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Abstract This paper presents a combination of novel fea-

ture vectors construction approach for face recognition using

discrete wavelet transform (DWT) and field programmable

gate array (FPGA)-based intellectual property (IP) core

implementation of transform block in face recognition sys-

tems. Initially, four experiments have been conducted

including the DWT feature selection and filter choice, fea-

tures optimisation by coefficient selections and feature

threshold. To examine the most suitable method of feature

extraction, different wavelet quadrant and scales have been

evaluated, and it is followed with an evaluation of different

wavelet filter choices and their impact on recognition accu-

racy. In this study, an approach for face recognition based on

coefficient selection for DWT is presented, and the signifi-

cant of DWT coefficient threshold selection is also analysed.

For the hardware implementation, two architectures for two-

dimensional (2-D) Haar wavelet transform (HWT) IP core

with transpose-based computation and dynamic partial

reconfiguration (DPR) have been synthesised using VHDL

and implemented on Xilinx Virtex-5 FPGAs. Experimental

results and comparisons between different configurations

using partial and non-partial reconfiguration processes and a

detailed performance analysis of the area, power consump-

tion and maximum frequency are also discussed in this paper.

Keywords Field programmable gate array (FPGA) �
Face recognition � Discrete wavelet transform (DWT) �
Dynamic partial reconfiguration (DPR)

1 Introduction

The use of biometric systems is growing rapidly. Face rec-

ognition technology has the potential to be a convenient,

robust biometric, used for many applications [1]. Currently,

recognition rates are adversely affected by variation in illu-

mination, pose, gesture and other factors [2]. Much research

is currently being undertaken in face recognition and has a

large number of potential applications, such as port of entry

logging, building access control, criminal identification and

attendance logging [3]. On top of that, a number of com-

mercial face recognition systems have been developed,

including products from Cognitec [4], L-1 Identity Solutions

[5], Geometrix [6], Technest [7] and Animetrics [8].

In this study, both software simulations and an imple-

mentation of intellectual property (IP) core for transform

block in the face recognition systems are discussed. Ini-

tially, four experiments have been conducted including the

discrete wavelet transform (DWT) feature selection and

filter choice, features optimisation by coefficient selections

and feature threshold. To examine the most suitable

method of feature extraction, different wavelet quadrant

and scales have been evaluated, and it is followed with an
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evaluation of different wavelet filter choices and their

impact on recognition accuracy. Results obtained from the

software simulations are then being used to justify the

hardware implementation. Throughout this study, AT&T

database has been selected since it is a conveniently sized

dataset and suitable for testing algorithms in development

as well as the proposed IP core implementation.

In addition to the software simulation, another part of this

study deals with the hardware implementation of transform

block in the face recognition system using field program-

mable gate array (FPGA). With the ultimate aim to accel-

erate the process of transforming input images into the

wavelet coefficients, FPGAs platform is selected for several

reasons. First and foremost, it allows for truly parallel

computations to take place in a circuit. Many modern general

purpose processors (GPPs) and operating systems can

emulate parallelism by switching tasks very rapidly. Having

operations occur in a parallel fashion results in a much faster

overall processing time. This is the case even though the

clock speed of the FPGA is lower than the GPPs.

With the availability of advanced embedded resources on

recent devices such as soft cores, dedicated logic and block

multipliers, it is not surprising that there has been a consid-

erable amount of research into the use of FPGAs to increase

the performance of a wide range of computationally intensive

applications [9–11]. One such application that could greatly

benefit from the advantages offered by FPGAs is face recog-

nition. The regular nature of the complex computations per-

formed repeatedly within face recognition operations are well

suited to a hardware-based implementation using FPGAs.

In this study, Xilinx FPGA devices with dynamic partial

reconfiguration (DPR) technique have been selected to

prototype the developed architectures. DPR is a technique

that offers changing the configuration of a part of a circuit

whilst the rest of it executes its task [12].

