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Abstract In this paper, we propose a cascaded version of

the online boosting algorithm to speed-up the execution

time and guarantee real-time performance even when

employing a large number of classifiers. This is the case for

target tracking purposes in computer vision applications.

We thus revise the online boosting framework by building

on-the-fly a cascade of classifiers dynamically for each new

frame. The procedure takes into account both the error and

the computational requirements of the available features

and populates the levels of the cascade accordingly to

optimize the detection rate while retaining real-time per-

formance. We demonstrate the effectiveness of our

approach on standard datasets.

Keywords Online boosting � Multiple classifiers

systems � Object detection � Tracking

1 Introduction

Classifier ensembles are proved to benefit from the diverse

decision capabilities of their members, thus improving

classification performance [13]. Boosting [6], bagging and

other forms of classifiers combination [26] aim to form an

ensemble of weak classifiers that will perform as a strong

one [11, 12, 24, 28].

Usually, the weak classifiers are trained on the entire

training set and then greedily added to the ensemble with

respect to a certain criterion; therefore, the iterative

process builds the set of weak classifiers that performs

best on the training set. This batch procedure is partic-

ularly demanding in terms of computational resources

and is dedicated to systems that can afford a time-con-

suming training phase [15, 32]. A new stimulus has been

given by the intuition of Oza [21] that conceived online

versions of the bagging and boosting algorithms. In

particular, the online boosting (OB) algorithm has found

many applications in pattern recognition. For example,

Grabner and Bischof [10] showed how to apply this

framework to computer vision tasks. Pham and Cham

[25] proposed an asymmetric version of the original

algorithm, to cope up with unbalanced classes. Another

interesting approach exploits the Wald’s sequential deci-

sion theory within the Boosting algorithm [31]; in a later

work, this idea has been applied to online learning to

achieve a better compromise between complexity and

accuracy with respect to OB [9]. The online WaldBoost

modifies the cardinality of the ensemble depending on the

classification task; when the cardinality is reduced a

speed-up is achieved. As will be discussed later, the

proposed method has variable accuracy but always

maintains the real-time constraint.

Many other recent works point that the OB is an

effective framework for combining multiple classifiers for

computer vision applications [17, 18, 35, 39].

The most prominent use of OB for vision is probably

object tracking; a combination of classifiers is used to learn

the appearance of a target in the current frame and the

ensemble is then employed to detect it in the following
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frame, considering the detection step as a discrimination

between the object and the background [2, 23]. The loca-

tion of the target is therefore given by the region that

triggers the strongest response of the ensemble.

Since object detection and tracking in video sequences

are known to benefit from the employment of multiple

(heterogeneous) features (e.g. color, orientation histo-

grams, etc.) as shown in [5, 8, 36], the combination of

different features within the boosting framework can be a

winning strategy in terms of robustness and accuracy [42].

However, this can prohibitively increase the computational

burden to the point of preventing real-time performance

even in the case of OB. In fact, the computational com-

plexity increases with the number of features/classifiers

employed.

To overcome a similar problem in off-line classification,

Viola and Jones [33] proposed the idea of building a cas-

caded classifier to speed-up the application of the ensemble

to many sub-regions of an image during the detection step.

They exploited the fact described in [1], that few accurate

weak classifiers are sufficient to narrow the focus of

attention on the regions of the image where the object is

likely to be present. These classifiers would constitute the

first level of the cascade while the other levels would

comprise the remaining classifiers in descending order of

accuracy. This approach has been successfully applied to

many tasks, including face detection [37, 38], pedestrian

detection [22, 40], neural network frameworks for classi-

fication [7], and handwritten digit recognition [14, 41].

From its first appearance in the literature until these recent

works, including [3, 4, 38], the cascade was trained off-line

through an extremely time consuming process. An excep-

tion is the work of Wu and Nevatia [35], where a cascaded

version of the OB algorithm is proposed, but starting from

general seed detectors learned off-line.

To speed up the application of this ensemble, here we

propose a cascaded OB algorithm that builds on-the-fly a

cascade from a heterogeneous set of online boosted clas-

sifiers. Since different features can have different compu-

tational costs, the cascade construction takes into account

both the error and the computational requirements of the

available features and populates the levels accordingly to

optimize the detection rate while retaining real-time per-

formance. We thus exploit the advantages given by the OB

algorithm while guaranteeing the sought-after property of

real-time performance as it is the case in most computer

vision tasks.

The idea was initially conceived in [34] for a homoge-

neous set of features and then extended in [30] to the

heterogeneous case. With respect to these previous papers,

the present work introduces the following improvements:

• A refined cascade algorithm that does not require user

pre-defined thresholds.

• A novel strategy for hypotheses selection that dynam-

ically takes into account the cost of the features and the

current frame rate.

• Thorough experimentation on standard datasets.

