

Digital image halftoning is the task of approximating

images with continuous tones using a finite number of

small discs. It is frequently used to binarise grey-scale

images for printers or fax machines, or to create non-

photorealistic renderings. Halftoning algorithms distribute

points in such a way that, within each image part, the

appearance of the binary image is close to that of the

continuous original. These methods can be used for a

variety of applications. Besides classic halftoning appli-

cations such as stippling [30], these algorithms even cover

tasks from completely different contexts such as object

placement [8], multi-class sampling [37], ray-tracing [26],

image-based lighting using high dynamic range images

[21], geometry processing [33], or numerical integration

such as Quasi-Monte Carlo methods [7, 17]. A prominent

numerical method for many of these applications was

recently proposed by Balzer et al. [2], which suggested

optimising the point locations iteratively by considering

capacity-constrained Voronoi tessellations.

Schmaltz et al. [29] presented a new method called

electrostatic halftoning, which achieves state-of-the-art

results. It sets up on the simple idea to understand circular

dots as small charged particles which repulse each other, but

which are at the same time attracted by the image they are

supposed to approximate. In the arising particle system, the

solution is found in an iterative process. Each iteration

consists of an evaluation of the interactions between all

pairs of particles and the image, and a movement of parti-

cles based on the computed forces. As it turns out, this
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procedure is simple to implement, but very expensive to

compute. A straightforward implementation possesses a

runtime complexity of OðM2Þ in the number of particles M.

Hence, even on a modern CPU, a system with 1 million

particles requires almost 2.5 h for one iteration. This article

introduces a new parallel algorithm for GPUs, which has

runtime complexity OðM log MÞ; and which thus reduces

this runtime to about 1 s per iteration.

Particle systems based on the Coulomb potential possess

a high influence in the near surrounding, but a low effect

over large distances. This means that particles which are

close together repulse each other significantly, while the

force drops off rapidly the further particles are apart. A

number of algorithms exploit this fact by approximating far-

field interactions by a number of simplifications. This results

in a lower runtime complexity, typically OðM log MÞ:
The first algorithm of this type was the particle–particle/

particle–mesh (P3M) method for molecular dynamics

introduced by Hockney and Eastwood [18]. It performs a

subdivision of the domain into cells, and assigns the charge

density of each cell to a virtual super-particle in its centre.

The interaction between these super-particles can then be

efficiently computed by a fast Fourier transform (FFT). A

more simple yet efficient method was introduced by Barnes

and Hut [3] based on an idea of Appel [1]. It decomposes

the image into a quadtree, and uses the accumulated

charges in each subregion to estimate the influence of all

particles in the region. Although this method has only an

accuracy up to about 99%, it is still frequently used in

astrophysical simulations due to its simplicity.

Over the last two decades, a new class of algorithms

became popular. These algorithms also possess a runtime

complexity of OðM log MÞ or even OðMÞ for potentials

with special characteristics. However, different to the

aforementioned methods, these techniques approximate the

exact solution up to a predetermined, arbitrarily small

error. As shown by Fenn and Steidl [10], these methods are

closely related to each other, although they target different

applications. One prominent member of this class is the

fast multipole method [13] which uses multipole expan-

sions to compute interactions between many particles over

large distances. This operation can be interpreted as a

matrix-vector multiplication, where the advantageous run-

time of the method follows from a sparsification of the

huge operator [32]. Since this technique is data-parallel, it

can be implemented for a variety of massively parallel

architectures, such as the Intel Paragon [22], or GPUs [15].

In the literature, one finds algorithms based on similar

ideas under the names fast mosaic-skeleton approximations

[35] and fast H-matrix multiplications [16].

Besides these, there are a number of related methods for

the fast computation of matrix-vector products that differ

from the aforementioned class only by details. Beylkin

et al. [5] proposed to compute the interactions in the

wavelet domain. This even allows to use kernels whose

analytical properties are unknown. Beylkin and Cramer [4]

suggested an algorithm which uses an approximation step

followed by a correction step. While the approximation can

be computed efficiently by fast Fourier transforms, the

correction takes only place in a local neighbourhood around

a particle. This strategy makes this approach very efficient.

For this paper, we use a related technique that exploits the

convolution theorem to efficiently compute interactions

between particles [11, 15]. Instead of evaluating the radial

potential function for all pairwise interactions, it transfers

the problem into the frequency domain where this expensive

convolution reduces to a simple point-wise multiplication.

An efficient way to handle points that do not reside on a

regular grid is given by non-equispaced fast Fourier trans-

forms (NFFTs) (see Dutt and Rokhlin [9], Potts et al. [27]).

Recently, Teuber et al. [34] showed that this method can be

used to significantly accelerate electrostatic halftoning on

the CPU. However, a parallelisation of this technique for

GPUs is not straightforward and involves many algorith-

mically extensive and time-critical operations.

In the following, we propose a novel parallel GPU

algorithm based on the sequential algorithm from Teuber

et al. [34]. Our work addresses several bottlenecks and

shortcomings that make the original algorithm inefficient

on parallel hardware, and introduces new concepts to

handle these issues. The contributions are the following:

1. We design a new parallel NFFT algorithm that does

not suffer from the limitations present in related

parallel NFFT schemes from the literature [14, 31],

and which is thus better suited for applications like

electrostatic halftoning.

2. We introduce a novel nearest-neighbour identification

scheme for continuously placed particles that allows

highly efficient near-field computations on parallel

devices such as GPUs. Unlike previous methods such

as the one by Gumerov and Duraiswami [15], our

method does not require to sort the particle vector after

every iteration.

3. By a careful manual optimisation of the whole system,

we obtain a speedup of about 50 over the CPU-based

method from Teuber et al. [34], and a speedup of more

than 7,000 over the algorithm from Schmaltz et al.

[29] when using 1 million particles. This performance

is remarkable considering that this algorithm is highly

memory-bound.