For the hardware implementation, this research aims at

developing a novel implementation of two-dimensional (2-

D) Haar wavelet transform (HWT) IP core for the trans-

form block in face recognition systems. DPR technique is

fully utilised as it capable to divide the designs into several

sub-designs that fit into the available hardware resources

and can be uploaded into the reconfigurable hardware when

needed. Xilinx Virtex-5 is used to prototype the proposed

architectures and an examination of the transform size

influence on the area, power consumption and maximum

frequency is also carried out. To further investigate the

development of a complete system-on-a-chip (SoC) solu-

tion, the principal component analysis-discrete wavelet

transform (PCA-DWT)-based face recognition system has

been also deployed on the RC10 FPGA prototyping board

equipped with the low-power Spartan 3l1500 Xilinx FPGA.

The rest of the paper is organised as follows. An overview

of the algorithms and methodology are presented in Sect. 2.

Section 3 summarises the research analysis that have been

obtained through four experiments: DWT feature selection

and filter choice, optimising features by coefficient selection

and feature threshold. Hardware implementation and results

analysis for the proposed architectures are described in

Sect. 4. Finally, concluding remarks are given in Sect. 5.

2 Algorithms and methodology

An overview of the algorithms and design methodology for

the software simulation as well as the hardware imple-

mentation are presented in the following sections.

2.1 Discrete wavelet transform (DWT)

DWT can be implemented as a set of filter banks, com-

prising a high-pass and low-pass filter (also known as the

scaling filter). At each stage, the output from the low-pass

filter can be decomposed further, with the process contin-

uing recursively in this manner. DWT can be mathemati-

cally expressed as shown in (1).

DWTxðnÞ ¼
dj;k ¼

P
xðnÞh�j ðn� 2jkÞ

aj;k ¼
P

xðnÞg�j ðn� 2jkÞ

�

ð1Þ

The coefficients dj,k refer to the detail components in

signal x(n) and correspond to the wavelet function, whereas

aj,k refer to the approximation components in the signal.

The functions h(n) and g(n) in the equation represent the

coefficients of the high-pass and low-pass filters

respectively, whilst parameters j and k refer to wavelet

scale and translation factors. Figure 1 illustrates a three-

level DWT decomposition.

The one-dimensional (1-D) DWT can be readily

extended to two dimensions, allowing it to be employed for

analysing images. The 2-D DWT exists in both standard

and non-standard forms. In 2-D standard wavelet decom-

position (SWD) [13], the image rows are fully decom-

posed, with the output then being fully decomposed

column-wise. On the contrary, the rows are decomposed by

one decomposition level followed by one decomposition

level of the columns with the non-standard wavelet

decomposition (NSWD) [13].

The decomposition continues by decomposing the low-

resolution output from each step, row-wise followed by

column-wise, until the image is fully decomposed. Figure 2

illustrates the effect of applying the non-standard wavelet

transform to an image from the AT&T database of faces [14].

2.2 Principal component analysis (PCA)

PCA is a dimensional-reduction technique and it does not

model relationships between neighbouring pixels in an
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image and it analyses each one individually. Consequently,

a face image x of dimension i 9 j is converted to a column

vector of length N, where N = ij.

x ¼

p1;1

p1;2

..

.

p1;j

p2;1

..

.

pi;j�1

pi;j

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

ð2Þ

ps,t corresponds to a pixel from the sth row and the tth

column. A set of M face images {xi} may be represented as

a matrix X of dimension N 9 M, where,

X ¼ ½x1x2x3. . .xM� ð3Þ

The ‘average’ face is calculated and subtracted from each

face in X, giving X0;

X0 ¼ ½ðx1 � xÞðx2 � xÞðx3 � xÞ. . .ðxM � xÞ� ð4Þ

The principal components of this set are found by

calculating the eigenvectors of the covariance matrix

C, where,

C ¼
XM

i¼1

X0X0T ð5Þ

The calculated eigenvectors are used as an orthogonal basis

to represent the training set faces. In face recognition

applications, the eigenvectors are known as eigenfaces, as

their appearance is visually similar to faces when viewed in

the form of a 2-D matrix. A selection of eigenfaces can be

seen in Fig. 3.

2.3 HWT implementation using pipelined direct

mapping

The HWT wavelet is simple and computationally cheap

because it can be implemented by few integer additions,

subtractions, and shift operations [15]. To justify the sig-

nificance of hardware implementation, this wavelet is

selected because of its simplistic nature, and mathematical

features.