We have compared the performance achieved by the

proposed cascaded algorithm with those of the monolithic

OB. In particular, we have focused on computational cost

and thus measured the frame rate obtained in object

tracking tasks. For completeness, we have also validated

the approach by considering tracking scenarios in real-

world video sequences.

The paper is organized as follows: Sect. 2 provides a

brief recount of the key concepts of boosting and classifiers

ensembles and puts them in the context of object tracking

in video sequences; Sect. 3 provides a step-by-step

description of the proposed algorithm; Sect. 4 presents the

experimental validation on standard datasets of real-world

video sequences.

2 Ensembles of classifiers and boosting

Ensemble methods are well-known techniques for com-

bining multiple classifiers’ outputs in order to improve

classification performance (see [26] for a recent survey).

Ensemble-based (meta) algorithms [26], such as Bagging

and Boosting, follow the intuition that fusing multiple

weak hypotheses (classifiers) yields a strong ensemble, that

is with increased classification performance.

Given a set of (weak) hypotheses h1; h2; . . .; hTf g so that

ht : X ! Y where X is the set of vector-valued samples,

Y = {-1, ? 1} is the set of labels, and ðxi; yiÞ : i ¼ 1;f
. . .;N ^ xi 2 X ^ yi 2 Yg is the training set, the boosting

algorithm builds a (strong) classifier ensemble H as follows

HðxÞ ¼ sign
XT

t¼1

1

2
log

1� �t

�t

� �
htðxÞ

" #
ð1Þ

where t is the current training epoch and T is the total

number of epochs (and, at the same time, the total number

of weak classifiers). For each t, a hypothesis ht is greedily

added to the ensemble with respect to the probability

distribution Dt on all the learning samples in X. The

probability distribution Dt, updated at each epoch t, assigns

a weight to each training example according to its

‘‘difficulty’’: the boosting algorithm adjusts the weights

in order to focus on the ‘‘hard’’ samples in the training set.

The objective is to minimize the weak classifier error et,

defined as
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�t ¼ PðhtðxiÞ 6¼ yiÞ ¼
X

i:htðxiÞ6¼yi

DtðiÞ ð2Þ

In 2001, Oza [21] proposed an online version of the

former boosting algorithm due to Schapire and Freund [6].

Two main improvements were introduced: the first one is

that the ensemble can be at the same time used for

classification and trained ‘‘on-the-fly’’ on every new

sample. The second one refers to the way the learning

samples are processed. In the off line version, all the

samples are available at the same time, and a distribution

on the training set is maintained. At each boosting round t

the algorithm, thus, modifies the weights of each sample

according to the error of the base learner ht.

On the contrary, in the online version no distribution

on the samples is available, and the information on the

training set difficulty has to be embedded in the hypoth-

eses. In particular, a value k associated with each

incoming sample reflects the difficulty of the entire

hypotheses set to classify it [20]. The error of every

hypothesis hm is conditioned by the correctly recognized

samples weight ksc
m ¼ ksc

m þ k and the misclassified sam-

ples weight ksw
m ¼ ksw

m þ k; so that

�m ¼
ksw

m

ksc
m þ ksw

m

ð3Þ

Eventually, the ensemble output is given by:

HðxÞ ¼ argmaxy2Y

XM

m¼1

log
1� �m

�m

� �
hmðxÞ

 !
ð4Þ

where M is the number of weak learners fixed a priori, and

em is the error of hypothesis hm on the training set defined

as above.

When ensemble classifiers are used online for target

tracking [10, 20], there is no training set in the traditional

sense. Instead, samples arrive sequentially in time and they

are processed (learned) one by one and then discarded. In

particular, in our case at each time t the ensemble learns a

positive and a negative sample. Let x be the subregion of

the image It that has been classified by ensemble H as the

target. Then x is considered as the new positive sample to

be learned. The negative sample, on the contrary, is a

background patch (negatively labelled) xb chosen at a

random position in the image It with a preference for the

area surrounding the target.

Considering every hypothesis hm as a Naive Bayes

classifier that discriminates between the background and

the target, the outputs of the ensemble over the positive

(target) and negative (background) samples can be mod-

elled by two normal distribution Nðlm;y; r
2
m;yÞ where

y [ Y = {-1, 1}. The highest posterior probability given

by the Bayesian classifier on a sample x determines the

belonging class (maximum a posteriori)

hðxÞ ¼ PðyjxÞ / argmaxy2Y PðyÞN ðx; lm;y; r
2
m;yjyÞ ð5Þ

To learn a sample x, the parameters of the distributions

at time t are modified as follows

lm;y;t ¼ ð1� qÞlm;y;t�1 þ qhðxÞ ð6Þ

r2
m;y;t ¼ ð1� qÞr2

m;y;t�1 þ qðhðxÞ � lm;y;tÞ
2 ð7Þ

where q is a learning rate parameter.