While there are a number of other GPU-based algo-

rithms for halftoning and importance sampling in the lit-

erature, all of them differ quite significantly from our work.
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In the context of importance sampling for rendering, the

algorithm presented by Nguyen [23, Ch. 20] uses the fact

that the underlying density function is constant and that is

possesses characteristic mathematical properties. However,

this is not the case for halftoning where the underlying

image may be completely random. The greedy algorithm

proposed by Chang et al. [6] performs importance sam-

pling on arbitrary density functions, but does not preserve

so-called blue noise properties (see Ulichney [36]). As a

consequence, the resulting samples reveal striking regu-

larity artefacts. Most closely related to our work is the

direct summation approach for electrostatic halftoning by

Schmaltz et al. [29]. As mentioned before, however, this

algorithm suffers from inadmissible runtimes for large

images.

Our article is organised as follows: in Sect. 2, 3, and 4,

we start with a short recapitulation of electrostatic half-

toning [29], the fast summation technique introduced in

Teuber et al. [34], and the NFFT [27], respectively. Section

5 gives details about our GPU-based implementation of

NFFT-based electrostatic halftoning, which we evaluate in

Sect. 6. The article is concluded with a summary in Sect. 7.

2 Electrostatic halftoning

A good halftoning method distributes points homoge-

neously over flat image regions. The key idea behind

electrostatic halftoning is thus to maximise distances

between inkblots by means of electrostatic forces [29]. In

this model, inkblots take the role of small, massless parti-

cles with negative unit charge. Since their charges have the

same sign, they repel each other such that the distances

between particles are mutually maximised. In contrast, the

underlying image is regarded as a positive charge density

which attracts particles proportionally to the image dark-

ness at the respective point. As a result, the converged state

of the particle system forms a good halftone of the original

image.

Given a grid C ¼ f0; . . .; nx � 1g � f0; . . .; ny � 1g and

a grey-valued input image u : C! ½0; 1�; we thus search

for a finite set of points fpag with a 2 f1; . . .;Mg ¼: P that

best approximates the density described by u. As it was

shown by Teuber et al. [34], this problem can be formu-

lated in terms of an energy which has to be minimised by

the sought solution. In Schmaltz et al. [29], the authors

propose a halftoning scheme which minimises such an

energy by an iterative approach driven by the forces acting

on a particle at a certain time step. By an abstraction from

underlying physical properties such as velocity and accel-

eration, this simplified minimisation strategy finds a steady

state of the particle system in which the forces are in an

equilibrium. It does so by transporting particles a small

time step along the vector of force acting on them. This

yields the update equation

pkþ1
a ¼ pk

a þ s
X

x2C
x 6¼pa

1� uðxÞ
x� paj j ea;x �

X

b2P
pb 6¼pa

1

pb � pa

�� �� ea;b

0
BB@

1
CCA

¼ pk
a þ s FðAÞa � FðRÞa

� �
; ð1Þ

where pk
a denotes the location of particle a at time level

k, and s represents a small time step which is typically

chosen as s = 0.1. Moreover, ea;b and ea;x are the unit

vectors from pa to pb and from pa to x; respectively:

ea;b :¼
pb � pa

pb � pa

�� �� ; ea;x :¼ x� pa

x� paj j : ð2Þ

The minuend FðAÞa in (1) describes the attractive forces

originating from the discrete grid points, and the

subtrahend FðRÞa denotes the repulsive forces between

particles. For more details about this approach, we refer

to Schmaltz et al. [29].

3 Fast summation

In Schmaltz et al. [29], the authors evaluate the sum in the

subtrahend of (1) by a direct summation approach. This

means that, for every particle pa; the arising repulsive force

is accumulated from the interactions with all other particles

pb 6¼ pa: Although this algorithm is simple and easy to

parallelise, it has a major drawback: its runtime scales

quadratically in the number of particles. This makes it

infeasible for large images containing many particles, even

on modern massively parallel hardware such as GPUs.

As one solution to this problem, Teuber et al. [34]

proposed to compute this sum by means of a fast sum-

mation technique [34]. By this, the computational com-

plexity in the number of particles M drops from OðM2Þ to

OðM logðMÞÞ: However, if we compare the actual runtime

of this CPU implementation with the GPU algorithm for

the direct summation technique, we see that the better

runtime class only pays off if the number of particles is

large; see Fig. 6. In this article, we thus develop an effi-

cient parallel algorithm for fast summation-based halfton-

ing on graphics cards, and evaluate its performance against

the existing approaches.

Before we go into detail about the parallel design of this

algorithm, let us briefly sketch its idea. In Teuber et al.

[34], the authors decompose the second sum of (1) into

three sums:
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�
X

b2P
pb 6¼pa

1

pb � pa
ea;b

¼ �
X

b2P
pb 6¼pa

pb � pa

pb � pa

�� ��2

¼ pa

X

b2P
pb 6¼pa

1

pb � pa

�� ��2 �
1

0

� � X

b2P
pb 6¼pa

pb;x

pb � pa

�� ��2

�
0

1

� � X

b2P
pb 6¼pa

pb;y

pb � pa

�� ��2:

ð3Þ

In this context, the indices x and y refer to the first and

second entry of a vector, and the vectors ð1; 0Þ> and ð0; 1Þ>
are used to process components of a vector separately:

pb ¼
pb;x

pb;y

� �
¼ 1

0

� �
pb;x þ

0

1

� �
pb;y: ð4Þ

Each of these sums can be computed by a convolution of

a signal c(b) with a radial kernel K : Rþ ! R defined by

KðxÞ ¼ 1

x2
; ð5Þ

where x ¼ pb � pa

�� ��: The vectors c(b) take the instances

cðbÞ � 1; cðbÞ ¼ pb;x; and cðbÞ ¼ pb;y ð6Þ

for the three sums from (3), respectively.

By the convolution theorem, each of these convolutions

can be written as a multiplication in the frequency domain.

