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Abstract The paper presents a novel technique for robust

motion analysis in real automotive scenarios based on

integrated Retinex-like pre-processing algorithm with

block matching video motion estimator. Both algorithmic

and real-time hardware design issues are discussed. The

benefits of the proposed technique are manifold: the entire

system is more robust; the estimated motion vectors are

more reliable and less dependent on critical ambient con-

ditions like shadows or flashes; the proposed algorithm

may allow to perform motion estimation using very few

bits and running as a 2- or 1-bit transform, still maintaining

good performances. Real-time hardware implementation is

achieved by design and synthesis in 65 nm CMOS stan-

dard-cells technology of an Application Specific Instruc-

tion-set Processor. Design optimizations for both the

processing core and the memory organization are pre-

sented. With respect to the state of the art the proposed

hardware implementation ensures bounded circuit com-

plexity, low power consumption and reprogrammability of

the technique.

Keywords Robust motion analysis �
Video processing for automotive applications �
Motion estimation � Retinex filters �
Application Specific Instruction-set Processor (ASIP) �
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1 Introduction

Today, there is a growing interest in using electronic sys-

tems for traffic monitoring where images acquired by

cameras, installed along the highways or at entrance of a

gallery, are processed in real time to analyze their motion

content and consequently produce a warning if critical

traffic conditions are detected. Similarly, the motion anal-

ysis of the scenes acquired by on-board automotive cam-

eras can be used for driver assistance and active safety

systems: as example systems for line departure warning,

collision avoidance, blind spot warning [1–5].

The core of these systems is the algorithm, and its

hardware implementation, for motion estimation and anal-

ysis. Due to the stringent requirements of automotive and

transport systems such technique should achieve real-time

processing, should be compatible with the bounded cost

margin and the large volume market of automotive appli-

cations, and moreover should be robust to work well also in

real road scenarios where illumination conditions are not

controlled (flashes, camera saturation phenomena and rapid

and sharp luminance variations can occur very frequently).

These requirements are particularly challenging for

on-board video acquisition/processing since the adopted

cameras, due to limited budget in terms of cost, size, and

power consumption typically do not include techniques for

adaptive and real-time compensation of changing lumi-

nance/contrast conditions.

As consequence a key issue for video-based systems in

automotive and transport applications is the realization of

algorithms and real-time hardware implementations

ensuring a motion analysis robust to environmental lumi-

nance variations. Several works have been proposed in

literature at algorithmic level which address separately one

of the two problems: motion analysis but considering
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controlled luminance conditions, or image/video filtering to

improve luminance conditions but without motion analysis.

The literature is poor concerning integrated techniques

covering both tasks and ensuring an optimized implemen-

tation of robust motion analysis algorithms and relevant

hardware in real-time and with a bounded complexity

budget. Moreover, in most cases the considered reference

scenarios are consumer photo/video cameras for enter-

tainment and video communications; detailed analysis of

real automotive and transport system scenarios are still in a

starting phase.

To address the above issues, this work proposes the

integrated use of a block matching motion estimator with

Retinex-like pre-processing for robust video motion anal-

ysis in automotive scenarios. Both algorithmic and hard-

ware architectural aspects are considered. Experimental

results using image/video acquired in real road scenarios

prove that the proposed technique ensures better coherency

of the motion vector (MV) field and increased robustness to

variations of the illumination conditions. As far as the

hardware implementation is concerned the design of an

Application Specific Instruction-set Processor (ASIP) is

proposed. The ASIP can ensure both real-time processing

and limited complexity, like a custom integrated circuit

(ASIC), but still allowing for re-programmability of the

used techniques, within the proposed algorithmic class, like

a software-programmable DSP.

The rest of the paper is organized as follows. Section 2

reviews the state of the art for robust video motion anal-

ysis. Sections 3 and 4 present the algorithm and the ASIP

architectural implementation of the new integrated video

motion estimator with Retinex-like pre-processing for

robust motion analysis in automotive scenarios. CMOS

hardware implementation results are discussed in Sect. 5.

Conclusions are drawn in Sect. 6.