3 Processing steps

This section provides a step-by-step description of the

processing phases required to build on-the-fly the proposed

online boosted cascaded ensemble of classifiers.

The principle behind a cascade of classifiers is quite

simple: the hypotheses are organized in a pyramidal

fashion, often called cascade of attention, that is com-

posed of several levels that follow a coarse-to-fine strat-

egy, as illustrated in Fig. 1. The upper levels, that

comprise a small number of classifiers, are applied first.

The job of the upper level is to provide a quick response

with high sensitivity (few false negatives). In terms of

object tracking this means that the levels are not likely to

miss the object to be tracked but also a lot of background

is probably going to be considered similar to the target.

The deeper the level, the more populated is the ensemble,

the more confident the classifier, and the more operations

are required.

In [33], a single level of the cascade is built analysing

the performances on the training set, and using a thresh-

old (e.g. on false positives) to determine the stopping

point. As already mentioned, while the classical Boosting

algorithm maintains a distribution on the training data

according to the ‘‘difficulty’’ of the samples, no distri-

bution is available in the case of OB since new data are

continuously streaming in (i.e. new frames from a video

sensor) [20].

We propose to exploit the error associated with each

hypothesis (3) at time t to estimate the accuracy of the

classifier at time t ? 1. In particular, a weak learner with a

low error has, by definition, a low rate of false negatives

and false positives. We can suppose then that a low error

weak learner at at time t is likely to perform well at time

t ? 1. We suppose also that the object we are searching for

maintains a similar appearance in two subsequent images

which is a reasonable assumption given the high input

frame rate.
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Moreover, when the ensemble is composed of different

types of classifiers or features as weak base learners, every

one of them can take a different amount of operations to be

applied; for this reason, a cost factor cm that indicates the

time for a hypothesis hm to be computed has to be

considered.

Following this reasoning, in the first levels of our cas-

cade should be placed the hypotheses with low error and

low computational cost, in order to reject the highest

number of regions not containing the object (true nega-

tives) while preserving a low False Negatives rate and

maintaining the real-time constraint.

3.1 Cost factor

An important consideration when structuring a framework

that involves several types of hypotheses to be applied in

real-time is the different amount of operations every single

weak learner requires in practice to better distribute the

classifiers among levels.

To each hypothesis hm we assign a weight 0 B wm B 1

that denotes its ‘‘importance’’

wm ¼ 1� �m þ cm

�mcm þ 1
ð8Þ

and comprises the error em and the computational cost cm.

By means of this value we can build the cascade including

in the first levels the classifiers with a high weight, to

provide a good mix of accuracy and speed. We then nor-

malize all the wm so that
P

mwm = 1

The cost cm related to hypothesis hm in (8) can con-

siderably vary depending on the kind of classifiers

involved: Haar features are computationally less expen-

sive, for example, than colour histograms. The costs are

determined by an off-line procedure that times the pro-

cess of extracting and probing each feature, thus avoid-

ing the need to set them manually. This set-up phase is

independent of the video sequence used and also of the

size of the target, as these features can be computed in

constant time through fast data structures as integral

images and integral histograms. After probing the dif-

ferent computational times required by each feature type,

their cost is obtained by dividing by the slowest time.

In this way, cost values will be normalized so that

0 \ cm B 1, where the slowest feature type will have a

gamma value equal to 1.

Considering an upper limit 0 B W B 1 for the summa-

tion of the weights of the classifiers for each level l, the

strong classifier at level l is

Hl ¼ h1; . . .; hkf g :
X

k

wk �W ð9Þ

We notice that the higher W the more classifiers are

included in the first levels. The cascade in this case is

shorter, as shown in Fig. 2, and the time of computation is

extended: to search the object of interest, more operations

have to be done in the first levels on all the subregions of

the image.

3.2 Forcing the real-time

Since real-time execution is the goal of the proposed

approach, we have decided to consider the frame rate as a

stakeholder in the process of building the cascade.

Fig. 1 Architecture of the

proposed attention cascade

algorithm

Fig. 2 Illustration of the distribution of the classifiers in the levels of

the cascade when varying the parameter W
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Exploiting the fact that W can modify the number of

levels and thus the shape of the cascade (Fig. 2), we tune

the level limit W to reflect the need for speed. As we

know that W influences the number of features to be

included in a level, if the cascade has been too slow at

time t, the shape of the cascade should be revisited and

stretched: Wt?1 should be a more tolerant limit, therefore

with a smaller value.

Said FRopt the desired frame rate, and FRt the current

frame rate at time t, Wt?1 becomes

Wtþ1 ¼ Wt �
FRt

FRopt

ð10Þ

Note that values of W [ 1 have no meaning since the

upper limit is W = 1 which means that the entire set of

classifiers is comprised in a single level (monolithic

ensemble). With respect to our previously adopted

solution, where two thresholds for the error rate and the

cost rate were used to build the cascade levels, here we use

only the frame rate to construct the cascade. To be more

precise, the approach is now almost threshold-free since the

current frame rate FRt can be read from the system, the

target frame rate FRopt is generally set to 25 frames per

second (fps), and the initial value of W can be randomly

initialized or hard-coded to any default value in (0,1) (e.g.

