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Abstract This paper proposed a multi-cue-based face-

tracking algorithm with the supporting framework using

parallel multi-core and one Graphic Processing Unit (GPU).

Due to illumination and partial-occlusion problems, face

tracking usually cannot stably work based on a single

cue. Focusing on the above-mentioned problems, we first

combined three different visual cues—color histogram,

edge orientation histogram, and wavelet feature—under

the framework of particle filters to considerably improve

tracking performance. Furthermore, an online updating

strategy made the algorithm adaptive to illumination chan-

ges and slight face rotations. Subsequently, attempting two

parallel approaches resulted in real-time responses. How-

ever, the computational efficiency decreased considerably

with the increase of particles and visual cues. In order to

handle the large amount of computation costs resulting from

the introduced multi-cue strategy, we explored two parallel

computing techniques to speed up the tracking process,

especially the most computation-intensive observational

steps. One is a multi-core-based parallel algorithm with a

MapReduce thread model, and the other is a GPU-based

speedup approach. The GPU-based technique uses features-

matching and particle weight computations, which have

been put into the GPU kernel. The results demonstrate that

the proposed face-tracking algorithm can work robustly

with cluttered backgrounds and differing illuminations; the

multi-core parallel scheme can increase the speed by 2–6

times compared with that of the corresponding sequential

algorithms. Furthermore, a GPU parallel scheme and co-

processing scheme can achieve a greater increase in speed

(89–129) compared with the corresponding sequential

algorithms.

Keywords Multi-core � Face tracking � Particle filter �
General purpose computing on Graphic Processing Unit

1 Introduction

Face detection and tracking is one of the most active

research topics in computer vision and has made remark-

able progress in decades of research. However, illumina-

tion and occlusion problems are still major challenges in

face tracking. It is a promising approach to fuse multi-cue

visual features to illumination changes. With high-perfor-

mance hardware devices emerging, such as multi-core

CPUs and GPU cards, face-tracking algorithms can be run

more efficiently via parallel schemes, which make the fast

and robust face-tracking algorithm useable in many appli-

cations, including video surveillance and human–computer

interactions.
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Multi-cues, such as color and contour [1, 2], color and

motion cues [3, 4], and color and depth cues [5, 6], have

been widely used to achieve robust object tracking. The

corresponding experimental results show that the multi-

cue-based approach improves tracking performance

greatly. Compared with commonly used tracking methods,

such as the Kalman filter [7] and mean shift [8], particle

filter [9] can successfully solve the nonlinear and non-

Gaussian problem at the cost of a high computation load.

An object-tracking survey made by Yilmaz et al. [10]

reviews the methods of object representation, feature

selection, object detection, and object tracking in detail.

Color, edge, optical flow, and texture are commonly used

features for object tracking. However, the tracking per-

formance is not robust using a single feature due to illu-

mination variation, camera movement, and occlusions.

A combination of these features is a promising approach

for the improvement of tracking performance. This paper

focuses on parallel particle-tracking methods with multi-

cues.

Many researchers focus on establishing a multi-cue

integration mechanism under the probabilistic framework,

including the Dynamic Bayesian Network [11], the Monte

Carlo method [1, 12], and particle filters [13–16]. In these

methods, multiple cues are tightly coupled with the track-

ing model and the tracking algorithm based on a Bayesian

framework, which make them difficult to use in deter-

ministic tracking methods. Isard et al. [1] proposed an

ICondensation algorithm combining color and contour

information with importance sampling. Wu et al. [12]

presented an approach to combine visual cues by including

them in the state, but then decouple the prediction and

observation of the different cues. Spengler and Schiele [13]

proposed an integration scheme to reliably detect and track

multiple hypotheses even under challenging conditions

based on the Condensation algorithm. Maintaining multiple

hypotheses over time explicitly avoids locking onto a

particular target and therefore prevents an incorrect adap-

tation caused by false-positive tracking. Brasnett et al. [14]

developed a particle filter (PF) and a Gaussian sum particle

filter (GSPF) based on multiple information cues, namely

color and texture, which are described with highly non-

linear models. The algorithms rely on likelihood factor-

ization as a product of the likelihoods of the cues. Serby

et al. [15] presented a generic tracker combining comple-

mentary sources of information like interest points, edges,

and homogeneous and textured regions for robust tracking

performance. These features are integrated into a particle

filter framework. Zhao et al. [16] proposed an effective and

robust facial feature tracking approach based on the multi-

cue particle filter. Both color and edge distributions were

integrated into the filter to ensure tracking accuracy. An

efficient updating algorithm was also introduced to avoid

tracking error accumulation problems.

