
ORIGINAL RESEARCH PAPER

Real-time GPU color-based segmentation of football players

Miguel Angel Montañés Laborda •

Enrique F. Torres Moreno • Jesús Martı́nez del Rincón •

José Elı́as Herrero Jaraba

Received: 29 March 2010 / Accepted: 5 January 2011 / Published online: 3 February 2011

� Springer-Verlag 2011

Abstract In this paper, we propose a multi-camera

application capable of processing high resolution images

and extracting features based on colors patterns over gra-

phic processing units (GPU). The goal is to work in real

time under the uncontrolled environment of a sport event

like a football match. Since football players are composed

for diverse and complex color patterns, a Gaussian Mixture

Models (GMM) is applied as segmentation paradigm, in

order to analyze sport live images and video. Optimization

techniques have also been applied over the C?? imple-

mentation using profiling tools focused on high perfor-

mance. Time consuming tasks were implemented over

NVIDIA’s CUDA platform, and later restructured and

enhanced, speeding up the whole process significantly. Our

resulting code is around 4–11 times faster on a low cost

GPU than a highly optimized C?? version on a central

processing unit (CPU) over the same data. Real time has

been obtained processing until 64 frames per second. An

important conclusion derived from our study is the scala-

bility of the application to the number of cores on the GPU.

Keywords Image processing � Color segmentation �
Real time � GPU � CUDA

1 Introduction

Professional sport is an extremely competitive world. Mass

media coverage has contributed to the popularity of many

sports, increasing its importance in our current society due

to the money and fame that it generates. In this environ-

ment, in which any assistance is welcome, video-based

applications have proliferated. Video-based approaches

have shown themselves to be an important tool for analysis

of athletic performance, especially in collaborative sports,

where many hours of manual work are required to analyze

tactics and collaborative strategies. Computer-vision-based

methods can provide help in automating many of those

tasks.

Real-time image processing systems are specially rele-

vant in Computer Vision. Any advanced image processing

application requires a previous extraction of significant

features. These features could be used in recognition or

tracking systems for several applications. Our proposal is

oriented to improve drastically the performance of image

segmentation systems. Concretely, we focus on feature

extraction and object classification based on those features,

not only over pre-recorded video sequences but also from

live video streaming.

Our method to extract those features consists in an

image segmentation according to color information. Seg-

mentation systems are usually a first stage inside an image

processing framework. Thus, for instance, results generated

by segmentation techniques can be used as input for a

tracking algorithm. In the literature, it exists a broad

variety of methods for a reliable segmentation of objects in

an image, being the most interesting ones, those capable of

dealing with objects composed of various colors [3, 6, 7, 9,

15, 21]. One of the most popular approaches consists in a

Gaussian mixture model (GMM) in which every object can

M. A. Montañés Laborda (&) � E. F. Torres Moreno �
J. E. Herrero Jaraba

Maria de Luna, 1, Saragossa, Spain

e-mail: mmonla@unizar.es

E. F. Torres Moreno

e-mail: enrique.torres@unizar.es

J. E. Herrero Jaraba

e-mail: jelias@unizar.es

J. Martı́nez del Rincón

Penrhyn Road, Kingston Upon Thames, Surrey KT1 2EE, UK

e-mail: Jesus.Martinezdelrincon@kingston.ac.uk

123

J Real-Time Image Proc (2012) 7:267–279

DOI 10.1007/s11554-011-0194-9



be represented by one or more Gaussians. This is because

most objects are composed not only of an unique color but

also of a mixture of different tones associated with an

unique color or even of several different colors.

Although GMM is a successful and broadly used method

for feature extraction, its computational cost is a strong

handicap for real time applications. The spectacular evo-

lution that CPUs experimented in the past has provided a

tool for mitigating the problem. Nevertheless, the pro-

gressive slowdown during the last years has stopped this

progression, whereas it has promoted parallel architectures,

such as multi-core, as a solution for increasing the com-

putational power.

This novel style of multi-core design and programming

acquires even a more relevant position thanks to the last

technological developments. Return of these advances are

the newest Graphics Processing Units or GPU containing

up to hundred of simple processor cores. The GPU archi-

tecture is optimized for massively parallel processing with

peaks up to hundreds of GFLOPS. But their most inter-

esting features of these devices is that they can also be

harnessed for general computing in a modality known as

general-propose GPU (GP-GPU) [24]. Recently, in order

to take advantage of these high performance computing

devices, some extensions to well-known programming

languages have been generated, such as CUDA C [8]. This

language is a set of parallel extensions of the C/C??

programming languages and it is able to interact with a

special hardware interface built into all current NVIDIA

GPUs [22, 26].

In the last few years, the amount of scientific application

tested over GP-GPU has increased [5]. Although generally

those researches [23, 27, 28] are focused on specific cal-

culations, they provide an initial idea about the intrinsic

potential of this new platform [20]. Particularly, in our field

of interest, several studies probe this capability in modern

GPUs [14]. Traditional methodologies have been imple-

mented, such as pattern recognition algorithms based on

textures [11], Gaussian mixture models [19] or image

feature extraction techniques [29, 31]. All these examples

give an idea of the increase of efficiency that can be

achieved thanks to these devices.

In our research, we have developed an application which

is able to detect football players in a video sequence. Once

they are extracted from background, each player is classi-

fied into any of the teams. For classification purposes, a

color-based method is employed based on Expectation

Maximization for Gaussian Mixture Models [3, 19, 21].

Since one of our main objectives is to process multi-high-

resolution cameras, detection and classification processes

must be applied on real time in an extremely efficient

manner. In order to achieve that, we have adapted and

implemented those tasks over GPU platform taking

advantage of its high parallel computational capability

(Sect. 5).

The evaluation of our implementation has been made

over a set of different low cost GPUs with 16, 32 and 64

cores to study the scalability of the implementation.

These tests have also been run under different CPUs, to

clarify as much as possible the real contribution of our

implementation.

The outline of the paper is as follows. In Sect. 2, the

hardware infrastructure is described. Section 3 introduces

the stages that compose our methodology and discusses

their computational cost. Section 4 compares the compu-

tational cost between a version in C?? using Microsoft

Visual Studio compiler and a version highly optimized

using Intel C?? compiler, running in a conventional

multicore CPU. In Sect. 5, the parallelization methodology

is introduced and a CUDA implementation is detailed.

Section 6 presents a comparison between CPU and GPU

results and its scalability. Finally, conclusions and future

work are presented in Sect. 7.