To this end, we shift and scale the image domain into the

circle with radius 1�eB

4
around (0, 0), and regularise K near

0 and � 1
2

in each dimension using the small positive

constants eI ; eB � 1: This yields a smooth 1-periodic

kernel

KRðxÞ ¼

KIðjxjÞ; jxj\eI

KðjxjÞ; eI6 jxj\ 1�eB

2

KBðjxjÞ; 1�eB

2
6 jxj\ 1

2

KBð12Þ; 1
2
6 jxj

:

8
>><

>>:
ð7Þ

As suggested in Fenn and Steidl [11] and Teuber et al.

[34], we use a two-point Taylor interpolation with

polynomials of degree p̂ to obtain KI and KB, where

larger p̂ lead to smaller approximation errors. Moreover,

the kernel KR is approximated by its truncated Fourier

series

KFðxÞ ¼
X

j2JN

bje
2pihj;xi; ð8Þ

bj ¼
1

N2

X

k2JN

KR

k

N

� �
e�2pi

hj;ki
N ; ð9Þ

where JN ¼ f� N
2
; . . .; N

2
� 1g2

with N even. If N is

sufficiently large, it holds that KF 	 KR: Thus, by

defining a near-field kernel

KN ¼ K �KR; ð10Þ

we finally obtain

K 	 KF þKN : ð11Þ

For eI\jxj6 1�eB

2
; the near-field kernel KNðxÞ

vanishes, because K ¼ KR 	 KF: Moreover, because

jpb � paj\ 1�eB

2
, KN describes a purely local interaction

of particles within a small neighbourhood. Consequently,

the algorithm consists of two steps for each of the three

sums in (3):

1. Far-field interactions First, we evaluate KF in the

frequency domain, i.e. compute three sums of type

XM

b¼1

cðbÞKFðpb � paÞ

¼
X

j2JN

bj

XM

b¼1

cðbÞe2pihj;pbi

 !
e�2pihj;pai:

ð12Þ

The challenge in this part is that both pa and pb are not

residing on a regular grid. This prevents us from using

a standard fast Fourier transform (FFT) to evaluate the

two sums. As proposed in the literature, we solve this

problem by means of a non-equispaced fast Fourier

transform (NFFT) which approximates the Fourier

transform of a randomly sampled signal [14, 34]. Such

algorithms are often highly efficient on sequential

hardware, but hard to parallelise for massively parallel

architectures such as GPUs. As it turns out, approaches

from the literature such as Sørensen et al. [31] or

Gregerson [14] are not applicable for electrostatic

halftoning. They require particles to be aligned in a

particular order, which cannot be guaranteed for this

class of algorithms. Other efficient GPU algorithms

such as the ones by Gumerov and Duraiswami [15] can

also not be used for electrostatic halftoning, because

they require the vector of particle locations to be

sorted. Since particles move, the vector must be re-

sorted in every iteration, which infers an additional

operation with complexity OðM log MÞ: In the fol-

lowing section, we present an approach that does not

suffer from these problems.

2. Near-field interactions The second part is the evalu-

ation of the near-field kernel KN ; which comes down

to a direct summation over a small number of

neighbours within a circle of radius eI : Albeit the

actual evaluation step is straightforward and similar in

spirit to the algorithm of Schmaltz et al. [29], the
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challenge lies in the retrieval of the set of neighbours.

We will discuss a massively parallel algorithm for this

purpose in Sect. 5.2.

Finally, let us consider the first sum from (1), which we

have neglected so far. In Schmaltz et al. [29], the authors

suggest precomputing samples for pa at grid locations at

the beginning of the program run. Intermediate values can

then be obtained by bilinear interpolation which represents

a computationally inexpensive texturing operation on the

GPU. We follow a similar strategy, but precompute the

force texture by a fast summation approach. The arising

terms are again of type (3), but the sampling points cor-

responding to pa and pb are now residing on a regular grid.

We can thus apply a standard FFT, and use the same

implementation that we also need in the course of the

NFFT. Please see the next section for details.

To summarise this section, let us briefly sketch our

algorithm. Each minimisation step of our particle system

looks as follows:

1. Compute far-field contributions from (12):

(a) Perform adjunct NFFT on all cðxÞ from (6).

(b) Scale coefficients by bj.

(c) Use NFFT to transform scaled coefficients back.

2. Evaluate and add near-field contributions.

3. Retrieve and add attractive image forces.

4. Move particles according to the force acting on them.

5. If particles are moved off the image domain, project

them back to the nearest image point.

For more details, we refer the reader to the work of Teuber

et al. [34].

4 Non-equispaced fast Fourier transform

The core of our fast summation algorithm is an efficient

GPU implementation of the 2-D NFFT of Potts et al. [27].

In matrix-vector notation, the NFFT of f̂ 2 C
N at nodes

ðxjÞ16j6M 
 P2 :¼ � 1
2
; 1

2

� �2
yields f 2 R

M as

f ¼ Af̂; A :¼ e�2pikxj
	 


j¼1;...;M; k2IN
: ð13Þ

(see Keiner et al. [20]). Its adjoint is given by

ĥ ¼ A
>

f: ð14Þ

In this context, IN :¼ fðk1; k2Þ 2 Z
2j � N

2
6k�\ N

2
g

describes the ‘shifted’ index set in the frequency space,

M ¼ jPj is again the number of nodes, and A
>

denotes the

conjugate transpose of A. For the current application, we

use the same ‘resolution’ in time and frequency domain,

such that N �
ffiffiffiffiffiffiffi
p̂M
p

; where p̂ again refers to the degree of

the Taylor polynomial from the previous section. More-

over, we choose eI ¼ p̂
n
� p̂

N
; 0\eB � 1 in accordance

with Teuber et al. [34] and Potts et al. [28].