Another multi-cue-integration method is the pixel-wise

integration method. In this method, tracking is considered

to be a pixel classification problem. Whether a pixel

belongs to the foreground or background is determined by

all the cues. Every cue has a saliency map, and these maps

are combined according to certain principles. One repre-

sentative method is the adaptive democratic integration

method proposed by Triesch and Malsburg [17]. Each cue

votes for the final combined saliency maps, and the voting-

like integration scheme is adaptive. Spengler and Schiele

[13] used this adaptive integration method to integrate cues

in human face tracking. This pixel-wise integration method

is suitable for use in deterministic tracking methods.

Rasmussen et al. [18] defined a target as a conjunction

of parts and introduced a constrained joint likelihood filter

as a data-association method to generate the measurement

for a Kalman filter. Chen et al. [19] used the Lucas–Kanade

algorithm to detect and track six facial feature points using

multiple cues, including facial feature intensity as well as

the probability distribution, geometric characteristics, and

motion information. Liu et al. [20] proposed an adaptive

multi-cue integration for robust visual tracking based on

the mean-shift framework.

Particle filter provides a statistical probabilistic frame-

work to estimate object states based on sampling tech-

niques. The observational step for calculating sample

weights is the most computer-intensive stage in particle

filter algorithms. As a result, a trade-off consideration is

needed to make practical applications. Lozano and Otsuka

[21] presented a GPU-based parallel scheme to create a real-

time visual tracker of the position and a 3D pose of objects

in video sequences. There are several parallel particle filter

research papers on GPUs. Hendeby, Hol and Karlsson [22]

conducted parallel particle filter research based on a particle

resampling step. Montemayor et al. [23] implemented a

real-time particle filter algorithm with the help of the shader

model. Happe et al. [24] presented a video object-tracking

application modeled on top of a framework for imple-

menting SMC methods on CPU/FPGA-based systems, a

heterogeneous multi-core architecture.

This paper proposed a multi-cue-based face-tracking

algorithm with the help of parallel multi-core and GPU,

which can effectively increase the robustness of the face-

tracking algorithm. In Sect. 2, we briefly describe the

multi-cue-based face-tracking algorithm within the particle

filter framework, including the face model, dynamic model,

and the multi-cue observation model. In Sect. 3, two par-

allel schemes for face tracking based on particle filter

techniques were proposed to speed up the tracking algo-

rithm. The results of the experiment in Sect. 4 demonstrate
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the effectiveness of our proposed algorithm. Finally, our

conclusions are presented in Sect. 5.

2 Face tracking with particle filter

2.1 Tracking methods

Particle filter [9] offers a probabilistic framework for

dynamic state estimation based on Monte Carlo simulations.

This algorithm provides a robust tracking framework

against the cluttered background. The state of a face at time t

is denoted st and its history is S ¼ fs1; � � � ; stg. Similarly,

the set of image features at time t is zt with history

Z ¼ fz1; � � � ; ztg. The basic idea of particle filter algorithm

is to compute the posterior state-density p(st|zt) at time t

using process density p(st|st-1)and observation density

p(zt|st-1). To improve the face-tracking performance sig-

nificantly, three cues of color, edge, and wavelet are inte-

grated under the particle filtering framework. Given the face

model, the tracking algorithm consists of four main steps:

(1) sample selection, generating new samples s
0ðnÞ
t from old

sample set s
0ðnÞ
t�1 with its weights pðnÞt�1; (2) prediction, deter-

mining new samples with dynamic model s
ðnÞ
t ¼ s

0ðnÞ
t þ w

ðnÞ
t ,

where w
nð Þ

t is the Gaussian noise at the nth iteration; (3)

weight measurement, calculating the weights p nð Þ
t for each

newly generated samples by observation steps; and (4) state

estimation, obtaining the final state vector of a face by the

newly generated samples and their weights. The imple-

mentation details are described as follows.