2 Infrastructure

Our goal consists in the processing and classification of

football players in video sequences provided from one or

multiple cameras installed in a real football stadium. The

minimum number of cameras required for covering a

football field depends on several factors, such as camera

resolution, angle of vision and height of installation. In our

infrastructure, we propose a system composed of eight

static high definition digital cameras (1,388 9 1,036)

positioned on the roof around the stadium. Thus, we obtain

a detailed coverage of the two goalkeeper areas (2 cameras

for each one) as well as the rest of the field which is

covered by other four cameras. It is important to remark the

importance of a multi-camera representation, since over-

lapping cameras are crucial to solve occlusions, specially

in conflictive areas. On the other hand, the more cameras

you have, the more increase of computational cost. For this

reason the number of eight cameras has been chosen, since

we consider it is the minimum number to make viable the

processing of the match: it ensures the coverage of a player

by at least two cameras at any point of the pitch and with

an acceptable resolution level.

All the cameras are linked by ethernet optical fiber and

shielded twisted pair with a computer set which has to

process the received data and combine results. A distri-

bution schema and its connection with the computing

system can be seen in Fig. 2 and a overlapped zones

schema can be seen in Fig. 1.

268 J Real-Time Image Proc (2012) 7:267–279

123



3 Methodology

Our system is composed of multiple and identical high

definition cameras with a resolution 1,388 9 1,036. As

requirement, this application must perform the capture of

eight images per second, the processing of all frames

(including extraction and classification processes), visual-

ization tasks, communication and, finally, tracking.

The proposed classification algorithm can be decom-

posed into a set of steps. Most of them should be done per

frame and per camera. The steps and input data that they

require are described at following Sect. 3.1 and in Fig. 3

the processing flow per camera is detailed. Output gener-

ated from previous stages can be used as input for a

tracking algorithm in order to ensure the temporal

coherence. Several different options can be found in the

literature [4, 12, 13, 18]. Although it is out of the scope of

this paper, a Multi-Camera Uncensted Kalman Filter

(MCUKF) [16] has been used to demonstrate the global

feasibility.

Empirical experiments allow us to conclude: A suc-

cessful tracking can be obtained with a processing frame

rate between 8 and 15 per each camera, i.e., a processing

time per image per camera around 66–125 ms, and to cover

the whole football field, at least eight cameras are needed

to obtain enough overlapping. As conclusion, this

requirement allows us to define the concept of real time and

the scalability of the processing kernel for our particular

needs.

3.1 Independent processing per camera

– Image capture: at this stage, images are retrieved on

demand from each camera.

– Color space transformation from Bayer to RGB: high-

resolution cameras usually provide images in raw

format (also called Bayer-type RGGB [2]), i.e. 8 bits

per pixels for color codification. This format only needs

a third of a conventional RGB image size, but it is

not suitable for our post-processing since all the

channels are mixed. To obtain a RGB image, we need

an intermediate transformation process called Bay-

erToRGB, which is depicted in Fig. 4. The procedure

to generate three channels from a Bayer sequence

RGGB needs a particular calculation for every channel.

RGB values which match up in the RGGB sequence are

mapped directly, while other channels are calculated as

an arithmetic mean of all neighbors corresponding to

the same channel. For example, RGB value for a red

position can be reconstructed as:

– R value is copied as the same value.

– G value is, as shown in Fig. 4c), the average of the

four-neighbor pixels: left, right, up and low pixels.

– B value is, as shown in Fig. 4c), the average of the four-

neighbor pixels in diagonal: up-left, up-right low-left,

low-right pixels.

Fig. 1 Camera distribution on the roof

Fig. 2 Infrastructure schema

Fig. 3 Processing schema

J Real-Time Image Proc (2012) 7:267–279 269

123



– Color space conversion RGB to HSV: under variable

illumination conditions, better classification results can

be obtained by applying a transformation in the color

space [30]. Instead of RGB, HSV (Huge, Saturation,

Value) has shown a better accuracy (Eqs. 1–3).

– Motion detection: it consists in a thresholded subtrac-

tion between the current image (Fig. 5a) of every

camera and a pre-generated image of the scenario,

called background (Fig. 5b). Process is shown in

Fig. 5c. Motion detection image contains the dynamic

areas, which will be used for posterior processing like

distracter removal.

H ¼

No defined if MAX ¼ MIN

60� � G� B

MAX �MIN
þ 0� if MAX ¼ R

and G�B

60� � G� B

MAX �MIN
þ 360� if MAX ¼ R

and G\B

60� � B� R

MAX �MIN
þ 120� if MAX ¼ G

60� � R� G

MAX �MIN
þ 240� if MAX ¼ B

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

ð1Þ

S ¼
0 if MAX ¼ 0

1� MIN

MAX
; otherwise

8
<

:
ð2Þ

V ¼ MAX ð3Þ

– Blob labeling: it is the algorithm that seeks connected

areas, called blobs, in the resulting image of the

previous step. By grouping pixels into blobs and

assigning a common label we simplify the posterior

tracking stage.

– Color segmentation: this procedure tackles the problem

of identifying different areas of the image. GMM

(Gaussian Mixture Model) has been chosen as para-

digm, which implies a preliminar training by extracting

color features from regions of interest. Thanks to this

technique, a distinction into three groups is obtained:

player of team 1, player of team 2 and noise from the

background.

3.2 Gaussian mixture method for image segmentation

In collaborative sport applications, feature extraction and

classification, although a difficult task, have an important

advantage in comparison with more general approaches

like video surveillance. It is known a priori that both teams,

as well as background, are defined by clear and distinctive

color patterns in their clothing. These color patterns can be

easily modeled by parametric methods.

Fig. 4 Raw image (Bayer), RGB equivalent and transform equation

Fig. 5 Current image, background image and subtraction result

image

270 J Real-Time Image Proc (2012) 7:267–279

123



GMM is a method that allows a reliable object modeling

and image classification even in presence of complex tar-

gets, which can be composed of multimodal appearance

distributions. Since it is a parametric technique, it needs an

off-line training phase to calculate those parameters.

Training results are used afterwards in classification

(On-line stage).

The simplest technique to model the appearance coef-

ficients consists in assuming the target as a monochrome

region and modeling it as a Gaussian using only two

parameters: mean l and covariance r2. Although this

assumption limits the generality of the methodology, it can

be easily extended by dividing the target into a predefined

set of monochrome regions [25].

pðxÞ ¼ 1
ffiffiffiffiffiffi
2p
p

r
e�ðx�lÞ2=2r2 ð4Þ

pðxÞ ¼
XN

i¼1

wi
1
ffiffiffiffiffiffi
2p
p

ri

e�ðx�liÞ2=2r2
i ð5Þ

~s ¼ ðs1 � �X
1

r1

; . . .;
sm � �X

m

rm
Þ ð6Þ

Cs
i ¼

Xm

j¼1

~sja
s
j ð7Þ

Probteam0 ¼
1

1þdistanceteam0

distancemin

ð8Þ

Both off-line training and on-line classification are

composed of different phases:

1. Off-line computing

– Sample selection: supervised sample selection for

every group (team 1, team 2 and background).