The algorithm presented in Potts et al. [27] to compute

(13) approximates A as

A 	 BFD; ð15Þ

with the complex-valued discrete 2-D Fourier transform

F :¼ 1

n2
e�2pik‘=n

� �

k;‘ 2 In

; ð16Þ

a real-valued sparse matrix

B :¼ eu xj �
1

n
‘

� �� �

j¼1;...;M; ‘ 2 In;mðxjÞ
; ð17Þ

and a real-valued ‘diagonal’ scaling matrix

D :¼b
2

t¼1
O diag

1

ckt
ðuÞ

� �

kt2Z : �N
2
6kt\N

2

�����

����� O

 !>
:

ð18Þ

Here, O denotes zero matrices of size N 9 (n - N)/2, b

denotes the tensor product, and n = aN is the size of the

Fourier plane oversampled by a factor 2 B a\ 4 such that

there exists a p: aN = 2p. Furthermore, euðxÞ :¼
uðx1Þuðx2Þ; where u denotes the 1-periodic continuation

of the Kaiser–Bessel window function [6] on a torus, and

In;mðxjÞ :¼ f‘ 2 In : nxj;t � m6‘t6nxj;t þ m; t 2 f1; 2gg
denotes a 2-D index set. Note that indexing eu by elements

from In,m is equivalent to truncating the kernel at � m
n

in

both dimensions prior to periodisation. The choice of m

thus comes down to a trade-off between accuracy and

speed. Finally, ck denotes the 2-D Fourier coefficients

which are given by ck : = ck1
ck2

due to their separability,

where ck� are the 1-D Fourier coefficients given by

ck� ðuÞ ¼
Z

P

uðvÞe2pik�vdv ðk� 2 ZÞ: ð19Þ

In this terminology, the adjoint NFFT A
>

is given by

A
> 	 D>F

>
B>: ð20Þ

Please note that in the non-equispaced case, i.e. if the nodes

xj are not aligned on a regular grid, ĥ ¼ A
>

Af̂ 6¼ f̂: Still, ĥ

is a good approximation of f̂; such that we can use the

NFFT in the context of the fast summation method.

To this end, each NFFT step in the algorithm from

Sect. 3 works as follows:

1. Apply D: Scale input by 1

ckðeuÞ ; and call the result s:

Create a zero vector v of size n2 and copy s into v:
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vðjþðn�NÞ=2Þnþðn�NÞ=2þi ¼ sjNþi ð21Þ

for j 2 f0; . . .;N � 1g; and i 2 f1; . . .;Ng.
2. Apply F: Call 2-D FFT on intermediate result v from

Step 1. The result is called g:

3. Apply B: Compute the jth entry of the output f as the

sum

f j :¼
X

‘2In;mðxjÞ
g‘ euðxj �

1

n
‘Þ: ð22Þ

Note that Step 3 only involves few multiplications and

additions per entry. It comes down to summing up

weighted entries in a small square-shaped neighbourhood

around xj: We obtain the algorithm for the adjoint NFFT by

‘reversing’ the operations from above:

1. Apply B>: compute result g‘ as the sum

g‘ :¼
X

j2I>n;mð‘Þ
f j euðxj �

1

n
‘Þ: ð23Þ

2. Apply F
>

: call inverse 2-D FFT on result g‘ from 1.

3. Apply D>: scale input by 1

ckðeuÞ and call the result v:

Extract output s of size N2 from v by reversing (21).

Here, we use I>n;mð‘Þ :¼ fj ¼ 0; . . .;M � 1 : ‘t � m6

nxj;t6 ‘t þ m; t 2 f1; 2gg: Similar to before, we can com-

pute Step 1 very efficiently if we exploit the special

structure of B>: Instead of computing each g‘; we subse-

quently fix one j, evaluate all ‘ 2 In;mðxjÞ; and accumulate

the contributions of f j euðxj � 1
n
‘Þ into the respective

blocks of g: This operation saves many multiplications

with zero. Note that blocks written for different j can

overlap, such that this case must be explicitly handled by

the algorithm. For more details on the different steps, we

refer the reader to the work of Keiner et al. [20].

5 GPU implementation

In this section, we design an efficient parallel fast sum-

mation algorithm for electrostatic halftoning on the GPU.

Because our algorithm is designed for modern graphics

cards produced by NVidia, we consequently use the CUDA

framework. Nevertheless, our considerations mainly

address general parallelisation aspects that can well be

mapped to other frameworks such as OpenCL, BrookGPU,

or Stream SDK. Our algorithm consists of a far-field

computation and a near-field computation, both of which

jointly replace the basic direct-summation algorithm from

Schmaltz et al. [29]. Since the optional extensions pro-

posed in this paper do not need to be adapted to our new

algorithm, we consequently do not go into detail about

them, but refer to the original work. In this paper, the

authors also introduced a ‘shaking’ procedure to avoid

local minima. This works by slightly moving particles into

random directions. Due to a lack of efficient random

number generators on GPUs, the authors performed this

shaking step on the CPU. With the new cuRand library

provided by NVidia, this operation can now be efficiently

realised on the GPU without the need to transfer data from

and to the device. This is very important for our fast

summation algorithm, since it computes much larger sets of

points than direct summation in the same amount of time.

Data transfers via the PCI bus would unnecessarily slow

down the overall algorithm.

Following the design principles of graphics card pro-

gramming, our algorithm consists of comparably small

data-parallel GPU programs, so-called kernels. Each kernel

computes one data-parallel operation, such as the execution

of the operators B or D for the NFFT. Our kernels are

executed on graphics memory, but are dispatched and

controlled by the CPU which takes care of the program

flow. In addition to this, the CPU also handles memory

copy operations to and from the graphics card at the

beginning and ending of the program run. Once a kernel is

invoked, it first retrieves a bunch of data from this GPU

RAM to its fast on-chip memory, uses these data to com-

pute a result, and stores the results back to GPU memory.

Since large bunches of memory can be read faster than

scattered values, memory access patterns play an important

role for the performance of our algorithm. We address this

issue later in this section. A second important performance

criterion is the degree of data parallelism of each operator.

In order to achieve a good performance, blocks of 32

variables in a row must be processed with exactly the same

operations at the same time. If partitions of these blocks are

processed differently, all conditional parts are processed

sequentially, while the unaffected partitions are idle. By

rewriting affected operations, we avoid this so-called warp

divergence wherever this is possible. For example, we pad

all vectors such that their length is a multiple of the width

of a CUDA block. This allows to process them with all

available threads, but does not destroy the data integrity:

during data read, CUDA textures are simply bound to the

actual size of the vector, such that surplus values are effi-

ciently occluded.