0.5) and then the algorithm will adjust it automatically via

(10) to achieve the required frame rate FRopt. That is, the

only input required from the user is the required frame rate

FRopt. With this new solution, the real-time constraint is

enforced, but at the same time the classifiers of each level

provide a compromise between accuracy and maximum

number of operations per frame, so that the total

computational cost of the level can be limited and the

error is kept as low as possible.

Algorithm 1 summarizes the steps to be taken to con-

struct the cascade. First of all, at time t the hypotheses are

trained both with a positive and a negative sample; the

error of the boosted classifiers is multiplied with the cost

coefficient, providing a weight for each hypothesis. The

classifiers are sorted in descending order of weight, and

organized by levels that are partitions of the original set. In

particular, for every level they are included until the W

limit is reached, considering all the weights of the classi-

fiers in a level. The process is repeated by filling the next

levels with the remaining base learners. After the levels are

completed, their concatenation forms the cascade, which is

applied on the image at time t ? 1 and the process is

repeated.

Algorithm 2 describes the processing steps for the

application of the cascade ensemble. The cascade

obtained at time t - 1 processes every subregion in a

frame at time t, assigning them also a confidence value.

Every sample can be rejected at any level or sent further

to the next ones; if the bottom of the cascade is reached

and the final output is positive, the object is flagged with

the positive label. If the object is rejected at any level,

the normalized weighted outputs of the classifiers deter-

mines the confidence of the cascade on the subregion; a

confidence map keeps record of the decisions of the

ensemble.
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3.3 Cascade confidence

For what concerns the output of the cascade, we consider

both the answer of the classifier set Hl at level l and the

output of the previous levels recursively. On a subregion x

of the image, the confidence of the ensemble at level l is

defined as the sum of the confidence of the previous level

and the response of the Kl weak classifiers in Hl, as given

by the following formula

conflðxÞ � confl�1ðxÞ þ
XKl

k¼1

bk;lhk;lðxÞ ð11Þ

where the confidence of the first level is defined as

conf0ðxÞ �
XK0

k¼1

bk;0hk;0ðxÞ ð12Þ

and the coefficients bk,l are given by

bk;l ¼ log
1� �k;l

�k;l

� �
ð13Þ

as in the boosting weighting scheme. The smaller the error

of hk,l on the training samples, the larger the coefficient bk,l

assigned to it. The number of classifiers Kl in level l is |Hl|,

where the operator |.| provides the cardinality of a set, and

it follows that
P

lKl = M.

As detailed in Algorithm 2, in the training phase the

weak learners are updated with the boosting algorithm. At

classification (probing) time, if the ensemble Hl at level l

validates the subregion x, establishing that

signðconflðxÞÞ ¼ þ1 ð14Þ

then the sample is evaluated by level l ? 1. The output of a

level is based on the response of the previous levels and on

its hypotheses one, as per (11). The output of the cascaded

ensemble Hout on the input x is thus given by:

HoutðxÞ ¼ sign confðxÞð Þ ð15Þ

where

confðxÞ ¼
XL

l¼1

XKl

k¼1

bk;lhk;lðxÞ ð16Þ

Eventually, considering the answer of the classifier on

every subregion of the image a confidence map is built.

The target position corresponds to its maximum, and can

be found by a simple Max function. An example of how the

confidence map looks like is presented in Fig. 3.

The computational effort while running depends on the

amount of hypotheses applied per region. With our solu-

tion, not all the hypotheses of the ensemble are necessarily

applied at the same time on the region of interest, but

possibly only a small subset whose cardinality depends on

the thresholds W. The probing time for the strong classifier

is Oð
PL

l¼1 KlÞ ¼ Oð
PL

l¼1 Hlj jÞ ¼ Oð Hj jÞ, since in the

worst case all the hypotheses are tested.

4 Experiments

We have applied the proposed approach to object detection

and tracking for video surveillance purposes. In this sec-

tion, several experiments performed on standard real-world

video sequences are presented to validate the proposed

framework. The hardware employed in all the tests is an

AMD Athlon64 3500? with 1 GB of RAM. All the

modules have been implemented in C?? using fast data

Fig. 3 Example of a confidence map on a frame; the highest peak

represents the position of the target
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structures, i.e. integral images and integral histograms, to

reduce the computational requirements.

4.1 Settings

We used three different types of features to describe

moving objects: Haar features [16], local binary patterns

(LBP) [19], and colour histograms [27]. The common start-

up procedure for ensemble tracking methods involves that

the object to be tracked be set up by a change detection

procedure or by hand [20]. Similarly to most of the recent

literature [10], we employ a fixed size window to track the

object. As a natural evolution of the present work we will

consider in the future the application of the cascade to

varying scale target tracking.