The mathematical features of the basis are as follows:

the most simplistic wavelet basis, can be implemented

using pairwise averaging and differencing, both unitary and

orthogonal, and also it has compact support. Calculation

for both processes are described in (6) and (7), where

i ¼ 0. . .ðN
2
� 1Þ:

Hi ¼
a2�i þ a2�iþ1

2

� �
ð6Þ

HðN
2
þiÞ ¼ ða2�i � a2�iþ1Þ ð7Þ

From implementation point of view, the 1-D HWT flow

diagram with N-inputs sample for pipelined direct mapping

is shown in Fig. 4, with ‘‘Avg.’’ and ‘‘Diff.’’ refer for

average and differencing processes, respectively.

Fig. 1 A three-level wavelet

decomposition system

Fig. 2 Wavelet transform of image. a Original image. b One-level

decomposition with Haar wavelet. c Complete decomposition with

Haar wavelet
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3 Software simulation and results analysis

In the following sections, an explanation for each concept

and the summary of results are presented.

3.1 DWT feature selection

3.1.1 Concepts

To assess whether DWT can enhance face recognition

system performance, a study is performed which attempts

to determine how to employ it for this purpose. A number

of variables are assessed:

1. Quadrant—which DWT quadrant(s) should be used

for feature extraction?

2. Scale—which scale(s) should be used for feature

extraction? and

3. Filter—which wavelet filters produce the best results?

Each experiment is performed on coefficients taken

from a specific wavelet scale and quadrant and conducted

on the AT&T database.

Five randomly selected training images are used for

each individual, with the remaining five being used as

probe images. Other than minor rescaling, the images

undergo no pre-processing with two filters are adopted,

Haar and biorthogonal 4.4. PCA is then employed, hence

reducing the feature set further.

The Haar wavelet has been chosen for its simplicity,

whilst the biorthogonal 4.4 wavelet to represent a more

sophisticated filter. Results are being evaluated for the first

five scales, since the sixth scale are significantly lower, due

to the reduced number of coefficients at this scale.

3.1.2 Summary of results

In brief, the results achieved for these experiments help to

guide decisions regarding the experiments that are still to

Fig. 3 A selection of

eigenfaces

Fig. 4 1-D HWT flow diagram with N-inputs sample for direct

mapped architecture [16]

330 J Real-Time Image Proc (2013) 8:327–340

123



be performed. When DWT coefficients are used for train-

ing a PCA-based recognition system, those from the LL

quadrant appears to be much more discriminative in the

process of face classification. As other quadrants isolate

high-frequency features such as edges, small errors in

alignment or facial expression between the images will

significantly detract from accuracy.

Conversely, the LL quadrant benefits from the removal

of high-frequency features, therefore, any quadrants other

than LL need not be investigated further and the effect of

scale in the LL quadrant is less clear. Although the third

scale produced best results for both wavelet filters tested,

there was less variation between results for different scales

than there was for different quadrants. It would, therefore,

be appropriate to investigate the effect of scale further in

remaining experiments.

3.2 DWT filter choice

3.2.1 Concepts

A study is performed to determine whether the choice of

wavelet filter has a significant effect on recognition accu-

racy. Various wavelet families exist, each providing a dif-

ferent compromise between compactness and smoothness.

Most wavelets can be described as orthonormal, meaning

that they have a unit magnitude and are orthogonal. With a

unit magnitude, the convolution of a signal with a wavelet

does not change the total energy of the signal. Orthogonality

indicates that the inner product of the wavelet basis functions

at different scales is zero. A signal can, therefore, be com-

pletely represented using a finite number of wavelet basis

functions. The same wavelet filters are generally used for

decomposition and reconstruction.

Five wavelets are tested from each of the wavelet

families shown in Fig. 5. MATLAB is used for

experimentation and the filters are provided by the MAT-

LAB wavelet toolbox. As before, the AT&T database is

used for experimentation, with five training images and five

testing images used for each individual. Only the LL

quadrant is used for feature extraction, at scales one to five.

3.2.2 Summary of results

Choice of wavelet family seems to have little effect on the

maximum possible recognition rate—filters from the

Daubechies and biorthogonal wavelet families matched up

to 96.5% of faces correctly, whereas filters from the symlet

and coiflet families recognised 97%. The choice of filter

within a wavelet family seems to be more significant. For

example, although the biorthogonal 5.5 wavelet matches up

to 96.5% of faces correctly, the biorthogonal 3.3 wavelet

only reaches 93%. The exact nature of the relationship

between wavelet and recognition performance however is

unclear.