2.2 Face model

In this paper, multi-cues from a rectangular region are used

to describe face features for tracking. As shown in Fig. 1,

the red rectangle indicates the face region and three

types of region features, including color histogram, edge

orientation histogram, and wavelet features, which are

integrated to achieve more stable tracking performance. To

alleviate the problem of illumination change, we calculate

the face color histogram Hcolor ¼ fhcolor
i gBc�1

i¼0 in the HSV

color space, where Bc denotes the number of used bins

(discrete intervals). Similarly, the edge orientation histo-

gram Hedge ¼ fhedge
i gBe�1

i¼0 is calculated by the edge image

filtered by a Canny core, where Be denotes the number of

used bins, as shown in Fig. 1c. For each face window, the

horizontal, vertical and diagonal coefficients are calculated

by wavelet transformations with different scales. Figure 1d

indicates the final wavelet features Vwavelet = {vi
wavelet}i=0

d-1,

where d is the number of feature dimensions.

In our work, the face model is defined by the following

parameters set as:

s ¼ ðHcolor;Hedge;Vwavelet; RÞ ð1Þ

where R is a rectangle represented by R = (Cx, Cy, W, H),

and (Cx, Cy) is the centroid position, and W, H are the

width and height of the rectangle.

2.3 Dynamical and observation model

Face dynamics are modeled as a first-order process, as

shown in the following equation:

st ¼ st�1 þ wt�1 ð2Þ

where wt indicates the Gaussian noises. The observation

process is performed to measure and weigh all the newly

generated samples. The visual observation is a process of

visual information fusion including three sub-processes:

the computation sample weights pcolor, pedge, pwavelet based

on color histogram, edge orientation histogram, and

wavelet features, respectively.

For the nth sample, we obtained the weight pn
color

through a Bhattacharyya similarity function as shown in

Eq. 3, calculating the similarity between sample histogram

Hn
color and the reference histogram template Href

color.

pcolor
n ¼ expf�D2ðHcolor

n ;Hcolor
ref Þg

where DðHcolor
n ;Hcolor

ref Þ ¼ 1�
XBc�1

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcolor

i;n � hcolor
i;ref

q !1=2

:

ð3Þ

Similarly, we obtain the sample weight pn
edge based on the

edge orientation histogram as follows

pedge
n ¼ expf�D2ðHedge

n ;Hedge
ref Þg

where DðHedge
n ;Hedge

ref Þ ¼ 1�
XBe�1

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hedge

i;n � hedge
i;ref

q !1=2

:

ð4Þ

To compute the sample weight pn
wavelet based on the

wavelet feature, the Euclidean distance between the sample

(a)

(c)

Color 
historgram

Edge 
historgram

Wavelet 
feature

(b)

RGB HSV

Canny filter

Haar filter

(d)

Fig. 1 Face model feature description
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feature vector Vn
wavelet and the reference feature vector

Vref
wavelet is employed in our system. The expression of

pn
wavelet is as follows

pwavelet
n ¼ expf�EuðVwavelet

n ;Vwavelet
ref Þg

where EuðVwavelet
n ;Vwavelet

ref Þ¼
Xd�1

i¼0

ðvwavelet
i;n �vwavelet

i;ref Þ2
 !1=2

:

ð5Þ

With three different visual cues, we obtain the final weight

for the nth sample as:

pðzn
t jsn

t Þ ¼ acolorp
color
n þ aedgepedge

n þ awaveletp
wavelet
n ð6Þ

where acolor, aedge and awavelet are the coefficient values the

weights of color histogram, edge orientation histogram,

and wavelet feature cues, respectively. We can determine

their values from experiences.

2.4 Multi-core particle filter algorithm

2.4.1 Initialization/re-initialization

In most object-tracking systems, the initialization algo-

rithm is only performed at the beginning of tracking and is

incapable of recovering from tracking failures. In our

tracking system, the boosted face detector [25] is intro-

duced to achieve automatic initializations when the system

starts or when a tracking failure occurs. The face detection

results are used to update the reference face model. The

updating criterion is confidence values that are less than a

threshold value for M successive frames. The online

updating strategy can solve the tracking drift problems due

to illumination changes, slight face rotations, or partial

occlusions.

1) Automatic initialization / re-initialization 

A. Boosted face detection 

B. Reference face template updating 

2)  Particle filter tracking: probability density propagating from )},,{( 1
)n(
1

)(
1

n
tt

n
t c −−− πs  to )},,{( )n()( n

tt
n

t cπs , where n
tc

indicates the cumulative weights for the nth sample at time t. 