2 State-of-art of video motion estimators for robust

motion analysis

It is well known that canonical motion estimation (ME)

algorithms typically suffer from some common drawbacks:

they are computationally very expensive and furthermore

they lack in robustness when there are irregular lighting

conditions. Moreover, it could be noted that their main

applications are in video coding, where the similarity

between the blocks is more important than the reliability of

the estimated MV field. On the contrary, in this paper our

target is to find a correct MV field as a first step for further

motion analysis algorithms to be employed in intelligent

transportation systems.

The effectiveness of the algorithm in the estimation of the

correct motion, especially under critical ambient conditions,

and its computational complexity unfortunately play oppo-

site roles in the design of the entire system. In [6] for instance

a very robust method for motion estimation based on a

minimum entropy process has been proposed; however, its

complexity makes it suitable only for offline operation. On

the contrary, the usage of some well known fast search

techniques [7] like the ‘‘three step search (TSS)’’, or the

‘‘diamond search’’ that select a subset of the possible can-

didate locations could be very appropriate when the target is

the video coding. These fast algorithms indeed allow a sig-

nificant reduction in the computational effort, but on the

other hand the simplifications in the searching area often

introduce significant inconsistencies in the MVs.

Another approach to the problem could be a suitable

preprocessing of the input images, to make them more

insensitive to the ambient conditions and thus to improve

the effectiveness to the following ME algorithm. In [8–10]

the authors propose, like in this paper, a Retinex approach

to make the ME algorithm more robust to the brightness

variations. However the strategy they adopt to extract the

luminance is quite expensive since it is based on a Discrete

Cosine Transform; moreover, their goal is in the com-

pression of the video sequence, and the fidelity of the

estimated MVs is not a priority. Another application of

the pre-processing, often found in the literature, is in the

simplification of the motion estimation algorithm itself. In

particular, 1-bit [9, 11] and 2-bit [12–14] transform

schemes have been proposed to reduce the computational

complexity of the motion estimation process by enabling

simple Boolean EX-OR matching instead of more complex

comparator architectures, with a considerable simplifica-

tion in the hardware implementation of the system [15, 16].

In this paper, we propose a Retinex-based pre-process-

ing algorithm able to improve the performances of the

subsequent motion estimation algorithm. The benefits are

manifold: the entire system is more robust, the estimated

MVs are more reliable and less dependent on critical

ambient conditions like shadows or flashes. Moreover, the

proposed algorithm may allow to perform motion estima-

tion using very few bits and running as a 2- or 1-bit

transform, still maintaining good performances.

3 Integrated video motion estimator and Retinex-like

pre-processing algorithm for robust motion analysis

in automotive scenarios

3.1 Algorithm description

It is well known that the human eye is able to efficiently

distinguish the details of an image, both when the subject is

placed in direct sunlight and when it is in shadow or, even

worse, in a dark zone. The human visual system (HVS) is
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able also to discriminate between luminance variations due

to different illuminators or to shadows present on the scene

and luminance variations related to the object details,

colors and properties. On the contrary, in electronic vision

it is very difficult to discriminate between the two different

luminance variation cases. The presence in the processed

images of shadows, flashes or of different light sources can

alter significantly the automatic perception of the objects

motion, and in such critical conditions most motion esti-

mation algorithms lose effectiveness.

To make a motion estimation algorithm much more

robust to these critical condition a suitable way could be to

preprocess the input images to keep them more insensitive

to the possible variations in the scene illumination.

The ‘‘Retinex’’ technique tries indeed to solve these

problems through a very simplified but quite effective

model of the human vision system [17]. The name ‘‘Ret-

inex’’ itself comes in fact from a contraction of the words

‘‘retina’’ and ‘‘cortex’’ and it stresses that the information

obtained by the HVS in the observation of a subject comes

from two distinguishable processes: the first is carried out

by the retina, that acquires the image, while the second one,

operated by the cerebral cortex, concurs to recognize the

objects independently of their illumination; for example,

we are able to recognize the same object if it is placed both

in full sunlight and in a shadow zone or if it is illuminated

by an artificial light [18]. This psychophysical phenomenon

is often called ‘‘brightness/lightness constancy,’’ or, more

generally, ‘‘color constancy’’.

The basic concept in the Retinex method is to separate

the illumination and reflectance components of an acquired

image. It is assumed that the available luminance data is

the product of an illumination and a reflectance, and the

values of the latter are determined as the ratio between the

luminance and an estimation of the illumination.