– Parameter tuning: a crucial issue is the adequate

number of Gaussians used to model every group.

Given the special characteristics of several collab-

orative sports, like a football match, where colors

are well-defined, but where the video compression

can generated halos around the players, a deep

study was made in order to optimize it as much as

possible (Eqs. 4, 5).

– Training: Expectation Maximization (EM) algo-

rithm using Fuzzy C-Means as initialization [3]

provides final model.

2. On-line computing

– Classification: In this step, every pixel is classified

into one of the different groups. For this, the distance

between the pixel candidate and the different model

of every group is computed (Eqs. 6, 7) and a final

decision based on minimum distance are taken (Eq.

8). In addition, the membership degree to every

group is computed inside a probabilistic framework

giving, as result, probability images [10] that can be

used to improve the tracking quality based on

stochastic approaches.

As the offline stage is only applied once at the beginning

of the match and under human supervision, it can be

considered out of the real-time system and, therefore, has

been implemented over CPU. However, this process is also

amenable to be implemented using GPU, as it was dem-

onstrated in [19], obtaining excellent results. Furthermore,

and due to lighting conditions changes over the game, color

models need to be updated every 2 or 3 min. This update

does not require manual annotation at all, since a random

sample of the classified pixels are feedback to the model

for its update. Thus, models updating has to be imple-

mented in real time and its computational cost has been

taken into account in this paper.

For the selection of optimum parameters of the Gaussian

mixture during the training, different experiments have

been performed, as stated in Section 4.2 of [10]. For our

application, two different color spaces were created, one

for modeling the players of both teams and one to model

the background. Likewise, it was decided to consider 2

Gaussians for each model, i.e., the model of each team

consists of 2 Gaussians for each team and 2 additional

Gaussians to model the background. These number are not

arbitrary: whereas two Gaussians per team permits to

model t-shirt and shorts independently, two Gaussians for

the background enables to capture the variability intro-

duced by shadows and saturated areas of the pitch. The

reader could argue that many sport equipments contain

more complex color patterns, such as vertical strips, but in

the reality, the distance to the camera mixes that patterns

into a single one given the current technology of HD

cameras. In the same way, shadows or saturated areas

could be modeled as a single model in an appropriated

color space such as HSV. However, this is plausible only

for an optimal setup of the camera parameter, which is not

practical and evolves during the game.

In the classification stage (on-line computing), a certain

number of mathematical operations are performed per pixel

(Eqs. 6–8). The results depend on the pixel values HSV and

the color models. As the maximum number of possible

combinations of HSV values is not large (maximum

256 9 256 9 256 values) and models do not change often,

an optimization in both CPU and GPU implementations is

the use of Look-up tables or LUTs. Those functions with a

clear and repetitive pattern, such as color classification, can

be replaced for a storage in memory of every possible

result for any input combination. This resulting matrix is

called segmentation Look-up Table (LUT) and there is one

per camera. When the color models change, the LUT is

J Real-Time Image Proc (2012) 7:267–279 271

123



re-calculated for every possible HSV values. An example is

depicted in Fig. 6. For every HSV value, the classification

result is pre-computed and stored in the LUT. After its

generation, the expensive calculation is replaced for a

memory access to the right memory slot, which implies a

substantial boost in efficiency. For example, the calculation

result for a pixel HSV with values [H, S, V] = [1, 2, 3], is

stored in row 1, column 2 and plain 3 as Fig. 6. The more

complex the operation is, the more efficient this technique

proves itself.

3.3 Performance evaluation

All image processing operations described in this section

have been implemented in the corresponding CPU and

GPU versions. For validating them, results were compared

with a prototype modeled in Matlab, confirming that

insignificant differences are only due to typical rounding

errors.

In order to check the performance improvement that our

implementation achieves, we have tested the algorithm

over different types of processors and GPUs. Thus, four

different types of PCs are available: Core 2 Duo 2.2 GHz

3GB Ram, Core 2 Duo 2.4 GHz 3.5 GB Ram, Core 2 Quad

2.83 GHz 3 GB Ram, and Core i7 Quad 2.66 GHz 4GB

Ram. These equipments are close to the average current

processors, giving us a significant sampling of the market.

On the other hand, four different GPUs have been tested

too: GeForce 8600M GS, Quadro FX 1600M and Quadro

FX 1800. All of them can be considered low-cost GPUs

containing 16, 32 and 64 cores, respectively. The fourth

GPU, GTX260 with 216 cores, has been chosen to confirm

the tendency.

For every possible combination of both platforms (CPUs

and GPUs), a scalability study was made. A scalability

study aims to assess the performance of our algorithm as a

function of the number of images, the number of cameras

or the computational power. To this end, we have pro-

cessed the algorithms on several computers as it is shown

in Table 1.

In the next section the implementation on C?? and

CPU optimizations are described. Section 5 does the same

for the implementation on GPU and in the last section, a

scalability test is performed.

4 CPU implementation

Our first implementation of the algorithm was made in

C?? language running under Windows. Once the accu-

racy of the results were validated with a Matlab prototype,

a set of optimizations was included to obtain an improved

C?? version.

For this optimization process, performance analysis

tools, such as Intel VTune Performance Analyzer [17] were

applied to identify the possible hotspots. This tool aimed at

increasing performance, as well as the location of hotspots,

allowing us to perform a deep analysis of them. Thus,

VTune lets us detect, re-code and optimize our imple-

mentation, improving the performance substantially.

A comparative studio between the default Microsoft

Visual Studio compiler and Intel C?? was made for our

application, showing that the usage of this last one was

always beneficial with a general speedup of almost 4x. Full

optimization and specific architecture compilation flags are

both used in this implementation. These specific flags

perform aggressive loop and memory-access optimizations,

such as scalar replacement, loop unrolling, loop blocking to

allow more efficient use of cache and additional data

prefetching.