The number of non-zero coefficients in a wavelet filter

(known as support size) has a number of effects on the per-

formance of the wavelet. Filters with a larger support size are

more adept at analysing and representing complex features

contained within the signal/image, however, they are more

likely to be affected by artefacts at the edge of the image.

Computational complexity of the wavelet transform is also

increased when filters with larger support sizes are used.

Based on the results obtained to investigate the choice of

wavelet filter with the effect on recognition accuracy, it is

clear that DWT has the potential to significantly enhance

recognition rates for PCA-based face recognition. For the

AT&T database, maximum recognition rates increase from

93% for recognition in the spatial domain to 97% in the

wavelet domain. There is not a substantial difference

between recognition rates for the wavelet families tested,

although coiflet filters produced slightly more consistent

Fig. 5 Wavelets filters descriptions

J Real-Time Image Proc (2013) 8:327–340 331

123



results. Across all the tested wavelet filters, there was no

strong correlation between the support size of the low-pass

filter and the results. Scale did appear to have an effect on

results, with the second scale slightly outperforming the

third and fourth scales. The first scale produced slightly

lower results, with the fifth scale performing significantly

worse.

3.3 Optimising features by coefficient selection

3.3.1 Concepts

The recognition approach is based on standard DWT/PCA

face recognition as shown in Fig. 6. In the systems, face

images firstly undergo DWT coefficient selection, followed

by PCA coefficient selection. The output from this stage is

a coefficient vector, which is compared with those of the

gallery face images. Recognition results are returned as the

identities of the most likely matches in the database.

The purpose of DWT coefficient selection is to select

the most discriminative DWT coefficients. Each training

image undergoes wavelet decomposition to a specified

scale, with the low-pass coefficients being selected to form

the image’s observation vector. The distribution of these

coefficient values is then examined to determine each

coefficient’s discriminative power. The inter- and intra-

class standard deviations for each coefficient are calculated

and the ratio of these two values is determined. This ratio

indicates how tightly the coefficient’s values are clustered

within each class, compared to the spread within the

complete training dataset. The selection of DWT coeffi-

cients is, therefore, based on the maximisation of the fol-

lowing criterion:

J ¼ rinterðAmÞ
rintraðAmÞ

ð8Þ

where r inter (Am) and r intra (Am) represent inter- and intra-

subject standard deviation spanned by DWT coefficients in

the feature space Am, respectively. The DWT coefficients

with the highest ratios are the most discriminative and

chosen for recognition.

The approach adopted for this study is based on the

inter- to intra-class standard deviation ratios. As with DWT

coefficient selection, the ratios of inter- to intra-class

standard deviations are calculated. Projection coefficients

with the highest ratios indicate that the associated eigen-

vector is highly discriminative and may contribute to better

recognition accuracy. This method eliminates the need to

guess which eigenvectors represent mostly variation in

image illumination. Once training is complete and the most

discriminative eigenvectors have been selected, classifica-

tion can be performed using a simple distance measure,

such as Euclidean. The adoption of this approach brings

together similar coefficient selection strategies for both

stages of the feature vector selection—DWT coefficient

selection and PCA eigenvector selection.

Experiments are performed, which determine the

benefits of DWT coefficient selection and PCA eigen-

vector selection separately, as well as in a combined

framework. As the technique is more suited to face data

sets with little variation in pose/location, the AT&T

database of faces is used for experimentation. The ima-

ges contain variation in lighting, expression and facial

details (e.g., glasses/no glasses). For the experiments

described in this study, five images for each individual

are used for system training, with the other five used for

testing.

Fig. 6 System overview
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3.3.2 Summary of results

Different wavelet filters and decomposition levels from

one to four are investigated. Selection percentages from

1 to 100% are tested and PCA is used for classification.

Where the selection percentage is 100%, this is equiva-

lent to no coefficient selection being applied. Table 1

shows that DWT coefficient selection has increased

maximum recognition rate in 16 out of the 20 cases

tested.

As Table 2 shows, the approach described compares

well with other techniques from the literature that have

used this training set. It should be noted that although the

AT&T database is relatively small, the technique could be

extended to other face databases. However, the coefficient

selection approach is particularly suited to data sets with

little variation in pose and alignment, therefore, images

would have to undergo a normalisation step prior to rec-

ognition. If this was performed, it is expected that results

for other databases would be similar to those for the AT&T

database.