In such a way it is possible to process independently the

illumination and the reflectance components and to extract

the information we need. We will demonstrate that the

usage of the reflectance data to perform motion estimation

is more suitable and more robust when some critical con-

ditions, like flashes or shadows, are present in the scene.

The core of the proposed algorithm is in a reliable

estimation of the illumination. Various methods have been

proposed in the literature in order to perform this task. All

these techniques are based on the fact that the illumination

signal is presumed to change quite smoothly in the parts of

the image illuminated from the same luminous source, but

it can also present abrupt variations when the scene is

illuminated by different light sources (for example, when a

part of the scene is illuminated by direct sunlight while

other parts are in shadow).

In order to obtain an adequate estimation of the illu-

mination, the various methods up to now proposed in the

literature are quite complicated: in fact they use either

algorithms based on multi-resolution techniques [18, 19] or

iterative methods which need to be applied several times to

the same image [20]. In all these cases the algorithms are

so complex that they result absolutely unsuitable in real-

time applications.

In this article, we use a quite simple algorithm for the

extraction of the illumination. This algorithm, mainly based

on rational filters, is based on the idea of realizing the filter

in a recursive way. The employment of this typology of

filters allows to obtain very good results with small com-

putational effort, suitable for real-time applications [21].

The core of the entire system resides in the algorithm for

the illumination estimation, which separates the two fun-

damental components of illumination and reflectance in the

input images. Intuitively it can be accepted that in a natural

image the illumination typically changes very smoothly

between contiguous pixels, with the exception of some

particular cases, like the presence of luminous sources

within the scene, or transitions among various light sour-

ces. A good estimator of the illumination must take into

account all these cases. Consequently, the goal is to realize

an edge-preserving (for abrupt transitions) low-pass (for

smooth transitions) filter with a narrow pass-band. The

latter obviously implies a wide impulse response of the

filter, and is the primary reason for the high computational

complexity of the algorithms which can be found in the

literature. Indeed, a wide impulse response requires the use

of either extremely large masks, or quadtree decomposition

techniques or, alternatively, repeated applications of a

simpler operator. All these solutions conflict with real-time

processing requirements.

To combine both the narrow-band request and the

adaptivity of the system, a particular typology of operator,

i.e., the recursive rational filter (RRF), is considered here.

Mainly based on the structure of the rational filters [22],

this algorithm introduces an innovative aspect, the spatial

recursivity of the operator. This characteristic is funda-

mental to obtain narrow bands using only few input taps.

Let us consider a simple first order IIR low-pass filter

with a unitary gain for x = 0; it can be expressed by the

following equation:

yðnÞ ¼ ð1� aÞxðnÞ þ ayðn� 1Þ ð1Þ

where x(n) and y(n) are respectively the input and output

samples of the filter, while the a coefficient assumes values

between 0 and 1 and defines the filter bandwidth: when a is

close to 1 the pass-band is narrow, viceversa when a is

close to 0 the filter tends to become ‘‘transparent’’ with

y(n) = x(n).

Now, remembering that the goal is to obtain an edge-

preserving low-pass filter, we can take advantage of the

characteristic just exposed in order to make the filter in (1)
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adaptive. To obtain the adaptability of the filter an

expression is introduced which locally modifies the value

of a according to the characteristics of the input signal.

Such function makes a assume a value next to 0 when the

input data shows abrupt transitions, and makes it increase

up to a suitable maximum value when the input signal is

smoother. The proposed function is the following:

a ¼ a
S

Sþ 1
ð2Þ

where

S ¼ H

log
eþxðn�1Þ
eþxðnþ1Þ

� �2

þd
ð3Þ

where a is the maximum value that the a coefficient can

assume, and sets the minimal bandwidth of the filter; S is

an appropriate sensor, suitable to locate the presence of

edges: when x(n - 1) and x(n ? 1) have similar values, S

will become large; on the opposite the value of S decreases

considerably in presence of a sharp edge, i.e., when x(n -

1) and x(n ? 1) assume very dissimilar values. Finally, H

permits to set the intensity of the sensor response. Both e
and d are small values used in order to avoid to perform the

log operation on inconsistent data and that the denominator

becomes zero.