Intensive use of SIMD and code modifications have been

also done to allow the compiler to automatically apply

SIMD instructions. Special care has been taken in the

alignment of data in memory, and vector and simd pragmas

has been used. Classical Code Optimizations [1] as Loop-

invariant code motion, Strength reduction, and Arithmetic

pointers have been used to clear loops. Compiler generated

code has been analyzed following the compiler High level

Fig. 6 Calculation of the segmentation value for color [H,S,V] =

[1, 2, 3]. These data are stored in the segmentation Look-up Table

Table 1 Different types of CPUs and GPUs for testing

Micro GHz nVidia Cores Bandwidth

(GB/s)

PC1 Core 2 T7500 2.2 Geforce 8600M GS 16 6.7

PC2 Core 2 T8900 2.4 Quadro FX 1600M 32 11.2

PC3 Core 2 Quad 2.83 Quadro FX 1800 64 38.4

PC4 Core i7 Quad 2.66 Geforce GTX260 216 111.9

272 J Real-Time Image Proc (2012) 7:267–279

123



Loop Optimizations (HLO) and vectorization reports

(/Qopt-report), Vtune, and in some cases studying the

generated assembler code and comparing performance with

a not-vectorized version.

As a result, we obtain the differences between an opti-

mized single threaded implementation in C?? using

Microsoft Visual Studio compiler [MVCC] versus the same

code compiled with Intel C?? compiler [ICC]. Results are

depicted in Table 1 (obtained using PC3 described in Sect.

3.3). As can be seen, there are stages with low speed-up

(like RGBToHSV), while Conversion BayerToRGB get a

boosts in performance of 4.569. The main gain comes

from Segmentation that goes from 297.5 down to 90.69 ms.

In Table 2 it is shown that confronting [MVCC] and

[ICC] implementations a big difference in performance

exists just by compiling the code. The results prove that, as

expected, using an optimizing compiler increases perfor-

mance considerably.

These measurements have been obtained using the

evaluation metric shown in Eq. 9, where spfi is the speed-up

for stage i, tfi,mvcc is the execution time of stage i optimized

using Visual Studio and tfi,icc the execution time of stage

i optimized using Intel C??.

spfi ¼
tfi;mvcc

tfi;icc

ð9Þ

Another metric usually employed to evaluate the

computing capability of a real-time oriented system is the

processing rate or rate. Rate measures how many frames

are processed per second. Rate equation can be described

as follows:

Rate ðfpsÞ ¼ 1;000 ðmsÞ
ttotal ðmsÞ ðfpsÞ ð10Þ

Using [MVCC] implementation, the processing rate

would be around 2.11 frames per second, while if [ICC]

optimization is used, rate increases around 6.58 fps. We

should remember that, as discussed in the introduction, a

minimum rate between 8 and 15 fps is necessary for the

correct operation of the subsequent tracking stage.

RateVisual ðfpsÞ ¼ 1;000 ms

ð71:62þ 71:58þ 31:67þ 297:5Þ
) RateVisual ðfpsÞ ¼ 2:11 fps

) RateIntel ðfpsÞ ¼ 6:58 fps

ð11Þ

In a multicore processor we could have more than one

core doing image processing. As image processing is

composed of many pipelined stages, we could assign each

stage to a different thread or we could have many cores

working on the same frame. Due to load balancing

problems between threads and the added synchronization

and communication, we found that it was much better to

have each core working on a different frame (from the

same camera or from another camera).

Image processing is clearly CPU bound, but as the dif-

ferent cores share the last level cache and the memory

bandwidth, we expect a certain performance penalty. We

have run multiple instances over different frames to

observe the effect on each of the stages. The results are

presented in Table 3 on a given run of four threads over the

four cores of PC3.

Data in Table 3 show that, while in the single thread

implementation we are able to process around 6.58 fps,

running one instance per core we reach about 25 fps, so it

follows that there is a minimal overhead for each stage at

around 2.5 % for this particular execution. Conversion

BayerToRGB is the stage that more variability supports

with a 4.84 % penalty due mainly to the increased L3 cache

miss ratio.

5 GPU implementation

The hardware architecture of a system with a GPU can be

seen in Fig. 7. A GPU is a hardware device connected to

the main system through a fast bus, second-generation PCI

Express currently. It has some very specific processing

features regarding the current CPUs.

Table 2 Time comparison between optimized C?? using Microsoft

Visual Studio [MVCC] and optimized C?? using Intel C?? com-

piler [ICC], running in PC3

Stages in PC3 MVCC (ms) ICC (ms) Speed-up

Conversion BayerToRGB 71.62 15.7 4.56

Conversion RGBToHSV 71.58 35.61 2.01

Motion detection 31.67 9.83 3.22

Segmentation 297.5 90.69 3.28

Table 3 Comparison of the processing time of each stage between an

implementation for a single frame and one for four frames using a

machine with four cores (PC3)

Time (ms) Increment

(%)
Stage CPU3

(single thread)

CPU3

(four instances)

BayerToRGB 15.7 16.77 4.84

RGBToHSV 35.61 36.00 1.1

Motion detection 9.83 10.30 4.78

Segmentation 85.39 87.75 2.76

Total 146.53 150.82 2.92

J Real-Time Image Proc (2012) 7:267–279 273

123



Specifically, the features that make GPUs specially

powerful in massively parallel computing are:

– Hardware composed of several computing functional

units and several multicores.

– In single precision floating point, a GPU can reach up

to 500 Gflops owed to the 30–50 Gflops of conven-

tional CPUs.

– High bandwidth for the internal memory up to one

order of magnitude higher than the bandwidth of a CPU

and system memory (up 111.9 GB/s in GPU4).

– In order to take advantage of such high bandwidth,

GPUs allow several memory access operations to run

simultaneously.

– GPU use Single Instruction Multiple Thread (SIMT)

paradigm. This specific execution allows and needs

many independent and simultaneous active threads that

execute the same instructions over different data. All of

them running as an unique kernel.

Below, a brief introduction to the main techniques in

CUDA optimizations are described attending GPU char-

acteristics and SIMT paradigm. Next, a preliminary study

of our application is needed taking in mind these tech-

niques as well as different criteria such as computational

cost or massively parallel computing redesign. Finally, the

optimized results for CPU and GPU implementations are

shown and discussed.

5.1 Techniques for optimizing GPU code

Several techniques are at our disposal for an optimum use

of GPU capacities according to recommended methodol-

ogies [22, 23, 26, 27]. Across all the stages these tech-

niques have been evaluated. A GPU is a device designed

for highly parallel computation having a very high number

of functional units and a high memory bandwidth. There-

fore, the main techniques for increasing performance are

based on keeping up the occupation of functional units

(known as occupancy), maximizing the use of effective

bandwidth to memory (using techniques like coalescence)

and minimizing branch divergency.

Occupancy: Occupancy is defined as the number of

threads assigned to each processor. Maintaining a high

occupancy in the GPU is important in order to mask the

high latency of memory accesses. It can be achieved by

means of three different ways: taking care with data-

independent instructions, maintaining the number of reg-

isters per thread as low as possible and/or obtaining the

best compromise occupancy-shared memory size per

thread. Therefore, it is important to fully exploit the par-

allelism available in the application.