Our framework consists of 18 custom kernels, plus calls

to 16 CUDA library functions for the Fourier transform,

memory operations, and the CUDA randomiser. Among

our individual kernels are 8 which are exclusively called

for the initialisation, and 10 which are also executed during

each iteration. This accounts for the different data layouts

and dependencies that are involved in our process, such as

the linear storage of point locations, the 2-D representation

in the Fourier space, or the lookup map for the nearest-
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neighbour identification scheme. As a side effect of this

design, both the NFFT and its adjoint are encapsulated as

static pipelines of CUDA kernels, such that they can easily

be applied for applications other than fast summation

approaches.

5.1 Far-field interaction

Let us first consider the far-field interactions. Here, some

operations do not need to be complex-valued in the case of

fast summation over real values, as can be seen from (8)

and (12). The locations of the particles as well as the

computed forces are both real-valued. As the first spe-

cialisation of the process, we thus use complex-to-real

valued NFFTs and their real-to-complex valued adjoint

operations which require significantly less runtime than the

canonical complex-to-complex valued versions. Moreover,

we should recall that the matrices B and D are both sparse

such that the number of effective operations is much

smaller than their size suggests. Moreover, note that neither

of the matrices B, F, and D are stored. Instead, we com-

pute their effect on the fly, as it is detailed in the following

paragraphs.

Let us now detail on the single operators of standard and

adjoint NFFTs. For the central operation, the FFT of length

n described by F, we apply version 4.0 of the cuFFT

library provided by NVidia [24]. This library still has a bad

reputation for being slower than the alternative imple-

mentations such as the approach of Govindaraju et al. [12].

However, we cannot confirm this statement with our

modern version of cuFFT which might be due to the recent

improvements in this library [24].

Let us now have a look at the matrices D and D>: Their

diagonal sub-matrices of size N 9 N can be computed in

parallel with each thread handling one diagonal entry.

Unlike suggested by Potts et al. [27], we do not precom-

pute ckðeuÞ; as the GPU kernel is already strongly memory-

bound and further (random) lookups lead to severe memory

bottlenecks. In our experiments, evaluating ckðeuÞ on-the-

fly turned out to be much less expensive. In particular,

since ck is a product of two 1-D functions, each thread re-

uses its value from on-chip memory by applying D or D>

to four entries of the vector in parallel. This design also

helps to hide memory latencies behind computations, and it

accelerates the process significantly.

Finally, let us focus on B and B>: Both require the

computation of eu; which comes down to the evaluation of

Chebychev polynomials. Like before, we compute the

values for eu on-the-fly. This is particularly interesting

since the few coefficients for the Chebychev polynomials

are cached and can thus be read without additional laten-

cies. Still, the application of B and B> is the most

expensive part of the NFFT (see Fig. 8), which is due to the

arising memory patterns and the high data throughput.

While the multiplication with B involves the load of pat-

ches of size (2m ? 1)2 from random positions in the input,

the application of its adjoint requires to store patches to

random locations. In the first case, we can partly reduce the

expensiveness of this operation by reading data from tex-

tures. Whenever one cache miss is encountered, following

reads in the neighbourhood are likely to be cached. How-

ever, the inverse operation which is required for the

application of B> cannot be accelerated by similar ideas.

As an additional challenge, it might even happen that dif-

ferent threads write to the same memory locations at the

same time, which causes race conditions. Consequently, we

use a CUDA atomic operation for the addition of single

floating point numbers. This causes the application of B>

to be slightly slower than the multiplication with B, but is

still reasonably efficient since writing operations on mod-

ern graphics cards are buffered by linear L2 caches.

5.2 Near-field identification and interaction

After having computed the interaction of all particles with

all other nodes that are sufficiently far away, we still have

to compute the interaction with particles in their direct

neighbourhoods. Due to the potential, forces between two

particles that are close together are much higher than those

between distant particles. As a consequence, these forces

must be evaluated in a very accurate way, i.e. by direct

summation. Although the involved number of computa-

tions is small due to the limited number of particles in a

neighbourhood, the implementation still requires a careful

algorithmic design: only a very limited number of candi-

dates should be considered, and a k-d-tree as in Teuber

et al. [34] is no option on GPUs because of the arising bad

memory patterns and sequentialisation due to warp

divergence.

As an alternative, we propose a new data-parallel

approach which exploits the texturing unit of graphics

Fig. 1 Neighbourhood in a lookup map for the near-field of a particle

(red): Neighbours (blue) and false positives (black). Arrows indicate

mappings
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cards. It is motivated by the observation that electrostatic

halftoning locally preserves the average grey value. The

peak density of particles within a region of the result is thus

the density corresponding to plain black. This allows to

allocate a 2-D map that is large enough to absorb a com-

pletely black (i.e. saturated) image, and to assign each

particle to the closest unoccupied cell in its neighbourhood.

This cell will then contain the particle’s exact position as a

two-element vector. All unoccupied cells contain the

empty pair. This is visualised in Fig. 1. In CUDA, we

denote the empty pair by the bitstring (164)2, a vector of

two (non-signalling) NaNs, which allows a fast initialisa-

tion by the use of cudaMemset and does not conflict with

an actual particle residing at position ð0; 0Þ>:
During the near-field evaluation, we can then resolve

the rectangle occupied by the near field of a particle (the

solid area in Fig. 1), perform a texture fetch at this point

and, given a particle is inside, obtain its exact coordi-

nates. We then check whether the exact distance to this

particle is smaller than eI : If this is the case, we extend

the sums from (3) by the respective near-field contribu-

tions. Otherwise, the given particle is a false positive and

is thus ignored. Figure 1 visualises such mismatches by

black dots. Please note that texture fetches in a neigh-

bourhood benefit from the 2-D aware texture cache of

graphics cards and can thus be performed very quickly.