It can be noticed that following the Retinex theory the

sensor has been designed to be sensitive to the relative

transitions of the signal [estimated by a division between

x(n - 1) and x(n ? 1)] rather than to the absolute transi-

tions [that could be obtained with the difference operation

between x(n - 1) and x(n ? 1)].

The described algorithm is extended in two dimensions

in a separable form. Two similar sensors Sh and Sv are used

to estimate respectively the abrupt horizontal and vertical

transitions in the signal, where obviously n and m represent

the spatial coordinates of the two-dimensional signal:

Sh ¼
H

log
eþxðn;m�1Þ
eþxðn;mþ1Þ

� �2

þd
; ð4Þ

Sv ¼
H

log
eþxðn�1;mÞ
eþxðnþ1;mÞ

� �2

þd
ð5Þ

The values of Sh and Sv are then applied to the filtering

operator

yðn;mÞ

¼ a½yðn� 1;mÞSv þ yðn;m� 1ÞSh� þ ½ðSv þ ShÞð1� aÞ þ 1�xðn;mÞ
Sv þ Sh þ e

ð6Þ

It can be noted that in uniform areas Sh and Sv assume

large values and the effect of (6) is very similar to the one

of a bidirectional IIR low-pass filter. On the contrary, along

the edges the value of one or of both sensors (depending on

the edge direction) decreases and the contribution along the

perpendicular direction in (6) is limited.

The spatial recursivity of the algorithm is very effec-

tive to obtain a narrow-band low-pass effect but presents

the drawback of introducing a phase distortion in the

output image. We equalize such distortion by using a

two-dimensional extension of the well known time-

reversal method [23]. For such reason the filter must be

applied four times to each input image. During these

iterations the pixels are processed along all the possible

directions from top to bottom and from left to right and

viceversa.

Since the Retinex theory has been developed to dis-

criminate between the luminance changes due to alterations

in the illumination (flash or shadows in the scene) and the

luminance changes related to the intrinsic properties of

the objects, we have employed this method to improve the

performances of motion estimation algorithms and to make

them more insensitive to critical conditions. The input

frames Ii(x, y) are processed one by one using (4–6) to

obtain a luminance estimation Li(x, y), then a pixel by pixel

division provides an estimate of the reflectance information

Ri(x, y):

Riðx; yÞ ¼
Iiðx; yÞ
Liðx; yÞ

ð7Þ

This signal has a unitary mean value, and we found

convenient to map it using a suitable nonlinear function as

follows:

R0iðx; yÞ ¼ K logðRiðx; yÞÞ þ 0:5 ð8Þ

where K is a suitable gain which together with an offset of

0.5 transforms the input data in an image with all positive

pixel values in the range 0–1. Eventually the logarithmic

mapping is suitable to make the division operation

indicated in (7) realizable by a subtraction operator,

which is very simple to implement.

R0iðx; yÞ ¼ K logðIiðx; yÞÞ � logðLiðx; yÞÞ½ � þ 0:5 ð9Þ

It could be noted that dissimilarly to other algorithms

recently presented in the literature [21, 24, 25], in this case

the algorithm is used just to estimate the reflectance. In fact

when the aim is to improve the visual quality of the bad

illuminated image, it is important not to discard completely

the luminance information, and a suitable processing of

both reflectance and luminance signals followed by a

recombination can lead to very pleasant result. On the

contrary in this paper the priority is to improve the fidelity

of the MV field obtained through a ME algorithm also

when the input images are acquired under critical

conditions. We have proved that for such application the

reflectance signal maintains all the information needed for
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a good ME, and moreover the algorithm results simpler and

less sensible to luminance variations.

The images so pre-processed are now ready to be pro-

cessed by a block matching motion estimation algorithm.

In Fig. 1, we present an example of an input image, a SIF

(320 9 240 pixels) frame acquired in a real road scenario,

its luminance estimation and the result of the proposed

algorithm. It could be noted that all the details both inside

and outside the tunnel are more distinguishable, indepen-

dently of the local illumination. The algorithm has been

tuned with the following principal parameters: a = 0.98,

K = 2, H = 1e-3, however, the results do not change

significantly if variations in the parameters are provided.