3.4 Feature threshold

A study is performed to investigate ways of choosing the

DWT coefficient selection threshold. Although the

recognition increases offered by DWT coefficient selection

are significant, they are only achievable through a judicious

choice of threshold. The maximum possible increases in

accuracy offered by DWT coefficient selection can be seen

in Table 1.

Increases in recognition accuracy range from 0 to 3%,

with the average increase being 1.37%. However, the

results presented are the best for each wavelet and scale,

found after tests employing varying numbers of DWT

coefficients. For coefficient selection to be viable, the

number of DWT coefficients to use as features must be

Table 1 Comparison of DWT

coefficient selection recognition

rates with those of standard

DWT/PCA approach, along

with percentages of DWT

coefficients required to achieve

maximum rate

Wavelet Scale Recognition rate (%) Increase (%) Coefficients

required (%)
Standard

approach

Coefficient

selection

Haar 1 93 95 2 66

2 94 95 1 50

3 95 96 1 58

4 93 95.5 2.5 68

Biorthogonal 4.4 1 94 96 2 69

2 94.5 96 1.5 78

3 94.5 96.5 2 83

4 93 94 1 95

Coiflet 3 1 94 97 3 73

2 95 97 2 85

3 95 97 2 98

4 96 96 0 95

Daubechies 10 1 94 95.5 1.5 66

2 96.5 97.5 1 99

3 94 96.5 2.5 75

4 95.5 97 1.5 98

Symlet 10 1 95.5 96.5 1 99

2 96.5 96.5 0 90

3 95 95 0 90

4 95.5 95.5 0 92

Average increase (%): 1.37

Table 2 Comparative results on AT&T database

Method Accuracy (%) References

DCT/HMM 84 [17]

ICA 85 [18]

Weighted PCA 88 [19]

Gabor filters and rank correlation 91.5 [20]

2-D PHMM 94.5 [21]

NMF 96 [22]

TNPDP 96.5 [23]

LFA 97 [24]

DWT/PCA with coefficient selection 97.5 Proposed
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chosen automatically. Two approaches are investigated for

choosing this threshold.

3.4.1 Percentage midpoint average (PMA)

The first approach is referred to as PMA. PMA assumes

that a number of tests runs have been carried out with

appropriate wavelets and scales, and full accuracy data

obtained. For each test set, the minimum percentage of

DWT coefficients required to produce the maximum rec-

ognition accuracy is recorded. The highest percentage of

DWT coefficients producing the same maximum accuracy

is also noted. The average of these two figures is then

calculated, as the percentage midpoint for the current test

set. The average of the percentage midpoints for all the test

runs is calculated, with this percentage being chosen as the

selection threshold.

Tests are performed on the AT&T database to determine

the effectiveness of this approach. The PMA value is cal-

culated from recognition results obtained previously, and

determined to be 81.36%. DWT coefficient selection

results, using 81.36% of coefficients, are shown in Table 3.

The results indicate that this approach is not effective, with

recognition accuracy decreasing by an average of 0.025%

from the results obtained without DWT coefficient selec-

tion. This is not unexpected, as the approach is not

sophisticated. It assumes that the same percentage of

coefficients should be chosen in each case, regardless of the

choice of wavelet filter and scale or the individual char-

acteristics of the data set, such as the amount of back-

ground (non-face) in the image.

3.4.2 Optimal ratio average (ORA)

The second approach is referred to as ORA. As with PMA,

ORA assumes that a number of tests runs have been carried

out with appropriate wavelets and scales, and full accuracy

data obtained. As explained previously, DWT coefficient

selection operates by calculating the ratios of inter- to intra-

class standard deviations for each coefficient: this value is

used to select the most discriminative coefficients. In ORA,

the cut-off ratio that produces the highest recognition rate for

each test run is recorded. The average of the cut-off ratios for

all test runs is chosen as the selection threshold.