As regards the q parameter for the classifiers update, it

was set to 0.25 taking into account the frame rate and the

typical movement speed of observed objects [30]; small

changes in its value produced no significant effects.

4.2 Comparison of different values of W

First of all, we performed an experiment testing different

values of W, since the variation of this parameter leads to a

trade-off that involves the time of execution and the

accuracy of the ensemble. This experiment wants to com-

pare, in terms of accuracy and speed, our cost-based cas-

cade framework with an ensemble of fixed dimension,

called monolithic, when tracking is performed on an object

of interest. We applied three ensembles, consisting of 300,

400 and 500 heterogeneous classifiers respectively, to a

standard sequence taken from [29]. The video comprises

1,340 frames at 320 9 240 pixels resolution in which a

puppet doll is moved under a light bulb. The target was

manually initialized in the first frame on the puppet’s

muzzle with a 40 9 40 pixels area.

Figure 4 shows the average evaluation time and the

correspondent frame rate for each ensemble type presented.

The evaluation time comprises the time required for

building the cascade and the time required for actually

probing it on the image. For each ensemble type, the per-

formances of the monolithic and the cascaded versions are

shown. As it can be seen, the monolithic version is gen-

erally slower than the cascaded counterpart and the per-

formance gap narrows for increasing values of W. That is,

the higher the value of W the slower the cascade is as its

levels will eventually collapse into one (monolithic clas-

sifier). Of course, low values of W yield high frame rates

but at the cost of accuracy.

To evaluate the accuracy of the classifiers, we have

measured their sensitivity and the specificity on the

aforementioned video sequence by varying the acceptance

function of the classifiers (14) and plotting ROC curves.

Note that the acceptance threshold has been changed only

for the sake of the experiment, the focus should be on the

effects given by different values of W. In Fig. 5, are shown

the ROC curves that indicate the performances of the cost-

based cascades; these should be correlated with the results

of Fig. 4. Each chart shows the plot of the ROC curves

obtained by the monolithic classifier and by three cascades

for different settings of W: the first one has W = 0.1, in the

second one W = 0.3, and in the third one W is set to be

self-tuning according to the proposed mechanism (10) for a

target frame rate FR = 25. The two fixed values have been

chosen to reflect different possible conditions: the lower W,

the stricter is the limit imposed to the number of eligible

hypotheses, thus preferring a fast system with more light-

weight levels. A medium tolerance threshold W allows a

larger amount of hypotheses in the initial levels. The higher

W the larger the number of weak learners admitted in the

first stages of the computation, thus generating a shorter

cascade that requires more operations in the initial stages.

We tested three ensembles composed of 300, 400 and

500 heterogeneous features, respectively; considering both

the area under the curve (AUC) and the speed, as expected

the ensembles that are more accurate are those that require

more computational time. In particular, the non-cascaded

approach scored the highest accuracy when applied to the

Sylvester scenario. But the most accurate system is also the

most computationally demanding. The cascade with

W = 0.3 is slightly less accurate than the monolithic

detector, but it dramatically reduces the application time as

the number of features grows, incrementing dramatically

the frame rate. The same can be said of the other cascades,

included the self-adapting one with variable W.

The rationale behind this is that the most expensive

features (LBP and colour histograms) are the more robust

and accurate, so they better classify the sample but they are

placed in the low levels of the cascades due to their high

cost. For instance, in Fig. 6 the distribution of 300 features

through levels for the three different values of W is shown.

As we can see, when strict cost constraints are imposed, a

small number of ‘‘heavy’’ features is included in the first

levels, while lightweight features, even if inaccurate, are

preferred. However, while in the monolithic ensemble all

the features are applied at the same time, this is avoided

when the cascade comes into play, because the levels are

applied subsequently when necessary, speeding up the

application.

4.3 Comparison with the OB

In the first two rows of Fig. 7, we can see the output of the

monolithic detector and the output of the cascaded detector

with automatic setting of W, both comprising 400 features.

In the last row, the distance of the static and the cascade
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detector from the ground truth is presented; the shift is

represented by its absolute value in pixels. In the second

part of the sequence, both detectors have a slight offset

with respect to the ground truth. This is due to the wide and

sudden changes in both the illumination and in the orien-

tation of the target, and, in particular, due to the transition

between frontal view to the full profile or to a top view.

The cascade detector resulted slightly more sensitive to

variations. In the worst case, the cascade showed a 14

pixels shift, while 11 pixels was the maximum shift for the

monolithic classifier. The average error of the monolithic

classifier was 4,0 pixels, while the average error of the

cascade was 4,8 pixels in the experiment.