These parameters have been constantly maintained for all

the experiments illustrated in this paper. In particular with

a it can be defined the size of the details to be emphasized

(thus higher values can be suggested when using larger

image size), K tunes the emphasis level and H controls the

behavior in the presence of sharp edges. Besides the images

showed in this paper, we have made several experiments

applying the proposed algorithm to different images

acquired from real road scenarios. In our experiments, we

have also tried to modify the parameters into a certain

variation range 0.8 \ a\ 0.999, 1 \ K \ 4 and 1e-4 \
H \ 1e-2 finding that the choice is not critical for the

performances of the following ME algorithm. The results

achieved in the experimental test campaign confirm that the

performances of the proposed technique, showed for the

example images in Figs. 1, 2, and 3, are also valid for

the other test images. The camera used is a low cost con-

sumer electronic camera with auto-iris compensation.

3.2 Improving the motion estimation robustness

to luminance variations

Using the proposed technique as a pre-processing, the next

step is to verify the advantages of this technique when

coupled with a motion estimation algorithm.

To avoid the problem of local minima and to perform

our experiments in a standard, basic ME setting, we have

used a full-search (FS) algorithm which operates with

16 9 16 blocks, one previous frame used for matching, and

a scanning area of ±16 pixels in both horizontal and ver-

tical directions. It has been noted through several tests that,

in non-critical conditions, the result obtainable in terms of

MVs from a pre-processed sequence compared to the ori-

ginal one typically coincide. On the contrary when some

variations in the scene illumination appear, the benefits of

the pre-processing become evident. For example, Fig. 2

presents a couple of frames from a sequence showing a car

entering a tunnel (30 frames/s SIF video format). The

camera is accomplishing a horizontal panning to follow

the car; however, due to prospective, pixels representing

the back of the car move faster than those in the front part.

The problem with such frames is twofold: the former is

due to the high dynamic of the scene that makes difficult a

good discrimination of the details both in the well-illumi-

nated areas and in the dark ones. The latter is related to a

barely visible adaptation of the auto-iris of the camera that,

moving from a well-illuminated zone to a darker one, tries

to compensate the reduction in the global illumination with

a small opening of the iris. It can be noted that the proposed

pre-processing algorithm is able to compensate for both

problems and allows the estimation of a more realistic MV

field. Another example of the benefits achieved using the

proposed technique is shown in Fig. 3. In such a case the

problems are related to the non uniform shadows of the tree

leafs which are present both on the scene and on the camera

lens. Without the pre-processing algorithm the final result

suffers from many poorly estimated MVs. On the contrary,

using the proposed technique the details are easier to dis-

criminate and the motion estimation vectors become more

accurate.

3.3 Robustness to quantization

Another way to exploit the advantages of the pre-pro-

cessing algorithm resides in the possibility to simplify the

realization of the subsequent motion estimation algorithm.

In particular, we prove that using the proposed algorithm it

is possible to obtain good motion estimation results even if

the latter is accomplished using only a few bits. In such a

way the cost versus performances ratio of the entire system

could significantly decrease.

To test this possibility, we have first realized a ground

truth test bench: using two identical frames, we have pro-

cessed one of them to emulate a predefined MV field. Than

we have used this pair of frames to check our system

Fig. 1 From left to right: the

input image acquired by the

camera, the luminance

estimation and the reflectance

signal obtained via (9)
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composed by the cascade of three blocks: the pre-pro-

cessing Retinex-based algorithm, a quantizer and the full-

search motion estimation algorithm.

Using a variable number of bits from 1 to 8 in the

quantizer, we have evaluated the mean absolute error

between the MV field obtained by the system and the

ground truth.

The result depicted in Fig. 4 demonstrates that, even

there are no significant advantages in the 4–8 bits range,

the usage of the pre-processing algorithm permits to obtain

a considerable smaller estimation error particularly when

the quantization is very strong. In an extreme case, it is

possible to perform the motion estimation, admitting quite

a small error, using data of just one bit, i.e., binarizing the

Fig. 2 Up: two adjacent frames

in the test input sequence. The

input sequence suffers for the

presence of slight auto-iris

compensation and a high

dynamic range. Down left the

MV field obtained without

preprocessing and on the right

using the proposed algorithm to

pre-process the input images

Fig. 3 Up: two adjacent frames

in the test input sequence. The

input images suffer for the

presence of shadows both on the

street and on the camera lens.