Moreover, we touch only a constant neighbourhood per

particle and obtain very few false positives, such that this

operation has linear runtime complexity in the number of

particles and scales well over the cores provided by the

graphics card.

Because the map changes in every iteration, the con-

struction phase must not be too expensive as well. More-

over, we must pay particular attention to the case that two

particles occupy the same cell (as in Fig. 1). For the par-

allel insertion process, we thus follow an idea inspired by

cuckoo hashing [25]: a candidate is always placed in its

designated cell, and pushes aside any potential particle that

is already there. If the cell to the right is not empty, this

process will be repeated until all particles found their place.

In CUDA, we realise this strategy by atomic, i.e. thread-

safe, exchange operations which we repeat with an incre-

mented pointer until the empty pair is returned. This allows

to insert many particles in parallel. Because there is no

such operation for a float2 vector type available, we use

the atomicExch operation for unsigned long long

types instead which works on equally long data chunks.

Since particles can be mapped outside the area covered by

the near field, we extend the search window by a few optional

positions to the right (the dashed cells in Fig. 1). Experi-

mentally, our heuristic nearest-neighbour detection scheme

works well even on very saturated images. Using the ini-

tialisation of the point locations as proposed in Schmaltz

et al. [29], a bound of two pixels is sufficient to offer enough

extra space for potentially offset particles. However, our

algorithm is also robust against sub-optimal initialisations.

In such cases, particles in oversaturated image regions might

not be found during the first iterations of the algorithm.

Nevertheless, the rough estimate obtained in this case suf-

fices to let the algorithm gradually converge. Once the

oversaturated regions disappear, our neighbour-identifica-

tion scheme rehabilitates and yields the exact results.

6 Experiments

6.1 Examples

Let us first show some examples for the performance of our

algorithm. Figure 2 shows a stippling of the test image

Trui, 256 9 256 pixels, where the size of the dots has been

chosen such that each dot covers the area of one pixel. This

leads to a total of 30,150 particles. The resulting halftone

has the same quality as the results from Schmaltz et al. [29]

Fig. 2 Test image Trui,

256 9 256 pixels. Left Original.

Right Stippling with 30,150

dots. This image serves as a

basis for our quantitative

evaluation. Runtime on GeForce

GTX 480: 33.6 ms per iteration,

or 6.72 s for 200 iterations
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and the ‘logarithmic’ version from Teuber et al. [34], and

shows no perceptible artefacts compared to the original.

Because this image is small enough that it can still be

processed by the algorithm from Balzer et al. [2] in a

reasonable time, we use it as a basis of evaluation in the

next section.

As a second experiment, we computed a halftoning of

the test image Tiger (1,024 9 1,024 pixels). This experi-

ment on real-world data with high contrast, fine structures,

and flat regions demonstrates the very good performance of

our algorithm with respect to both approximation quality

and runtime. Figure 3 shows the result with 647,770 dots.

The halftoning result is not only very accurate and almost

indistinguishable from the original but also computed in a

very fast way. An NFFT-based fast summation algorithm

on an NVidia GeForce GTX 480 computes the required

420�109 interactions per iteration in less than 820 ms.

Given that 200 iterations already suffice to obtain a high

quality, our algorithm takes less than 3 min to yield a result

such as the one shown in Fig. 3.

A small shortcoming of fast summation approaches is

their high memory consumption. The Fourier plane used for

(16) must have a power-of-two side length (see Sect. 4 and

Potts et al. [27] for details). Given a graphics card such as

our GTX 480 with 1.5 GB of RAM, or a 32-bit CPU, this

limits both the image size and the number of particles to 220

& 1 million, each. Although this problem vanishes if we

consider 64-bit systems with sufficient physical memory, it

still seems to represent a drawback compared to direct

summation approaches. They require only one vector that

contains the two float coordinates of each pixel. Thus,

direct summation algorithms can in principle deal with sets

containing more than 65 million particles. However, since

each iteration requires about 5 days on the GPU, and more

than a year on the CPU, this is infeasible in practise.

6.2 Quality

After these first impressions, we now evaluate the

approximation quality of the proposed algorithm, and

Fig. 3 Right Stippling with 647,770 dots on test image Tiger, 1,024 9 1,024 pixels (License: TeryKats, flickr.com, CC-BY). Left, top to bottom

Original, zoom into original, zoom into result. Runtime on GeForce GTX 480: 820 ms per iteration, or 164 s for 200 iterations
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compare it against the direct summation approach from

Schmaltz et al. [29], and against the capacity-constrained

approach of Balzer et al. [2]. A comparison against the

CPU algorithm from Teuber et al. [34] is not shown in this

experiment, as these results are equivalent to the ones of

our GPU algorithm.

While the near-field is always computed accurately, the

approximation quality of the far-field can be controlled by

two parameters, namely the degree of the polynomials p̂

(see page 9) and the cutoff parameter m (see page 13).

Without going into detail about the theoretical background

of these two parameters, we regard both as one abstract

trade-off parameter m̂ ¼ m ¼ p̂: In the following, we

evaluate the effect of this parameter on the similarity of the

halftone to the original image, as well as on the spectral

properties of the halftone. While the first measure tells us

how well the grey value of a given image is approximated

at any point in the image domain, the second criterion

measures the freedom of artefacts.

To this end, we first blur both the original image and the

halftoning result by Gaussian convolution with the same

standard deviation r. This mimics the human visual system

under a certain viewing distance, and can be used to compute

the visual similarity of both results to a human observer. As a

measure for similarity between both images, we apply the

peak signal to noise ratio (PSNR). Because r depends cru-

cially on the viewing distance and the resolution of the

halftone, we preserve the generality of this experiment by

computing the similarity for many standard deviations

simultaneously. The higher the PSNR is, the better is the

performance for a specific standard deviation. Figure 4

shows the results of this experiment. As expected, higher

values of m̂ yield better approximations of the original.