Coalescence: Coalescence is a technique for optimizing

memory accesses. Memory accesses from different threads

can be merged into a single access to the device memory if

the required conditions are fulfilled [8]. This fusion process

is known as coalescence and it is defined as a mean to

gather several simultaneous memory accesses in parallel. It

is promoting during the global memory accesses and it

consists in a mechanism that fuses into an unique operation

all the read/write accesses from the running threads in the

current active block. GPUs have specific hardware that

detects and makes this fusion, hiding the high latency of

threads accessing to local or global memory when cache is

not available.

Divergency: In the SIMT paradigm implementation of

CUDA GPUs, high performance is obtained when all the

thread in the same active block are executing identical

instruction. In conditional execution code (i.e. conditional

branches) several threads could take different paths. The

result could be the serialized executions of diverging

threads within a block, and therefore, increasing the cost

for every divergent thread.

In order to evaluate and achieve high performance over

GPU, several tools have been used to refine code: CUDA

Visual Profiler, CUDA Occupancy Calculator, and

Decompiler. This last one is a tool for disassemble code

generated by a CUDA project. It provides the exact register

mapping of the GPU, so bottlenecks in terms of number of

registers used by the kernel can be checked. We used a

specific decompiler named decuda that is available at

http://www.wiki.github.com/laanwj/decuda/ [32]

5.2 Preliminary study

In this section, the adequacy of each stage to be imple-

mented as a GPU kernel has been analyzed. Stages are

independently implemented in different kernels in order to

check their behavior using GPU paradigm. This test has

been performed over PC3 and the results are presented

below.

Conversion BayerToRGB: this stage requires, for

every pixel, access to the neighbor pixels in order to

Fig. 7 Hardware architecture of a system with GPU

274 J Real-Time Image Proc (2012) 7:267–279

123

http://www.wiki.github.com/laanwj/decuda/


calculate the resulting RGB. The processing is made per

pixel independently, although the final result also depends

on the adjacent input values such as Fig. 4 shown. There-

fore, there is no coalescence in reading or writing, it has a

high grade of divergency (each pixel is computed in a

different way) and because it is the first stage, it supports

the driver overhead (data has to be send to the GPU).

Resulting RGB data are saved in memory as planar form to

take advantage of coalescence in the following stages.

Evaluation: suitable. Computational cost: 19.47 ms

(&11.45%).

Conversion RGBToHSV: in the same way as the pre-

vious stage, processing is pixelwise but there is no data

dependency regarding the neighbor pixels. There is no

divergence and as RGB data is kept in memory in planar

form accesses are fully coalesced. Evaluation: suitable.

Computational cost: 5.68 ms (&3.31%).

Motion detection: Since it is basically a pixelwise

subtraction, there is not dependency. As in the previous

stage, Motion detection has a high coalescence degree and

there is no divergence. Evaluation: suitable. Computational

cost: 7.2 ms (&4.23%).

Color segmentation: Segmentation consists basically in

2 substages, blob labeling and color classification. We are

going to study them independently.

– Blob Labeling: this algorithm searches for connected

zones in the image. The nature of the connectivity

search produces a strong dependency among neighbors.

There is not a simple parallel solution and a new

algorithm should be developed to take advantage of the

available features. We have tried many different

algorithms and implementations. The more parallel

code is, the more synchronization between CUDA

blocks is needed, so more performance lost. Evalua-

tion: not suitable. Computational cost: 93.34 ms

(&54.88%).

– Color classification: it is also a good candidate to be

implemented on GPU as computation does not have

dependencies with the neighbors and it implies a

substantial part of the total time in the CPU imple-

mentation. It can be decomposed into three substages:

resulting image calculation by consulting the corre-

sponding LUT entry, LUT update for the next frame and

noise filtering by morphological operators. The coales-

cence ratio for reading is low because LUT accesses are

not regular. Divergence is minimal or none. Again,

since this is the final stage, it supports the driver

overhead of returning data results to the CPU. Evalu-

ation: suitable. Computational cost: 44.37 ms

(&26.09%).

As a summary, main characteristics of every stage are

shown in Table 4. The CUDA implementation was tested

over PC3, obtaining the results shown in Fig. 8. We can

conclude:

– Most stages are performed per pixel, so there is plenty

of parallelism. Consecutive stages could be grouped

and executed invoking a single kernel, reducing driver

and synchronization overheads.

– Motion Detection and Conversion RGBToHSV stages

prove a good behavior when they are implemented over

CUDA. When comparing the CPU and the GPU

implementation, times goes from 9.83 to 7.20 ms and

from 35.61 to 5.68 ms, respectively.

– In spite of pixelwise calculation, Conversion Bay-

erToRGB stage presents several dependencies in its

data and divergence in the operations. CUDA imple-

mentation has to be carefully studied because time is

higher in the CUDA implementation (19.47 vs. 15.7 ms

in the CPU).

– Labeling is not parallelizable and our designed algo-

rithm for GPU has a deficient behavior. Its computation

time has increased almost 209.

– CUDA implementation of the classification stage

presents a significant improvement in performance,

representing around 58% of the total time (if we do not

account labeling).

The critical design phase is the labeling computing,

since it is not parallelizable. The CPU version is much

faster than the GPU version, as observed in Fig. 8, so an

hybrid implementation of the segmentation stage could be

implemented with Labeling done in the CPU. It is worth to

take special care in aspects as kernel context switch or data

transfer with CPU, avoiding unnecessary waste of time as

they needs to access the GPU driver to complete the

operation. The computational cost of transferring data CPU

) GPU or GPU ) CPU is around 7.19 ms. Three solu-

tions have been studied:

– Option 1: All the stages are run over GPU: Labeling

allows identifying active areas in the image, reducing

the segmentation to those areas and making unnecessary

segmenting the rest of the image. Total computational

Table 4 Study of main parameters to improve the performance in

every stages

Stage Occ Coal Div DO

BayerToRGB 66 �R= �W High Yes

Motion detection 100 R/W Not Not

RGBToHSV 100 R/W Not Not

Classification 66–100 �R= �W Low or none Yes

Occ Occupancy, Coal coalescence, Div divergence, DO driver over-

load, R/W Coalescence in read and write, �R= �W non-coalescence in

read and write

J Real-Time Image Proc (2012) 7:267–279 275

123



cost would be Ttotal1
= Tp þ tegpu

þ tsblob
, where Tp is the

time due to the pre-labeling stages, tegpu
is the labeling

cost in GPU and tsblob
is the segmentation cost on the

active areas.