Regarding the confidence of the cascades compared with

the detector, the more the classifiers in the ensemble, the

better the confidence value. The trend of the confidence

values for different ensemble sizes in the case of mono-

lithic and cascade approach is shown in Fig. 8a–c. The

variation of the parameter W in the case of an automatic

setting is presented in Fig. 8d. In the first part of the

sequence, the object maintains a frontal position and its

appearance does not vary noticeably; in the second half, on

the contrary the puppet moves rotating (out-of-plane

direction), rolling and translating, causing the confidence to

decrease.

The cascaded ensemble processed the video at an

average of 25 fps, as shown in Fig. 9, while the monolithic

ensemble performed at an average of 15 fps. The imposed

optimal frame rate FRopt was 25 fps.

The results obtained on several sequences from

the CAVIAR http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

dataset are presented in Table 1. The cascaded online

boosting (COB) and the OB results have been compared in

terms of Euclidean distance from the ground truth. The

mean error (l COB and l OB) and its standard deviation

(r COB and r OB) are reported for both algorithms that are

using 400 classifiers each. The data refer to an average of

the number of subjects (#Obj) involved, and #Frames

Fig. 4 a Average evaluation time (in milliseconds) for the different-sized cascades for increasing W values. b Frames per second achieved by the

proposed algorithm when varying the number of classifiers involved and W

Fig. 5 ROC curves for three proposed cascades in the case of 300 (a), 400 (b) or 500 (c) features involved. The monolithic ensemble is

compared with the cascades obtained using W = 0.1, W = 0.3 and the proposed solution that automatically tunes W

Fig. 6 Examples of population

of a cascade of 300 features for

a W = 0.6, b W = 0.4,

c W = 0.2
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refers to the number of frames of tracking only. We set

FRopt = 25 and we tracked one target in the scene. The

search area was restricted to 35% more than the size of the

target. The bounding box in the initial frame has set been

manually or via a change detection algorithm.

4.4 Multiple targets

To test the performance of the system when more than one

object is in the scene, we employed the CAVIAR video

sequence dataset to measure the times of computation of

Fig. 7 Results on the Sylvester sequence [29]. The first row shows

the monolithic approach, while in the second row the output of the

cascaded ensemble with automatic setting of W is displayed. The

bottom row presents the shift in pixel with respect to the ground truth

for the x (left box) and y (right box) coordinate of cascade (a, b) set,

and monolithic (b, d). The cascade detector resulted slightly more

sensitive to variations; in the worst case, it showed a 14 pixels shift,

while 11 pixels was the maximum offset for the monolithic classifier.

The cascaded achieved 25 frames per second (fps), while the

monolithic ensemble 15 fps

Fig. 8 Confidence values for a 300 (a), 400 (b), and 500 (c) cascade classifier on the video sequence of Fig. 7. d Dynamically tuned W values

obtained by the proposed cascaded classifier
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the proposed approach based on ensembles of different

sizes, compared with the fixed size ensemble.

We initialized the targets with a simple change detector

output, and then the OB algorithm and the proposed one

are employed to track two targets. In this case, a simple

background subtraction technique could not be employed

to detect the pedestrians during all the frames of the

sequence because of the sudden shadows on the floor and

because of the illumination changes all around the scene.

On the contrary, the detection via classification is more

robust and can be applied at each frame.

In Figs. 10 and 11, the times of computation and the

frame rates for different algorithms are presented. Three

fixed-size ensembles, consisting of 300, 400 and 500

classifiers, are compared with three cascades of the same

size. As predictable, with respect to a single-object sce-

nario the times of computation are doubled; the frame rate

is halved, and the cascades remain faster than the non-

cascaded ensembles. As we can see, for all the involved

algorithms, as W increases the amount of time per

operations gets higher; in particular, after a certain value of

W the cascades have the same computational cost as the

monolithic approach or greater. This can be explained with

the fact that in time of evaluation of the cascades is

included also the overhead of sorting the classifiers and

building the whole structure. Generally, we can state that

for high values of W the cascades increase their accuracy

but also their computational costs, becoming not preferable

to a fixed-size approach because of the overhead of orga-

nizing the whole structure.

In Fig. 12, the confidences of the ensembles on the

already mentioned video sequence are displayed. Here only

the result on the first 550 frames is shown and, for sake of

readability, only the confidence of the cascade ensemble

consisting of 400 features is presented. In the first part of

the sequence a man is walking in the corridor until exiting

the scene. Another person comes from the upper part of the

image and meets with the previous man re-entering

the scene. As we can see in the graph, the confidence of the

detector decreases in some frames when there are ambi-

guities in the scene, as the two men crossing or a variation

of appearance or shape. This does not affect the final frame

rate, however it slightly affects the accuracy in the detec-

tion, as a small shift of few pixels is visible.