For Nn :1=
A. Sample selection, generate a sample set )(n

ts′ as follows 

(a) Generate a random number )1,0[∈α , uniformly distributed. 

(b) Find, by binary subdivision, the smallest j for which α≥−
)(
1

n
tc

(c) Set j
t

n
t 1

)(
−=′ ss

B. Prediction, obtain )(n
ts with n

t
n

t
n

t w+′= )()( ss

C. Weight measurement

(a) Observe with color histogram )},(exp{ 2 color
ref

color
n

color HHDp −=

(b) Observe with edge orientation histogram )},(exp{ 2 edge
ref

edge
n

edge HHDp −=

(c) Observe with wavelet feature 2exp{ ( , )}wavelet wavelet wavelet
n refp D V V= −

(d) Calculate the sample weight ( | )n n color edge wavelet
t t color n edge n walet np p p pα α α= + +z s

End

3) Normalize the sample set so that 1)( =∑n
n

tπ , and update the α≥)(n
tc as follows 

n
t

n
t

n
t cc π+= − )1()( , 0)0( =tc ,

4) Estimate state parameters of the pointing gesture at time-step t : ∑∑=
==

N

i

i
t

N

i

i
t

i
t

1

)(

1

)()( ss ππ)

5) If updating criteria are satisfied, go to step 1); otherwise, go to step 2).

Algorithm 1. Face tracking
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2.4.2 Algorithms

The face-tracking algorithm consists of two parts: auto-

matic initialization and particle filter tracking. Here, the

algorithm is summarized, and is called Algorithm 1.

3 Parallel particle filter algorithm

3.1 Multi-core and GPGPU

There is a growing trend towards the use of multi-core

chips. Dual-core and quad-core chips are very common,

with many higher multiple-core chips to come in the future.

Multi-core processors can deliver significant performance

benefits for multi-threaded software by adding processing

power with minimal latency, given the proximity of the

processors. New multi-core processors will eventually

come in heterogeneous configurations such as combina-

tions of high- and low-power cores, graphical processors,

cache blocks, and on-chip interconnects. By bundling

many CPUs into one processor, creating what is known as a

‘‘manycore processor’’, the computing industry can con-

tinue to provide dramatic increases in computing power. As

shown in Fig. 2a, the dual-core CPU has two CPU-local

level 1 caches, and a shared, on-die level 2 cache (http://

en.wikipedia.org/wiki/Multi-core).

Recent graphics architectures provide tremendous

memory bandwidth and computational horsepower. One

emerging trend is that of GPGPU. Packed with 340 Gflops,

GPGPUs have been used to speed up many applications

other than graphics processing. GPU processing power has

been growing much faster than that of CPUs (multi-core)

recently, and the trend continues. Other examples in this

family include Cell Architecture, which has been used in

PlayStation III, workstations, and servers from Mercury

Computer Systems as well as the System-on-a-Chip from

AMD for laptop computers, in which a GPU is integrated

within the CPU. Three major advances in the last 2 years

have made GPUs much more accessible to general-pur-

pose computing: unified architecture design, extended C

programming interface, and libraries and demonstrations of

several applications.

The G80 processor, NVIDIA’s first implementation of

Compute Unified Device Architecture (CUDA), is an

attempt at making GPGPU available for non-vector ren-

dering programming. The G80 architecture enables the

GPU to use multiprocessors to process blocks of 64–512

threads. The blocks are divided into groups of 32 called

warps and are used by the processor for scheduling. The

kernel is a program, executed as blocks of warps. The

arrangement of threads in blocks and the blocks into grids of

blocks is defined by the programmers, as shown in Fig. 2b.

3.2 Multi-core parallel particle filter algorithm

Traditional parallel/distributed programming techniques,

such as message passing and shared-memory threads, are

too complex for most researchers and developers, espe-

cially those without formal training on parallel and dis-

tributed computing.

MapReduce (http://en.wikipedia.org/wiki/MapReduce)

provides a programming model for processing and gener-

ating large datasets. Users specify a map function that

processes a key/value pair to generate a set of intermediate

key/value pairs, and a reduce function merges all inter-

mediate values associated with the same intermediate key.