– Option 2: Previous stages to labeling are run on GPU,

results are transferred to the host, which runs the

labeling and returns the result to the GPU, where the

segmentation is done on the active areas. Ttotal2
¼

Tp þ ttotaltrans þ tecpu
þ ttotaltrans þ tsblob

; being ttotaltrans

the transference cost ? kernel commutation cost ?

driver access cost.

– Option 3: Classification is applied to the whole image

and not only over active areas. Ttotal3 = Tp þ tsimage
. In

this hybrid solution, labeling and final segmentation are

relegated to CPU because its performance for these

stages is more efficient than the corresponding over

GPU. So one GPU kernel is invoked for processing all

the pixelwise operations (from Bayer to classification)

and then the CPU ends with the segmentation stage.

Previous options have been tested and results are shown

in Fig. 9 over PC3. By minimizing the computational cost

Ttotal1
, Ttotal2

and Ttotal3
, the optimum decision can be taken.

As Fig. 9 shows, option 3 provides the optimum solution

(64.78 ms) in comparison with the other alternatives whose

costs are 144.91 and 71.25 ms. Option 1 is even more

expensive than [ICC] implementation whose processing

time is about 100.52 ms. Because the extra data transfers

and the kernel context switching, option 2 is worse than

option 3 although the whole image is classified in this last

one.

In the light of previous results, we can conclude that

Blob Labeling is not efficient for parallel computing and, in

case of necessity for posterior stages such as tracking or

distracter removal (football field lines), must be relegated

to the CPU. Taking this decision as a new starting point,

the next step consists in the optimization of all the stages.

5.3 Results

The preliminary study of the GPU execution concludes that

on-line processing are composed of four stages (Bay-

erToRGB conversion, RGBToHSV conversion, Motion

detection, and classification), all of them are done per

pixel. In addition, our implementation over GPU consists

of an unique kernel, avoiding thus the extra time intro-

duced by context changes or driver overload. This kernel

receives frame data and runs the four pixelwise processes,

and ends transferring the resulting data from the classifi-

cation to the CPU.

A comparison between implementations on PC3 over

the Intel C?? [CPU3] and over the CUDA [GPU3]

applying all the optimizations is shown in Table 5.

– Since transfer time is a non-negligible limitation, a

detailed study for minimizing the number of data

transfer operations and kernels invocations has to be

done

– BayerToRGB performance accounts for the driver

overhead and its time is worse than the CPU

implementation.

– Motion Detection has a good behavior since processing

is pixelwise. High speed-up has been obtained, being

5.27 times faster.

Fig. 8 Computational cost for [ICC] and CUDA (over PC3)

implementations

Fig. 9 Comparison: First CUDA (over PC3) implementation versus

optimized C??

Table 5 Comparison among CPU3 (single thread) and GPU3
implementations

Time (ms) Speed-up

Stage CPU3 GPU3

BayerToRGB 15.7 16.48 0.95

RGBToHSV 35.61 2.57 13.85

Motion detection 9.83 1.86 5.27

Labeling 5.3 Not used

Classification 85.39 23.63 3.61

276 J Real-Time Image Proc (2012) 7:267–279

123



– Conversion RGBToHSV stage also achieves high

speed-up. This computing is boosted 13.859.

– Finally, Classification, the most expensive stage, has

achieved an speed-up of 3.619, being comparable in

time to other stages like Conversion BayerToRGB.

– Finally, the optimized version is 42.96% better than the

first implementation. The gain comes mainly from the

optimized version of classification. BayerToRGB gets

almost no improvement because it supports the data

transfer and driver overhead.

6 Scalability test

The performance of a GPU system is mainly determined by

the number of cores and the memory bandwidth. To verify

this, we have selected different systems with different

resources (shown in Table 1) to test the performance. The

aim is to study the cost evolution per stage and globally.

The first 3 GPUs have been chosen with a consistent

growing criterion in the number of GPU cores (16, 32 and

64). Memory bandwidth almost doubles from GPU1 to

GPU2, and GPU3 has almost six times more than GPU1.

The fourth GPU, with 216 cores and 112 GB/s, is chosen to

confirm the tendency showed in the previous tests.

Two comparative analyses have been done. The first

one, at the stage level, evaluating the time cost for every

stage for each GPU (Fig. 10). The second one, comparing

the global performance of the application using the four

different CPUs against the GPUs measured in frames per

second fps (Fig. 11).

Analyzing at the stage level (Fig. 10), it is important to

note that improvement increase with GPU power, almost

always proportional to the number of cores. The only

exceptions are the conversion BayerToRGB and Classifi-

cation stages, where driver overhead, input data depen-

dence, and memory bandwidth produces a slightly lower

rate (see Fig. 10).

In Fig. 11, results are compared at the application level

between the GPU-CPU configurations, and the same ten-

dency can be appreciated. A very low-cost laptop equipped

with GPU1 is able to obtain enough processing ratio in fps

to connect a camera to the tracking stage (8 fps or more).

Nevertheless a highly optimized single threaded imple-

mentation over a medium PC as CPU4 is not able to do

that. A comparison GPU-CPU in PC1 shows that achieved

improvement is around 2.119 , 2.329 in PC2, and

3.419 in PC3. A considerable speedup has been obtained

(10.679) with GPU4, a Geforce GTX 260, processing

63.38 frames per second versus the 5.94 from CPU4, and

7.329 if we compare it with GPU1.

A remark about the architectures and characteristics of

the different equipments under test can also be extracted.

Despite the fact that the pair CPU-GPU are contemporary,

the evolution of both architectures are not equal over time.

CPU power increase in the last 2 years is negligible in

comparison with GPUs in the same period. This can be

explained due to the maturity of both technologies and the

improvement margin. CPU1 is able to process 4.11 fps

while CPU3 only goes up to 6,59 fps and CPU4 only

achieves 5,94 fps even slower than the previous generation.

In a dual core processor (CPU1 and CPU2), while one

core is doing image processing the other is used by the

application for doing the other tasks (imagen capture,

tracking, control and visualization). In machines with

additional cores, more frames could be processed in par-

allel. As shown previously, CPU3 is able to run four

threads, processing around 25 fps, almost three frames

more than GPU3. CPU4 is also a 4-core processor but has

simultaneous multithreading (Hyperthreading in Intel ter-

minology), so it appears as eight CPUs to the Operating

System. When running four threads, CPU4 achieves

21.29 fps and goes up to 30.62 fps when running eight

threads, getting more throughput but slowing down each

tread.Fig. 10 Stage computing time using different GPU models

Fig. 11 Ratio in frames per second for different GPUs in comparison

with the three available CPUs

J Real-Time Image Proc (2012) 7:267–279 277

123



Given that we establish a minimum processing rate of at

least 8 fps as requirement for a successful posterior

tracking stage and that we need to process 8 cameras, it is

necessary a minimum processing rate of about

8 9 8 = 64 fps. Thus, real-time can be obtained as:

– PC3 processes 6.59 fps in single thread mode or ^
25 fps using multicore execution, so we need 3

medium-high PCs.