Tests are performed on the AT&T database to determine

the effectiveness of this approach. The ratio threshold value

is calculated from the DWT coefficient selection results

obtained previously. Unlike with PMA, a different per-

centage of DWT coefficients may be chosen for each

wavelet and scale, depending on how discriminative its

coefficients are. Results are provided in Table 4 and indi-

cate that the approach is effective, increasing recognition

accuracy by an average of 0.6% over recognition without

DWT coefficient selection. However, this is \50% of the

maximum possible increase of 1.37% that DWT coefficient

selection could provide. Although ORA is more flexible

than PMA in handling varying datasets, it is likely that an

optimised system would utilise one specific wavelet and

scale for both system training and identification. This

would allow a more relevant threshold ratio to be chosen,

which would increase recognition accuracy.

4 FPGA-based IP core implementation and results

analysis

An overview of the IP core implementations including the

proposed system applications and architectures, its FPGA

implementation as well as the results analysis are discussed

in the following sections.

4.1 Proposed system applications

Figure 7 illustrates an overview of the proposed system for

both the trained and after the training phase. To accelerate

the processes involved in face recognition system, two

Table 3 Maximum recognition rates using DWT coefficient selec-

tion with PMA threshold

Wavelet Scale Recognition rate (%) Increase (%)

All

coefficients

PMA

Haar 1 93 94 1

2 94 94 0

3 95 94.5 -0.5

4 93 94.5 1.5

Biorthogonal

4.4

1 94 95 1

2 94.5 95 0.5

3 94.5 96.5 2

4 93 92 -1

Coiflet 3 1 94 94.5 0.5

2 95 97 2

3 95 94 -1

4 96 94 -2

Daubechies 10 1 94 94.5 0.5

2 96.5 96 -0.5

3 94 96.5 2.5

4 95.5 93 -2.5

Symlet 10 1 95.5 95.5 0

2 96.5 95 -1.5

3 95 93.5 -1.5

4 95.5 94 -1.5

Average

increase (%):

-0.025
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FPGA-based IP core architectures of 2-D HWT have been

proposed to transform an image to xth scale.

A high-level overview of the recognition approach

adopted is given in Fig. 8a, whilst the generic proposed

2-D HWT architecture is illustrated in Fig. 8b. The whole

chain to calculate the 2-D HWT gets an input as a 2-D

image with N 9 N point, and outputs the coefficients of the

N 9 N point. To simplify the hardware design, the 2-D

HWT IP core is split into two one-dimensional (1-D) HWT

calculation cascaded together with transpose modules in

between. This is achieved by performing the first 1-D HWT

along the rows (columns) of the array followed by 1-D

HWT along the columns (rows) of the transformed array.

Transposition module stores the transposed coefficients

into memory with a fetch unit module that reads back the

coefficients for the next calculation.

4.2 Proposed architectures

Both proposed architectures implementation on the FPGA

are given in Fig. 9a, b. The implementation of 2-D HWT

IP core without DPR defined the entire FPGA devices as

one module. On the other hand, the implementation with

DPR method and its framework consists of:

1. Two reconfigurable areas—for the 1-D HWT IP core

and transposition module; and

2. A static area—for the data fetch unit and the memory

controller (Wishbone compliant).

In both architectures, data fetch unit and HWT IP core

are connected with a defined data bit width bus, a request

line and back signal free. The fetch unit sends data and the

request to the HWT core as long as the free signal is active.

HWT and transposition module are connected with the

defined data bit width bus and an enable signal. In each

cycle and when the enable is active, the data will be

transposed and written into the memory.

4.3 2-D HWT and transpose-based computation

The proposed 2-D HWT IP core implementation works as

follows. The input to the first 1-D HWT is read row by row,

the 1-D HWT is performed on each input vector as they are

provided and the calculated values are sent to the transpose

module, which calculated the memory addresses for the

transposition and stores the data into memory.