Down left the motion vector

field obtained without

preprocessing and on the right

using the proposed algorithm to

pre-process the input sequence
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input images. Following this strategy [11–16] the ME

algorithm which is typically the bottleneck and the most

computationally expensive block of the entire system could

be realized using very simple operators where for instance

the comparators could be substituted by XOR gates.

3.4 Analysis of different me engines to be integrated

with the Retinex pre-processor

To test the advantages of the proposed algorithm, we eval-

uate its benefits also when interfaced to other kind of ME

algorithms. In particular, we evaluate the effectiveness of the

MV field obtained using three different algorithms: the FS,

the TSS, and the adaptive rood pattern search (ARPS) [7],

when the input images are, or are not, pre-processed.

To create an objective test bench, it is mandatory to

define a reference target, i.e., a ME algorithm able to

accomplish good performances even under critical condi-

tions. We have chosen for such a purpose an enhanced FS

algorithm, insensitive to the offset of the block [26]. This

algorithm works very similarly to a canonical FS-ME but

each comparison among the blocks is firstly purged by the

offset of the blocks themselves; in such a way the FS

algorithm becomes more robust to light variations and the

estimated MV field becomes more reliable. It could be

noted, however, that this improvement on the canonical FS

algorithm, even if quite simple from a conceptual point of

view, leads to a significant extra computational effort,

equivalent to the one of the entire FS-ME algorithm. In fact

the evaluation of the offset for each block requires one

extra addition of all the pixel values in the block itself. If

no particular strategies are adopted (such as pre-computing

the mean values for all the possible image blocks and

storing them in a temporary memory, which, however,

would significantly increase the complexity in the final

realization), the number of addition/subtraction operations

to be performed for each block will double.

Moreover, it is also important to underline that such an

algorithm, even though its performances are very good under

many testing conditions, can however occasionally fail.

Adopting the previously described improved FS algo-

rithm as reference target, we have evaluated the distance

between the MV fields estimated by the algorithms under test

with and without the pre-processing phase, and the target

one. The metric adopted to evaluate the distance between the

two MV fields is the mean absolute value of all the difference

vectors. The results obtained analyzing a 20-frame input

sequence (a couple of sequence frames are depicted in

Fig. 3) using four different algorithms, with and without the

benefit of the pre-processing algorithm, is depicted in Fig. 5.

It can be noted that the presence of the pre-processing

leads in all cases to better performances, which are par-

ticularly evident when the presence of critical conditions

compromises canonical algorithms performances. More-

over, it can also be noted that the pre-processing together

with an adaptive ME algorithm like the ARPS method can

significantly outperform the FS without pre-processing.

Moreover, the performances of the TSS algorithm, due to

the problem of the local minima, still remains quite poor in

both cases and its application seem to be not suitable for

the proposed goal of the reliability of the MV.

An extra consideration: it can be noticed that in Fig. 5

the ARPS algorithms often performs better than the FS. To

motivate this behavior, it must be underlined that the FS

does not look for the best MV in the sense of the actual

block motion, but in the sense of the most similar candidate

block. This behavior can generate large differences espe-

cially in critical conditions when luminance variations are

present. In such critical cases the ARPS algorithm, which

bases the research of the MV candidate using the MV

information of the other nearest blocks, produces a more

coherent MV field and a better representation of the actual

movement. As a consequence, its error with respect to the

hypothesized real motion field can be smaller than the one

provided by the FS algorithm.

4 Application Specific Instruction-set Processor

for real-time integrated video motion estimation

and Retinex-like pre-processing

4.1 ASIP design approach and definition of processing

operators and machine arithmetic

The real-time hardware implementation of the proposed

algorithms for robust motion analysis is based on the

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

Quantization Bits

E
rr

or

without Pre-Processing

with Pre-Processing

Fig. 4 Mean absolute error (between the MV fields) performed by

the ME algorithm on a ground truth test bench for different

quantization levels, with (solid line) and without (dashed line) pre-

processing algorithm
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design, supported by languages for processor architecture

description such as LISAtek [27, 28], and synthesis on

standard-cell CMOS technologies of an ASIP.