Programmers do not need to undertake the datasets paral-

lelizing process, and the programs written in the functional

style are automatically parallelized and executed on multi-

Fig. 2 Multi-core and GPGPU

thread structure (http://en.

wikipedia.org/wiki/Multi-core).

a Diagram of a generic dual-

core processor. b NVIDIA G80

thread execution model (http://

www.nvidia.com/cuda)
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core machines and multi-core clusters. As parallel pro-

cessing at the multi-core level is easier and more effective,

we will attempt to use multi-cores in the particle filter

algorithm.

Google’s MapReduce is designed with their typical

application in mind—that is, a dataset too large for the

memory—and thus, a distributed file system is needed.

Recent work at Stanford University has also proven that

MapReduce interfaces and libraries can be good parallel

programming paradigms for Symmetrical Multi-Processing

(SMP).

The particle filter algorithm in face tracking can be

classified into two levels. One is a multi-core implementa-

tion with the MapReduce model (multi-threading). Another

level assigns the weight measuring portion to the GPU. We

would like to describe our multi-core MapReduce thread

model firstly. The parallel part is in the particle filter

tracking iteration. If the particle number can be expressed as

particle_num and the max number of available cores is

max_core, the particle number on every core can be for-

mulated as particleNum_on_everyCore = particle_num/

max_core. The thread model for the particle filter algorithm

can be shown in Fig. 3, in which the particle filter number is

portioned with the current image (frame). Every thread on

every core is bound to implement one map. The map pro-

cedure comprises the color histogram calculation, edge

histogram calculation, texture feature calculation, and the

maximum confidence. The maximum confidence in a thread

is based on the three individual probability computations.

The reduce procedure makes an aggregation with the dif-

ferent particle filters in the current frame.

3.3 Parallel particle filter algorithm on GPU

The most computationally consuming step is to calculate

the weight measurements for all samples, especially with

multi-cue features. The weight measurements for all sam-

ples are independent of each other. This character makes it

easy to speed up the tracking algorithm with parallel

computing hardware. The GPGPU, a parallel computing

technique, can be applied to solve this problem.

The kernel for the GPU is executed in M blocks, each

with N threads. Each thread calculates the weight mea-

surement for one sample, including three measurements

from the color, edge and wavelet features, respectively.

Consequently, M 9 N samples can be processed in a par-

allel way. The parallel-tracking scheme is shown in Fig. 4.

As shown in the Fig. 4, the particle information corre-

sponding to all faces and frame information are copied to

the GPU memory for each input frame. Then the kernel

function is invoked and is executed over the blocks and

threads. Each thread calculates the color cue match, edge

match and wavelet cue match for each particle. Color cue

match can be taken as an example to explain the execution

Fig. 4 Parallel particle filter thread model on the GPUFig. 3 Multi-core thread model for particle filter algorithm

158 J Real-Time Image Proc (2012) 7:153–163

123



process. For color cue match, the color histogram will be

calculated and the Bhattacharya similarity coefficient

between reference histogram and calculated histogram.

Then the weight will be assigned for each particle

according to Bhattacharya similarity coefficient. Finally,

the sample weights from all threads are collected and the

sample parameter with the maximum confidence is selected

to be the final estimation for the target face.

The parallel face-tracking algorithm with particle filter

is similar to Algorithm 1 described in Sect. 2.4.2. The only

difference is in step 2C. The computation of the weight

measurement is performed in a parallel way. All samples

are divided into M groups, with each sample calculated by

a computing thread.

3.4 Parallel particle filter algorithm on GPU

and multi-core CPU

To improve the efficiency of particle filter tracking running

on the hardware platform, many issues need to be addres-

sed. The main functional modules of the proposed com-

putation architecture are depicted in Fig. 5, and there are

three layers: scheduler, MapReduce implementation, and

CPU/GPU co-processing.

• Scheduler The task scheduler is responsible for paral-

leling the computation job. Inspired by the Stanford

Phoenix (http://csl.stanford.edu/*christos/sw/phoenix/),

we have developed a similar scheduler with MapRe-

duce operations. Phoenix is a shared-memory model

that could be used for multi-core parallel runtime on the

CPU. In the scheduler, the GPU can be viewed as a

data-parallel computing device that operates as a co-

processor with the main CPU. The CPU takes the

management and control role, and the GPU acts as

the stream accelerator. The scheduler will schedule the

particle filters to CPU or GPU according to the work

load and dispatch strategy.