The transpose acts as a memory forwarder and performs

matrix transpose, since row vectors are provided by the 1-D

Table 4 Maximum recognition rates using DWT coefficient selec-

tion with ORA threshold

Wavelet Scale Recognition rate (%) Increase (%)

All

coefficients

ORA

Haar 1 93 94.5 1.5

2 94 94.5 0.5

3 95 94.5 -0.5

4 93 94 1

Biorthogonal

4.4

1 94 95.5 1.5

2 94.5 95 0.5

3 94.5 95.5 1

4 93 93.5 0.5

Coiflet 3 1 94 95.5 1.5

2 95 96.5 1.5

3 95 96 1

4 96 96 0

Daubechies 10 1 94 96 2

2 96.5 96 -0.5

3 94 96.5 2.5

4 95.5 96 0.5

Symlet 10 1 95.5 94.5 -1

2 96.5 95 -1.5

3 95 95 0

4 95.5 95.5 0

Average

increase (%):

0.6

(a)

(b)

Fig. 7 Proposed system applications. a Trained phase. b After the

training phase
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HWT. After transposition of the resultant matrix, another

1-D HWT is performed on the coefficients which are stored

in memory to yield the 2-D HWT coefficients. Algorithm 1

gives the description of the 2-D HWT process.

4.4 2-D HWT with DPR

In this study, the ISE Design Suite 9.2PR and PlanAhead

10.1 [25] are used. With module-based DPR [16], this

method has the limitation that all design files and recon-

figurable modules must be available to the build environ-

ment to build partial modules.

Reconfigurable architectures using DPR technique

comprises of several reconfigurable processing modules

(RPM), a reconfigurable interface, an off-chip memory and

micro blaze (lblaze). The system is connected to the host

personal computer (PC) via peripheral component inter-

connect (PCI) express [16]. lblaze is a soft processor core

designed for Xilinx FPGAs [25].

The reconfigurable processing modules allow hardware

acceleration and can be reconfigured based on the system

demand, whilst the communication interface is used to

build the interconnection between RPM and the other

components.

4.5 FPGA implementation and result analysis

FPGA implementation results for both architectures, anal-

ysis and an overview of the advantages offered with DPR

technique are presented in the following sections. In this

study, Xilinx early access partial reconfiguration (EAPR)

design flow [26] is used as a design flow reference, and

these two architectures are implemented on the Xilinx

Virtex-5 (XC5VLX110T-3FF1136).

In the face recognition system, the inputs are various

size of images, hence different transform sizes

(N = 8, 16, 32, 64 and 128) have been used to examine

the relationship of the transform sizes on the area (slices),

power consumption (mW) and maximum speed (MHz).

In Table 5, results for both architectures are listed. As an

example, for N = 128, the implementation with DPR

technique yields a significant achievement with better

resources used for area as well as better power consump-

tion by 46.67 and 15.96%, respectively. On top of that,

DPR technique also gives 4.59% better maximum fre-

quency than without DPR.

To underline the influence of different transform size on

area, power consumption and maximum frequency, Figs. 10,

11 and 12 illustrate the relationship for each performance

indicator. Results obtained are clearly shown that the pro-

posed 2-D HWT IP core without DPR consumes more area

and power. Using DPR technique, better area and power

saving can be achieved between 36.68–46.67 and

6.78–15.96%, respectively. Additionally, to visualise the

impact of non-partial and partial reconfiguration chip layouts

for N = 16 and 64 are given in Fig. 13.

DPR is a promising technique for reducing the hardware

required as well as improving the performance of the

(b)

(c)

(d)

Fig. 8 Proposed system architectures. a Overview of recognition approach. b Architecture for 2-D HWT IP core with transpose-based

computation. c Input data for images with x; y 2 ½0; 1; . . .; 7�: d Transpose matrix after transpose with x; y 2 ½0; 1; . . .; 7�
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system. With this technique, the design can be divided into

sub-designs that fit into the available hardware resources

and can be uploaded into the reconfigurable hardware when

needed [16].

In SRAM-based FPGAs, full-device reconfiguration is

required upon power-up [27]. The process of initialisation

involves the FPGAs to be programmed with a configuration

bitstream file. Partial reconfiguration concept appears after

initialisation and works to modify a fraction of the resources

by programming the FPGA with a partial bitstream file.

Obviously, a full bitstream size is very massive whereas a

partial bitstream may represents only 2% of the full bitstream

[16, 27–29]. With smaller bitstreams, several advantages can

be achieved: reduced reconfiguration time, reduced storage

requirements, and dynamic allocation of functionality.

An implementation of the PCA-DWT based face rec-

ognition system has been also carried out on the RC10

FPGA prototyping board equipped with the low-power

Spartan 3l1500 Xilinx FPGA device and an integrated

complementary metal oxide semiconductor (CMOS) cam-

era, which can be deployed for faces acquisition to have a

complete SoC solution.