– A GPU Quadro FX 1800 (GPU3) processes 22.45 fps,

so we need at least 3 low-cost GPUs.

– In a hybrid implementation using a PC3 and a GPU3 it

was possible to process ^45 fps.

– A Geforce GTX 260, while its price is around 150

dollars, shows a processing ratio of around 64 fps.

7 Conclusions and future work

7.1 Conclusions

In the light of these results, we can assert a set of inter-

esting conclusions:

– High-capability computing devices, such as current

GPUs, have an enormous potential for video processing

applications. As proof, segmenting football players in

real time have been possible by making an efficient use

of these platforms.

– The usage of GPUs has meant a significant success for

our application. We are able to improve all the

processing stages, with the exception of labeling, with

speed-ups up to 409 and using medium-cost hardware.

– An hybrid segmentation implementation, where classi-

fications is done for the whole image in the GPU and

labeling is later done by the CPU without any penalty,

gives us better performance.

– The global performance improvement is 10.679 over a

single thread implementation, making possible a pro-

cessing rate of 63.38 fps over a single GPU.

– Over a 4-core processor we are able to process almost

25 fps in a multithreaded implementation.

7.2 Future work

Given the good performance achieved which confirms the

initial promising idea, we consider this paper as a first step

in a future research line. For that, we propose several ideas

that, due to lack of time, resources or for being out of the

scope of the paper have not been studied properly. Future

lines of research can use this increase not only for

increasing the processing rate but also for an intrinsic

improvement of the processing stage.

– To study the evolution of processing rate according to

image resolution.

– Feature modeling has been assumed as known. We

propose to study the scalability according to variation

in the target model (number of Gaussians, non-

parametric models, etc.).

– To study how the classification metric (Euclidean

distance, Mahalanobis, etc.) or even the classification

methodology (neural networks, SOM, etc.) can affect to

the final results.

– To extend the application field to other compatible

disciplines such as facial recognition or human track-

ing, to name a few.

Acknowledgments This work was supported in part by grants

TIN2010-21291-C02-01, TIN2007-66423 and TIN2007-60625

(Spanish Government and European ERDF), gaZ: T48 research group

(Aragón Government and European ESF), Consolider CSD2007-

00050 (Spanish Government), and HiPEAC-2 NoE (European FP7/

ICT217068).

References

1. Bacon, D., Graham, S.L., Sharp, O.J.: Compiler transformations

for high-performance computing. ACM Comput. Surv. 26,

45–420 (1993)

2. Bayer, B.E.: Bayer. United States Patent num. 3971065 (1975).

http://patent.ipexl.com/US/3971065.html

3. Bilmes, J.: A gentle tutorial of the em algorithm and its appli-

cation to parameter estimation for gaussian mixture and hidden

markov models. Technical report (1998)

4. Buckley, K., Vaddiraju, A., Perry, R.: A new pruning/merging

algorithm for mht multitarget tracking. In: Radar-2000 (2000)

5. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Skadron,

K.: A performance study of general-purpose applications on

graphics processors using cuda. J. Parallel Distributed Comput.

68(10), 1370–1380 (2008). ISSN 0743-7315. doi:10.1016/j.jpdc.

2008.05.014. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.143.4849

6. Chen, T.Q., Lu, Y.: Color image segmentation: an innovate

approach. Pattern Recogn. 35, 395–405 (2001)

7. Cheng, H.D., Sun, Y.: A hierarchical approach to color image

segmentation using homogeneity. IEEE Trans. Image Process. 9,

2071–2082 (2000)

8. NVIDIA Corp. CUDA 2.0 Programming Guide. NVIDIA, 2008.

http://www.nvidia.es

9. Martı́nez del Rincón, J., Herrero-Jaraba, J.E., Gómez, J.R.,

Orrite-Uruńuela, C., Medrano, C., Montańés, M.A.: Multi-camera

sport player tracking with bayesian estimation of measurements.

Comput. Vision Image Understanding (2007)

10. Martı́nez del Rincón, J., Orrite Uruńuela, C.: Feature-based

human tracking: from coarse to fine. PhD thesis. Zaragoza,

University of Zaragoza, Zaragoza, Dic 2008. Presented:

December 2008

11. Fung, J., Mann, S.: Using multiple graphics cards as a general

purpose parallel computer: applications to computer vision. In:

ICPR ’04: Proceedings of the Pattern Recognition, 17th Inter-

national Conference on (ICPR’04), vol. 1, pp. 805–808, IEEE

Computer Society, Washington, DC, USA (2004). ISBN 0-7695-

2128-2. doi:10.1109/ICPR.2004.968

278 J Real-Time Image Proc (2012) 7:267–279

123

http://patent.ipexl.com/US/3971065.html
http://dx.doi.org/10.1016/j.jpdc.2008.05.014
http://dx.doi.org/10.1016/j.jpdc.2008.05.014
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.143.4849
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.143.4849
http://www.nvidia.es
http://dx.doi.org/10.1109/ICPR.2004.968


12. Funk, N.: A study of the kalman filter applied to visual tracking.

Technical report, University of Alberta (2003)

13. Gad, A., Farooq, M., Serdula, J., Peters, D.: Multitarget tracking

in a multisensor multiplatform environment. In: The Seventh

International Conference on Information Fusion, pp. 206–213,

Stockholm, Sweden (2004)

14. Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick,

J., Morton, S., Phillips, E., Zhang, Y., Volkov, V.: Parallel

computing experiences with cuda. Micro, IEEE 28(4), 13–27

(2008). doi:10.1109/MM.2008.57

15. Gavrila, D., Philonim, V.: Real time object detection for smart

vehicles. In: Proceedings of Seventh International Conference on

Computer Vision, pp. 87–93 (1999)

16. Gómez, J.R., Herrero, J.E., Medrano, C., Orrite, C.: Multi-sensor

system based on unscented kalman filter. In: Proceedings of

Image Processing (VIIP), IASTED International Conference on

Visualization, pp. 13–18 (2006)

17. Software development products Intel� Intel� VTune Analyzer.

Intel Corporation (2009)

18. Isard, M., Blake, A.: Condensation conditional density propaga-

tion for visual tracking. Int. J. Comput. Vision, 29(1), 5–28

(1998). ISSN 0920-5691. doi:10.1023/A:1008078328650

19. Kumar, N.S.L.P., Satoor, S., Buck, I.: Fast parallel expectation

maximization for gaussian mixture models on gpus using cuda.