• MapReduce The MapReduce model is an established

paradigm for supporting data-intensive computation.

The MapReduce implementation provides two primitive

operations: (1) a map function to process input key/

value pairs and generate intermediate key/value pairs,

and (2) a reduce function to merge all intermediate pairs

with the same key. With this MapReduce implementa-

tion, the computational task will be automatically

distributed and executed on multiple machines, multiple

processors, and multiple cores.

• CPU/GPU co-processing Communication between the

CPU and GPU happens in the main memory. Mars [26]

is a good co-processing library using CUDA. However,

they divided processing of the data statically according

to a pre-defined specific ratio, which cannot support

complex co-processing schemes.

The co-processing part between the GPU and multi-core

CPU is shown in Fig. 6. Here, we take the color histogram

calculation as an example. Supposing that there are 2,000

particles for the computation weight, the color histogram of

template will be computed by the multi-core CPU. In the

case of the task scheduler as mentioned in Fig. 5, the

particle dispatch ratio between GPU and multi-core CPU is

set up 0.25, which means 400 particle filters sent to the

multi-core CPU and 1,600 particle filters sent to the GPU

for computing weight, respectively. Once the two parts

finish their weight computations, the total confidence sort

work will start, and the particle filter with the maximum

confidence will be found.

4 Experimental implementation and comparison

4.1 Tracking accuracy evaluation

A face-tracking system with C?? code has been devel-

oped based on Phoenix code and CUDA (http://www.

nvidia.com/cuda) on a HP xw8400 workstation. The

workstation is configured with dual Intel Xeon 5345 CPUs,

totaling eight cores with 4 GB of RAM and a NVIDIA

FX4600 card (G80 GPU, 768 MB memory, 12 multipro-

cessors). A Logitech Pro 4000 web camera was used to

capture 320 9 240 images for the tracking experiments.

Several face-tracking experiments under different illumi-

nation conditions are designed to verify the proposed

algorithms. As shown in Fig. 7, our tracking algorithm is

adaptable to different illuminations and some slight face

rotations benefit from online updating strategy, where the

facial region is indicated by red rectangles. Face detection

is performed every ten frames to verify the tracking results,

and a re-initialization process is performed if tracking

failure occurs. In our experiments under a sequential mode,Fig. 5 Co-processing architecture on a heterogeneous system
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the number of particles is set to 1,000 by default. The face

number in every frame is 1. The confidence values of color

histogram, edge orientation histogram and wavelet feature

cues are all set to 1/3. If there are multiple faces in every

frame, the numbers of the particle filters should be

increased proportionally.

A group of 282 images with face movements was cap-

tured to evaluate tracking accuracy performance. Using the

manually labeled center positions of face rectangles as the

ground truth, the Euclidean distances between the tracking

results and the ground truth values are used to demonstrate

the accuracy of our face-tracking method, which is shown

in Fig. 8. The mean absolute error is 8.43 pixels, and the

standard error is 4.06 pixels.

4.2 Speedup issue discussions

Normally, the particle filter number is assigned to 100–200

because of sequential computation low efficiency in the

real-time application, especially when multiple features are

CreateHist(hist)

CreateHist(m_hist)

This is the entry of weight
computation for every particle

filter

Create the color histogram of
current particle filter

Create the color histogram of
template (every particle filter will use)

This is the entry of GPU kernel

CalcHist(*)

CompareHist(*)

ComputeProb(*)

CompareConfidence(*)

Confidence
result

Sort and get
max_confidence

prob[bx*100+by*10+ty*10+tx]

// Block index
int bx = blockIdx.x;
int by = blockIdx.y;

// Thread index
int tx = threadIdx.x;
int ty = threadIdx.y;

Take color histogram calculation as an example.

This is the entry of Multicore

CalcHist(*)

ComputeProb(*)

CompareHist(*)

T
hr

ea
ds

Fig. 6 Co-processing between

the GPU and multi-core CPU

Fig. 7 Tracking results with different illuminations and views
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Fig. 8 Euclidean distance for tracking performance evaluation
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used. The computing result is from one person (one face) in

the investigated frame. If there are several persons in the

investigated frame, the computing time will roughly be

multiplied by the number of people. The three parallel

approaches are listed in Table 1.