With continuous updates and using 400 heterogeneous

features to build the cascade, the proposed approach pro-

cessed the output at about 25 fps, as it was the desired

frame rate FRopt. The values of W, that is automatically

adjusted through the sequence, are presented in Fig. 13. In

the first frames W takes high values, decreasing progres-

sively in the next frames. This behaviour allows to build

short but accurate cascades at the beginning of the

Fig. 9 Frame rate of the cascaded ensemble composed of 400

features. The choice of W is automatic (Fig. 8d) and the optimal

frame rate was set to 25 fps

Table 1 Results on CAVIAR sequences

Sequence name #Obj #Frames l COB r COB l OB r OB fps COB fps OB

INRIA sequences

Walk1 1 319 6.30 3.19 4.65 2.34 24.6 18.1

Walk2 1 504 6.42 2.20 5.22 2.28 25.3 18.8

Walk3 1 509 7.39 2.56 5.24 2.18 25.1 18.2

Browse1 1 562 6.13 3.11 4.30 3.45 25.2 18.2

Browse2 1 417 7.39 2.25 5.92 4.44 25.2 18.5

Browse3 1 397 7.18 3.15 6.24 4.82 25.5 18.6

FightRunAway1 2 163 8.52 3.32 7.80 3.58 24.6 18.5

FightRunAway2 1 199 10.89 3.38 8.18 3.28 24.6 18.6

FightOneManDown 3 675 12.24 3.66 10.83 3.11 24.2 18.6

FightChase 1 165 6.58 3.14 5.48 3.03 24.3 18.4

Lisbon sequences

WalkByShop1cor 4 1,718 8.78 3.02 8.18 3.86 24.5 18.2

EnterExitCrossingPaths1cor 1 215 7.56 2.18 7.54 2.48 25.2 18.3

OneLeaveShopReenter1cor 2 278 7.68 2.32 6.74 2.74 25.0 18.3

ShopAssistant1cor 3 443 12.11 3.64 10.54 3.34 24.2 18.3
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sequence, while at the end of the sequence the cascades are

longer and consist of more levels to reduce the computa-

tional burden.

5 Conclusions

In this paper, we devised an algorithm that dynamically

builds a cascade of classifiers to speed-up the OB tech-

nique. The cascade explicitly considers the computational

cost of the involved features to maintain real-time perfor-

mance. The structure of the cascade and its classifiers are

automatically adjusted balancing speed and accuracy.

Comparisons with monolithic online ensembles, in terms of

accuracy and speed, on standard real-world video sequen-

ces have demonstrated the effectiveness of our idea.
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19. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-

scale and rotation invariant texture classification with local binary

patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987

(2002)

20. Oza, N.C.: Online bagging and boosting. In: 2005 IEEE Inter-

national Conference on Systems, Man and Cybernetics, vol. 3,

pp. 2340–2345 (2005)

21. Oza, N.C., Russell, S.: Online bagging and boosting. In: Eighth

International Workshop on Artificial Intelligence and Statistics,

pp. 105–112. Morgan Kaufmann, Key West, Florida, USA (2001)

22. Paisitkriangkrai, S., Shenm, C., Zhang, J.: Fast pedestrian

detection using a cascade of boosted covariance features. IEEE

Trans. Circuits Syst. Video Technol. 18(8), 1140–1151 (2008)

23. Parag, T., Porikli, F., Elgammal, A.: Boosting adaptive linear

weak classifiers for online learning and tracking. In: International

Conference on Computer Vision and Pattern Recognition (2008)

24. Parikh, D., Polikar, R.: An ensemble-based incremental learning

approach to data fusion. IEEE Trans. Syst. Man Cybern. B 37(2),

437–450 (2007)

25. Pham, M.-T., Cham, T.-J.: Online learning asymmetric boosted

classifiers for object detection. In: International Conference on

Computer Vision and Pattern Recognition (CVPR) (2007)

26. Polikar, R.: Ensemble based systems in decision making. IEEE

Circuits Syst. Mag. 6(3), 21–45 (2006)

27. Porikli, F.: Integral histogram: A fast way to extract histograms in

cartesian spaces. In: Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition

(CVPR), vol. 1, pp. 829–836. IEEE Computer Society, Los

Alamitos (2005)

28. Ratsch, G., Mika, S., Scholkopf, B., Muller, K.R.: Constructing

boosting algorithms from svms: An application to one-class

classification. IEEE Trans. Pattern Anal. Mach. Intell. 24(9),

1184–1199 (2002)

29. Ross, D.A., Lim, J., Lin, R.-S., Yang, M.-H.: Incremental

learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3),

125–141 (2007)

30. Snidaro, L., Visentini, I.: Fusion of heterogeneous features via

cascaded on-line boosting. In: Proceedings of the Eleventh

International Conference on Information Fusion, pp. 1340–1345,

Cologne, Germany, 30 June–3 July 3 2008

31. Sochman, J., Matas, J.: Waldboost—learning for time constrained

sequential detection. In: Proceedings of the 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition

(CVPR’05), vol. 2, pp. 150–156 (2005)

32. Viola, P., Jones, M.: Robust real-time face detection. Int. J.

Comput. Vis. 57(2), 137–154 (2004)

33. Viola, P., Jones, M.: Rapid object detection using a boosted

cascade of simple features. In: Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR),

vol. 1, pp. 511–518, Kauai, Hawaii (2001)

34. Visentini, I., Snidaro, L., Foresti, G.L.: On-line boosted cascade

for object detection. In: Proceedings of the 19th International

Conference on Pattern Recognition (ICPR), Tampa, Florida, USA

(2008)

35. Wu, B., Nevatia, R.: Improving part based object detection by

unsupervised, online boosting. In: International Conference on

Computer Vision and Pattern Recognition, pp. 1–8 (2007)

36. Wu, B., Nevatia, R.: Optimizing discrimination-efficiency

tradeoff in integrating heterogeneous local features for object

detection. In: IEEE Conference on Computer Vision and Pattern

Recognition, pp. 1–8 (2008)

37. Wu J., Brubaker S.C., Mullin M.D., Rehg J.M.: Fast asymmetric

learning for cascade face detection. IEEE Trans. Pattern Anal.

Mach. Intell. 30(3), 369–382 (2008)

38. Xiao, R., Zhu, H., Sun, H., Tang, X.: Dynamic cascades for face

detection. In: International Conference on Computer Vision, pp.

1–8 (2007)

39. Yamashita, T., Fujiyoshi, H., Lao, S., Kawade, M.: Human

tracking based on soft decision feature and online real boosting.

In: International Conference on Pattern Recognition (2008)

40. Yao, J., Odobez, J.M.: Fast human detection from videos using

covariance features. In: European Conference on Computer

Vision Visual Surveillance workshop (ECCV-VS) (2008)

41. Zhang P., Bui T.D., Suen C.Y.: A novel cascade ensemble

classifier system with a high recognition performance on hand-

written digits. Pattern Recognit. 40(12), 3415–3429 (2007)

42. Zhang, W., Yu, B., Zelinsky, G.J., Samaras, D.: Object class

recognition using multiple layer boosting with heterogeneous

features. In: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR’05), vol. 2, pp. 323–330. IEEE Computer

Society, Washington, DC (2005)

Author Biographies

Ingrid Visentini received the Laurea degree with full marks in

computer science from the University of Udine, Italy, in 2006. Since,

January 2007, she has been a Ph.D. student in communication

multimedia at the same university and fellow of the AVIRES Lab.

Her main interests are in the field of machine learning and pattern

recognition, in particular heterogeneous classifier ensembles, incre-

mental tracking, automatic video annotation and video surveillance.

Dr. Lauro Snidaro received the Laurea degree and Ph.D. in

computer science from University of Udine, Italy, respectively, in

2002 and 2006. Since 2008, he is an assistant professor at same

University. He is a member of the AVIRES Laboratory at the

Mathematics and Computer Science Department. His main interests

256 J Real-Time Image Proc (2010) 5:245–257

123



include data/information fusion, computer vision, video understand-

ing and annotation. He actively publishes scientific papers in

international journals and refereed international conferences and has

coauthored more than 50 papers. He serves as a reviewer for several

international journals and conferences. He is the Italian member of

the NATO Information Technology Panel Task Group IST-065/RTG-

028 on ‘‘Information Fusion in Asymmetric Operations’’

(RTGonIFAO).

Prof. Dr. Gian Luca Foresti received the Laurea degree cum Laude

in electronic engineering and a Ph.D. in computer science from the

University of Genoa, Italy, in 1990 and 1994, respectively. Since

2000, he is full professor of computer science at the Department of

Mathematics and Computer Science (DIMI), University of Udine,

where he is also Director of the Laboratory of Artificial Vision and

Real-Time Systems (AVIRES Lab). His main interests involve (a)

multisensor data and information fusion, (b) computer vision and

image processing, (c) artificial neural networks and pattern recogni-

tion. Prof. Foresti is author or co-author of more than 200 papers

published in international journals and refereed international confer-

ences. He was general chairman and member of technical committees

at several conferences where he has been co-organizer of several

special sessions on data fusion, image processing and pattern

recognition. He has contributed to several books in his area of

interest and he is the co-author of several books. He serves as a

reviewer for several international journals and for the European

Union in different research programs. He is a member of IAPR and

senior member of IEEE.

J Real-Time Image Proc (2010) 5:245–257 257

123


	Cascaded online boosting
	Abstract
	Introduction
	Ensembles of classifiers and boosting
	Processing steps
	Cost factor
	Forcing the real-time
	Cascade confidence

	Experiments
	Settings
	Comparison of different values of W
	Comparison with the OB
	Multiple targets

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