In: 10th IEEE International Conference on High Performance

Computing and Communications, pp. 103–109 (2009). doi:

10.1109/HPCC.2009.45

20. Lu, P., Oki, H., Frey, C., Chamitoff, G., Chiao, L., Fincke, E.,

Foale, C., Magnus, S., McArthur, W., Tani, D., Whitson, P.,

Williams, J., Meyer, W., Sicker, R., Au, B., Christiansen, M.,

Schofield, A., Weitz, D.: Orders-of-magnitude performance

increases in gpu-accelerated correlation of images from the

international space station. J. Real-Time Image Process. (2009).

doi:10.1007/s11554-009-0133-1

21. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Exten-

sions. 2 edn. Wiley Series in Probability and Statistics. Wiley,

New York, March 2008. ISBN 0471201707. http://www.

amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/

0471201707

22. Nguyen, H.: GPU Gems 3. Addison-Wesley, Professional,

Reading, August 2007. ISBN 0321515269

23. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E.,

Phillips, J.C.: Gpu computing. In; Proceedings of the IEEE, vol.

96, no. 5, pp. 879–899 (2008). doi:10.1109/JPROC.2008.917757

24. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J.,

Lefohn, A.E., Purcell, T.J.: A survey of general-purpose com-

putation on graphics hardware. Comput. Graphics Forum 26(1),

80–113, March 2007. ISSN 1467-8659. doi:10.1111/j.1467-

8659.2007.01012.x

25. Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based

probabilistic tracking. In: ECCV ’02: Proceedings of the 7th

European Conference on Computer Vision-Part I, pp. 661–675,

Springer, London (2002). ISBN 3-540-43745-2

26. Pharr, M., Fernando, R.: GPU Gems 2: Programming Techniques

for High-Performance Graphics and General-Purpose Computa-

tion. Addison-Wesley Professional, Reading, March 2005. ISBN

0321335597. http://www.amazon.com/exec/obidos/redirect?tag=

citeulike07-20&path=ASIN/0321335597

27. Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk,

D.B., Hwu, W.W.: Optimization principles and application per-

formance evaluation of a multithreaded gpu using cuda. In:

PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, pp. 73–82.

ACM, New York (2008). ISBN 978-1-59593-795-7. doi:10.1145/

1345206.1345220

28. Schneider, S., Yeom, J., Rose, B., Linford, J.C., Sandu, A.,

Nikolopoulos, D.S.: A comparison of programming models for

multiprocessors with explicitly managed memory hierarchies.

SIGPLAN Not., 44(4), 131–140 (2009). ISSN 0362-1340. doi:

10.1145/1594835.1504197

29. Sinha, S.N., Frahm, J., Pollefeys, M., Genc, Y.: Gpu-based video

feature tracking and matching. Technical report, In: Workshop on

Edge Computing Using New Commodity Architectures (2006)

30. Smith, A.R.: Color gamut transform pairs. In: SIGGRAPH ’78:

Proceedings of the 5th Annual Conference on Computer Graphics

and Interactive Techniques, pp. 12–19. ACM, New York (1978).

doi:10.1145/800248.807361

31. Tuytelaars, T., Mikolajczyk. K.: Local invariant feature detectors:

a survey. Found. Trends. Comput. Graph. Vis. 3(3):177–280

(2008). ISSN 1572-2740. doi:10.1561/0600000017

32. van der Laan, W.J.: Decuda and cudasm, the cubin utilities

package. GIThub (2009)

Author Biographies

Miguel Angel Montañés Laborda received his M.Sc. degree in 2010

from the University of Zaragoza specializing in systems engineering

and computing. He previously graduated in electronic engineering in

2001 and he is currently completing the second cycle of electronic

and automatic engineering, both from the University of Zaragoza. In

September 2004, he joined the Computer Vision Laboratory of the

Aragon Institute of Engineering Research (I3A) as a scientific

developer.

Enrique F. Torres Moreno received the MS degree in computer

science from the Polytechnic University of Catalunya in 1993, and the

Ph.D. degree in computing science from the University of Zaragoza in

2005. He was an assistant professor in the Polytechnic Schools of the

University of Girona. He is an assistant professor in the Computer

Science and Systems Engineering Department (DIIS) at the Univer-

sity of Zaragoza, Spain. He is also on sabbatical leave for study and

research at the University of California in Berkeley, where he is a

member of the International Computer Science Institute (ICSI). His

research interests include processor microarchitecture, memory

hierarchy, and parallel computer architecture. He is a member of

the IEEE Computer Society. He is also a member of the Aragón

Institute of Engineering Research (I3A) and the European HiPEAC

NoE. More details about his research and background can be found at

http://webdiis.unizar.es/gaz/miembros.html.

Jesús Martı́nez del Rincón received the Ph.D. degree from the

University of Zaragoza specializing in Biomedical Engineering in

2008. He previously graduated from the University of Zaragoza in

Telecommunication in 2003. He is currently a research fellow in the

Faculty of Computing, Information Systems and Mathematics,

Kingston University, London. His current research interests include

aspects of computer vision such as human motion analysis, activity

recognition and multi-target tracking in real time.

José Elı́as Herrero Jaraba received his Ph.D. degree in 2005 from

the University of Zaragoza, Spain. He joined the Centro Politécnico

Superior of the University of Zaragoza as a researcher in March 2001.

In February 2003 he became an assistant professor, and since May

2007 he has been an associate professor at the same university. His

current research interests include image processing, multicamera and

multitarget tracking, three-dimensional vision, and measurement

processes. Dr. Herrero is an associate member of the IEEE.

J Real-Time Image Proc (2012) 7:267–279 279

123

http://dx.doi.org/10.1109/MM.2008.57
http://dx.doi.org/10.1023/A:1008078328650
http://dx.doi.org/10.1109/HPCC.2009.45
http://dx.doi.org/10.1007/s11554-009-0133-1
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471201707
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471201707
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471201707
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321335597
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321335597
http://dx.doi.org/10.1145/1345206.1345220
http://dx.doi.org/10.1145/1345206.1345220
http://dx.doi.org/10.1145/1594835.1504197
http://dx.doi.org/10.1145/800248.807361
http://dx.doi.org/10.1561/0600000017
http://webdiis.unizar.es/gaz/miembros.html.

	Real-time GPU color-based segmentation of football players
	Abstract
	Introduction
	Infrastructure
	Methodology
	Independent processing per camera
	Gaussian mixture method for image segmentation
	Performance evaluation

	CPU implementation
	GPU implementation
	Techniques for optimizing GPU code
	Preliminary study
	Results

	Scalability test
	Conclusions and future work
	Conclusions
	Future work

	Acknowledgments
	References