Tests have been performed on the AT&T database with

40 subjects and have revealed a 90% recognition rate with

an acceleration of four times compared to the software

recognition running on a Intel Dual-Core with 2.42 GHz.

The computation time for face recognition on the RC10

board using the AT&T database is 6.45 ms. It is worth

mentioning that a further acceleration can be achieved by

partitioning the execution of the two building blocks of the

proposed system using a software-hardware co-design

approach with an efficient host-FPGA communication.

The application of face recognition requires several

building blocks for its computationally intensive processes

VIRTEX-5

XC5VLX110TTM

(a)

(b)

Fig. 9 Proposed top

architecture of 2-D HWT IP

core. a Without DPR. b With

DPR

Table 5 Resources utilisation

and overall proposed

architectures performance on

XC5VLX110T-3FF113

Parameters Proposed 2-D HWT

Without DPR With DPR

N = 8 N = 128 N = 8 N = 128

Area (slices) 2,180 (3.15%) 38,261 (55.35%) 1,376 (2.00%) 20,403 (29.51%)

Power consumption (mW) 902.64 1772.83 762.55 1489.81

Maximum frequency (MHz) 213.82 164.59 271.15 172.51
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to perform matrix transformation operations. Moreover,

complexity in addressing and accessing large databases

have resulted in vast challenges from a hardware

implementation point of view. To cope with these issues,

an FPGA-based architecture with efficient reconfigurability

techniques is a promising solution to meet the demands of

these applications in terms of speed, size (area), power

consumption and throughput.

5 Conclusions

In this research study, two main issues have been addres-

sed: the software simulation of a novel feature vectors

construction approach for face recognition using DWT and

the IP core implementation of transform block in the face

recognition systems.

The first set of experiments performed focused on the

choice of DWT features. It reveals that, where direct

Fig. 10 Influence of transform size on area (slices)

Fig. 11 Influence of transform size on power consumption (mW)

Fig. 12 Influence of transform size on maximum frequency (MHz)

for 1-D HWT modules

(a) (b)

(c) (d)

Fig. 13 Comparison of chip layout for different transform sizes on

XC5VLX110T-3FF113
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coefficient values were used for recognition, the LL quadrant

provided the best results. For the wavelet filters tested, the

highest recognition rate achieved for this quadrant was 95%.

The highest accuracies for the HL, LH and HH quadrants

were 78, 74 and 66%, respectively. However, these tests did

not provide enough information to indicate whether partic-

ular scales perform consistently better than others.

The second set of tests has been designed to examine

which wavelet filters were the most effective at extracting

features for face recognition with the specified database. The

maximum recognition rates were compared for five wavelet

filters each from the Daubechies, symlet, Coiflet and bior-

thogonal wavelet families. LL coefficients were used as

features, with the first five scales investigated. The results

indicated that there was no strong link between choice of

wavelet family and recognition rate, although Coiflet

wavelets produced the most consistent performance, across

various filters and scales. When the results from all wavelet

families and filters were examined together, there was no

obvious correlation between the support size of the scaling

filter and the maximum recognition rates.

The choice of scale did appear to have some effect, with

the second, third and fourth scales outperforming the first

scale by a small margin and the fifth scale by a significant

margin. In case of feature optimisation by coefficient

selections, the results show that DWT coefficient selection

has increased maximum recognition rate in 16 out of the 20

cases tested. For instance, recognition accuracy increased

from 94 to 97% for the Coiflet 3 wavelet, first scale.

For the feature threshold, two approaches have been

investigated, which are PMA and ORA. Results obtained

shown that the PMA is an ineffective approach, with rec-

ognition accuracy decreasing by an average of 0.025%

from the results obtained without DWT coefficient selec-

tion. Unlikely, results for ORA approaches indicate better

recognition accuracy by an average of 0.6%.

On the contrary, two architectures for 2-D HWT IP

cores have been proposed for the transform in the proposed

face recognition system based on transpose computation

and partial reconfiguration. To sum up, comparative study

for both non-partial and partial reconfiguration processes

has shown that DPR offers many advantages and lead to a

promising solution for implementing computationally

intensive applications such as face recognition systems.

Using DPR, several large systems are mapped to small

hardware resources and the area, power and maximum

frequency are optimised and improved.
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