We conducted several experiments with sequential and

multi-core parallel implementations. The numbers of dif-

ferent particle filters were set at 1,000, 2,000, and up to

10,000, with a step of 1,000. There are eight CPU cores in

our workstation, so the number of multi-core that were

used range from 1 to 8. To investigate performance with

different number cores, we set the particle filter number to

800 and the computing core from 2 to 8. The performance

figure is shown in Fig. 9, which shows the maximum

speedup (4.29) obtained when eight cores are used. There

is a significant speedup improvement going from six cores

to eight cores.

The performance curve based on the multi-core can be

seen in Fig. 10. The numbers of multi-core were set to four

and eight, and the particle filter number was set from 1,000

to 10,000, respectively. Based on the MapReduce pro-

gramming model, the particle filter weight computation

was assigned to each computing core. The internal

MapReduce programming model, improved PThreads

library, was used as a thread library. Color histogram, edge

histogram, and wavelet histogram calculations were exe-

cuted in every thread and on every core.

With the particle filter number increased, the computa-

tion time in every particle filter weight computation period

increased as well. As shown in Fig. 10, it took 0.1 s to

finish the particle filter weight computation when the

number of particle filters was 3,000, with the multi-core

number set to 4. For real-time tracking, a computation time

of 0.2 s can be guaranteed when the particle number was

set to 10,000. The computation time is derived from the

average computing time of a sequence of frames. Based on

the results in Fig. 10, the particle filter number can be set to

5,000 or more with the help of the MapReduce thread

model and multi-core architecture.

To check the GPU performance more visually, the

computation time with different particle filter numbers on

the GPU was obtained. The particle filter number was also

selected from 1,000 to 10,000, with a step of 1,000. The

computing parameters pertaining to color histogram, edge

histogram, and texture feature were firstly copied from the

main memory to the GPU memory. Then, the device

memory for storing results was allocated in advance. The

three GPU kernels were used to calculate the color
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Fig. 9 Speedup with different computing cores
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Fig. 10 The computing time of parallel particle filter on the multi-

core

Table 1 Three parallel approaches

No. Parallel approach Utility

1 Multi-core Dual CPUs with 8 cores

2 GPGPU NVIDIA G80 FX4600 with 128 stream

processors

3 Multi-

core ? GPGPU

8 CPU cores ? 128 stream processors

Fig. 11 The computing time of parallel particle filters on a GPU
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histogram kernel, edge histogram kernel, and texture fea-

ture kernel. For the parameter M and N in Fig. 4, we set M to

10 as a thread block. Additionally, we set N to 100, meaning

that there are 100 threads in every block. Once the three

kernels were finished, the resulting weight was copied from

device memory to host memory. As shown in Fig. 11, the

GPU computing time on a weight measure kernel was

0.082 s when the particle filter number was set to 10,000.

The computing time is applicable to most case applications.

We would like to make a comparison of the three par-

allel methods: the multi-core method, the GPGPU method,

and the co-processing method. The research experiment

includes three parallel scenarios, i.e., task computation on

an 8-CPU core, task computation on NVIDA GPU cores,

and computation on multi-core workstations with GPGPU.

The comparison can be seen in Fig. 12 which contains

three speedup comparison curves. The graph shows that a

heterogeneous speedup can be better than a GPU speedup

and that a GPU speedup is better than multi-core parallel

implementation.

5 Conclusion

Through the theoretical analysis and the practical face-

tracking experiment, we have analyzed the availability of

the proposed a particle filter tracking algorithm and pro-

cessing framework, and the fast face-tracking system can

achieve real-time performance using the multi-core and the

GPU and can constitute the relative high speedup algorithm

for the robust tracking of the face. The experiments of the

fast face-tracking based on multi-core and GPU processing

which have been implemented, and the experimental

results show that the proposed algorithm and processing

system can obtain a positive effect and significant speedup

performance, and can increase the tracking speed by 8–12

times. At the same time, co-processing between the CPU

and the GPU, with the supporting of CUDA, can also

increase the ability of the tracking computation more

effectively.

References

1. Isard, M., Blake, A.: ICONDENSATION: unifying low-level and

high-level tracking in a stochastic framework. In: Proceedings of

5th European Conference Computer Vision, vol. 1, (1998)

2. Wu, Y., Huang, T.S.: Color tracking by transductive learning.

In: IEEE Conf. on CVPR, vol. 1, pp. 133–138 (2000)
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