Using m̂ ¼ 3; our method already yields solutions that

clearly surpass the ones of Balzer et al. [2]. With m̂> 4; the

results are almost indistinguishable from those obtained with

the direct summation approach from Schmaltz et al. [29].

Secondly, let us measure the spectral properties of the

results. Because this evaluation requires uniform images,

we generate a halftone with the average grey value of 0.85,

and analyse the regularity of the found point set in the

frequency domain with respect to two criteria. Both are

computed from the power spectrum of the result, as

described by Ulichney [36]. While the radially averaged

power spectrum (RAPS) is obtained from an averaging

over concentric circles, the anisotropy results from the

variance on these circles. Good halftones are supposed to

possess blue noise properties, i.e. the RAPS should contain

a single peak at the principle frequency fg, it should vanish

below fg, the transition region between both regions should

be steep, and the interval above fg shall be flat. The

expected principle frequency depends on the average grey

value and on whether the underlying grid is rectangular or

hexagonal. Since our method produces hexagonal struc-

tures on a rectangular grid, we expect fg to lie between

these extremes (see Ulichney [36]). Consequently, we

depict both frequencies by vertical lines in the plot.

Moreover, blue noise characteristics cause a flat and low

anisotropy. Due to background noise, the theoretical limit

for this measure lies at -10 dB. The closer a method

approaches this limit, the better it is.

Figure 5 shows the results of this experiment for trade-

off parameters m̂ 2 f3; 4; 5g: In each graph, the result for
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the direct summation method from Schmaltz et al. [29] is

superposed as a black dotted curve. Both for m̂ ¼ 3 and

m̂ ¼ 4; we observe striking artefacts. In the case m̂ ¼ 3; the

method slightly adapts to a rectangular grid, which explains

the RAPS peak at the dashed line. Surprisingly, even the

case m̂ ¼ 4 contains striking artefacts. Here, we obtain an

almost regular hexagonal grid which explains the peaks in

the RAPS and the very unsatisfying anisotropy measure.

This behaviour changes drastically if we choose m̂> 5: For

these choices, we obtain a result that is equivalent to the

one obtained by the direct summation approach. The

insights obtained in this evaluation complement the pre-

vious experiment, and tell us to set m̂ ¼ 5 if we require

artefact-free results. Consequently, all further experiments

in this article are conducted with this configuration.

6.3 Runtime

In this section, we evaluate the runtime of the proposed

method on an NVidia GeForce GTX 480 graphics card, and

compare it to the direct summation method on the GPU and

the CPU (see Schmaltz et al. [29]), and to the fast sum-

mation method on the CPU (see Teuber et al. [34]). The

CPU-based experiments were conducted on the same Intel

Core 2 Duo E8200 CPU with 2.66 GHz, and could entirely

be computed within physical memory.

Table 1 shows the runtime of a single iteration with 214,

216, 218, and 220 particles, and the corresponding speedups

obtained. Note that ‘speedup’ columns refer to the paral-

lelisation gain, while the corresponding row refers to the

numerical improvement by the NFFT algorithm on the

respective architectures. The overall benefit obtained by

both the algorithmic and numerical improvements is indi-

cated in the bottom row.

Compared to the naive implementation on the CPU, our

method obtains speedups of more than 7,000 for one mil-

lion particles. This is both due to the efficient numerics,

and due to our parallelisation efforts. While the NFFT

algorithm already yields a factor of up to 150 over direct

summation, the parallelisation yields another speedup of

50. The latter is impressive, considering that some opera-

tions such as the near-field evaluation or the execution of

the operators B and B> are very time-consuming and hard

to parallelise. However, the speedup of the proposed

approach over the direct summation method on the GPU is

only about half as high as it is for the corresponding

Table 1 Runtime comparison for 1 iteration with different numbers of particles, and speedup factors

Particles 16,384 65,536 262,144 1,048,576

CPU GPU Speedup CPU GPU Speedup CPU GPU Speedup CPU GPU Speedup

Direct 2.12 0.03 70.67 33.90 0.43 78.84 542.64 6.62 81.97 8,853.46 103.61 85.45

Fast 0.84 0.02 41.12 3.65 0.07 56.00 14.74 0.28 53.58 57.95 1.20 48.20

Speedup 2.54 1.62 9.28 6.69 36.81 24.06 152.78 86.17

Total speedup 104.38 519.85 1,972.48 7,363.50

All times are given in seconds. Speedup factors describe the parallelisation benefit (horizontal), the difference between runtime classes (vertical),

and the overall improvement of the fast summation GPU method over the original CPU direct summation technique (total)
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problems on the CPU. This indicates that the process is

memory-bounded.

Figure 6 shows the scaling behaviour of the analysed

methods over a varying number of particles. We can easily

see the different complexity classes which lead to a better

asymptotic behaviour of the fast summation approach. On

both the CPU and the GPU, this method clearly outper-

forms the direct summation method for large particle sets.

However, the fast-summation method also possesses an

overhead that results in a worse performance for very few

particles. For the CPU-based method from Teuber et al.

[34], this means that the direct summation approach on the

GPU is still faster until the number of particles exceeds

about 620,000. With our new parallelisation, this break-

even point is drastically lowered to around 11,500

particles.

A second important property for real-world applications

is the initialisation time of the process. For direct sum-

mation algorithms, it corresponds to the time required to

precompute the attractive image forces FðAÞ: This number

depends only on the number of pixels of the input image. In

fast summation approaches, it is additionally necessary to

compute the Fourier transform of the radial kernel in the

frequency space. Moreover, the CPU-based fast summation

method also precomputes samples for the function eu: Our

GPU algorithm computes these values on the fly (see

Sect. 1 for details). In Figure 7, we thus depict total ini-

tialisation times with solid lines, and the time required to

set up the attractive force field with dashed lines. The latter

operation can be exchanged with a direct summation ini-

tialisation, which is again beneficial for small images.

The jumps visible in the total initialisation time for the

fast summation algorithm occur whenever the image width

or height reaches a power of two. This is because the image

plane in the frequency space grows with the image, but the

radial kernel cannot be efficiently evaluated and sampled in

parallel. A large array of either of these sizes is thus still

filled on the CPU and then uploaded to the GPU, which in

turn creates the observed runtime behaviour. Since we used

quadratic images to create the graphs shown in Fig. 7,

jumps appear whenever the number of pixels exceeds a

power of four.

6.4 Profiling

Finally, we detail on the time required for each individual

operator of our algorithm on the graphics card. This gives

insights about bottlenecks and shortcomings of our paral-

lelisation approach. Using the CUDA profiler on a half-

toning process for Trui, we measure the runtime over 100

iterations and 10 shaking operations, and normalise them to
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one iteration and one shaking step, each. Figure 8 shows

the result of this experiment. Red denotes contributions that

scale with the number of iterations, yellow depicts those

which scale with the application of the shaking procedure,

blue denotes one-off expenses such as initialisation, and

green are one-off memory copy operations between CPU

and GPU which are not required if the problem already

resides on the GPU. The CUDA profiler reports 34 dif-

ferent kernels, out of which 18 are custom-built and 16

represent callbacks to CUDA libraries. Because many of

these calls do not significantly affect the overall runtime,

we grouped them into 15 meaningful units.

As can be seen in Fig. 8, executing the operators B and

B> dominates the runtime of each iteration, and thus of the

whole process. This is caused by the expensive convolution

at random positions in the image domain, which leads to

undesired memory patterns and a strong memory-bound-

edness of the algorithm. However, other operations with

complex memory patterns, such as the computation of

near-field interactions or the FFT, do not represent a bot-

tleneck of the algorithm. Compared to the original

approach from Schmaltz et al. [29], the time required for

the shaking step almost vanishes in the overall runtime of

the process. This is a consequence of the GPU-based per-

turbation of particles, and the resulting absence of addi-

tional memory copy operations.

7 Summary and conclusion

This article presents a highly efficient GPU implementation

of the fast summation algorithm (see Teuber et al. [34]) for

electrostatic halftoning. It introduces the first parallel

algorithm of the non-equispaced Fourier transform (NFFT)

on the GPU that does not assume special structural

arrangements of nodes, and extends it by novel concepts

such as a fast parallel nearest-neighbour retrieval for a

continuous placement of points. Our sophisticated algo-

rithm improves the runtime of the naive CPU algorithm for

electrostatic halftoning by a factor of more than 7,000

without constraining its quality.

These results set new standards for the computation of

state-of-the-art halftones with very large numbers of dots in

a small runtime. While the overall runtime of several hours

to days prevented electrostatic halftoning from being used

in real-world applications, our new approach opens the

doors for the application in interactive systems. Moreover,

our algorithm enjoys a broad applicability beyond halfton-

ing or sampling, as the NFFT nowadays represents a stan-

dard tool for many applications. We are confident that our

contribution helps researchers in all of these areas to obtain

highly qualitative results in a fraction of the usual runtime.
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Prusinkiewicz, P.: Realistic modeling and rendering of plant

ecosystems. In: Proc. SIGGRAPH ’98, ACM, New York,

pp. 275–286 (1998)

9. Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced

data. SIAM J. Sci. Comput. 14(6), 1368–1393 (1993)

10. Fenn, M., Steidl, G.: FMM and H-matrices: A short introduction

to the basic idea. Tech. Rep. TR-2002-008, Department for

Mathematics and Computer Science, University of Mannheim,

Germany (2002)

11. Fenn, M., Steidl, G.: Fast NFFT based summation of radial

functions. Sampl. Theory Signal Image Process. 3(1), 1–28 (2004)

12. Govindaraju, NK., Lloyd, B., Dotsenko, Y., Smith, B., Man-

ferdelli, J.: High performance discrete Fourier transforms on

graphics processors. In: Proc. 2008 ACM/IEEE Conference on

Supercomputing, IEEE Press, pp. 2:1–2:12 (2008)

13. Greengard, L., Rokhlin, V.: A fast algorithm for particle simu-

lations. J. Comput. Phys. 73(2), 325–348 (1987)

14. Gregerson, A.: Implementing fast MRI gridding on GPUs via

CUDA. NVidia Whitepaper. Online: http://cn.nvidia.com/docs/

IO/47905/ECE757_Project_Report_Gregerson.pdf. Retrieved 11

April 2011 (2008)

15. Gumerov, N.A., Duraiswami, R.: Fast multipole methods on

graphics processors. J. Comput. Phys. 227(18), 8290–8313 (2008)

16. Hackbusch, W.: A sparse matrix arithmetic based on H-matrices.

Part I: Introduction to H-matrices. Computing 62, 89–108 (1999)

17. Halton, J.H.: On the efficiency of certain quasi-random sequences

of points in evaluating multi-dimensional integrals. Numer. Math.

2(1), 84–90 (1960)

18. Hockney, R., Eastwood, J.: Computer simulation using particles.

McGraw-Hill, New York (1981)

19. Kaiser, J., Schafer, R.: On the use of the Io-sinh window for

spectrum analysis. IEEE Trans. Acoust. Speech Signal Process.

28(1), 105–107 (1980)

20. Keiner, J., Kunis, S., Potts, D.: Using NFFT 3—a software library

for various nonequispaced fast Fourier transforms. ACM Trans.

Math. Softw. 36(4), 19–30 (2009)

21. Kollig, T., Keller, A.: Efficient illumination by high dynamic

range images. In: Christensen P, Cohen-Or D (eds.) EGRW ’03:

J Real-Time Image Proc (2014) 9:379–392 391

123

http://cn.nvidia.com/docs/IO/47905/ECE757_Project_Report_Gregerson.pdf
http://cn.nvidia.com/docs/IO/47905/ECE757_Project_Report_Gregerson.pdf


Proceedings of the 14th Eurographics Workshop on Rendering,

Eurographics Association, Aire-la-Ville, Switzerland, pp. 45–50

(2003)
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