As already proved in literature [28–38] for hardware

implementation of a specific class of digital signal pro-

cessing algorithms, including video and image processing

as discussed in our previous works [24, 25, 39], ASIPs

offer a better trade-off between flexibility and performance

versus classic ASICs and DSPs solutions. By exploiting the

ASIPs paradigm the designer can achieve flexibility within

an application domain, being able to accomplish a group of

functionalities using a set of common operations. The most

frequently repeated application kernels can be grouped in

optimized hardware units, keeping their activation at a

software level and hence allowing for different program-

mable versions of a class of algorithms. While designing

ASIPs, it is a designer duty to trade-off algorithmic per-

formance, flexibility and physical criteria like area and

power consumption. In the literature ASIPs specific for

video motion estimation only or for Retinex only already

exist [30, 36, 39]. Hence a straightforward architecture

solution, to support in real-time the algorithm presented in

Sect. 3, could be simply assembling separated ASIP cores,

available as reusable IP macrocells from our previous

works [24, 25, 39], in a single system-on-chip through an

on-chip communication infrastructure based, as example,

on the well known AMBA bus. The limit of such solution

is that an unnecessary hardware overhead in terms of area

and leakage power (no more negligible in sub-micron

CMOS technologies below 100 nm) has to be paid. With

respect to our previous ASIP Retinex design [24, 25] in this

work we:

1. extend the instruction set to support with a single

flexible and more optimized ASIP core both motion

estimation and Retinex filtering functions;

2. optimize the hardware resources avoiding computation

units, e.g., such those for color conversion and gamma

luminance correction, not needed since the algorithm

in Sect. 3 refers to monochrome frames only and just

uses the reflectance information, see (8) and (9).

Designing a customized instruction-set for integrated

motion estimation and Retinex filtering requires a pre-

liminary optimization phase to define the machine arith-

metic accuracy and the way to implement the required

operators. These operators include, besides a Multiply and

Accumulate unit, several nonlinear processing tasks: for

motion estimation there are the minimum search (to eval-

uate the best matching block and its cost function and MV

coordinates), the threshold comparison (for early stop

search criteria), the cost function evaluation (absolute dif-

ference, SAD, or mean square error, MSE). For Retinex

processing there is the evaluation of logarithms, division

operators and square operators used in (2–9). Starting from

the linearized and bit-true algorithmic model the design of

an ASIP is then addressed as detailed in next sections. For

the design, we used the architecture design language

LISAtek from which the VHDL description is automati-

cally generated and then manually refined before synthesis

on CMOS standard-cells technology.
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Fig. 5 Performances of three different ME algorithms: full search (FS), three step search (TSS) and adaptive rood pattern search (ARPS) for an

image sequence without (left) and with (right) the pre-processing algorithm
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To address the above issues the class of algorithms

described in Sect. 3 has been modeled through a parametric

linearized structural model, with finite arithmetic precision.

The linearization of non-linear operators has been realized

using some predefined optimization schemes based on

piecewise linear and piecewise constant representations.

High-order polynomial piecewise approximations are not

reported in this paper, since during the exploration phase

they resulted in too high implementation complexity while,

from the algorithmic point of view, optimal performance

can already be achieved with the piecewise linear and

piecewise constant approaches. By changing the model

parameters a trade-off analysis has been realized to find the

most suited arithmetic finite precision and implementation

of the non-linear operators. The trade-off is played on the

piecewise approach, constant or linear, and on the number

of used edges and their distribution along the abscissa axis.

Two criteria are used to drive the optimization process: a

PSNR-based objective criterion and a subjective one based

on visual perception. The target is reducing the imple-

mentation complexity of the proposed technique while

keeping the same performances shown in Sect. 3.

Figures 6, 7 and 8 show the hardware implementation

block diagrams for linear-piecewise operator, for constant

piecewise operator and for absolute-difference operator.

In Figs. 6 and 7 first the input sample In is compared to

proper thresholds in order to identify the correct approxi-

mation interval; the results are then used to address a

look-up table (LUT) storing the parameters of the piecewise

segment: (offset Q, slope H) for the piecewise linear,

directly the output for the piecewise constant. In case of the

piecewise linear an extra multiplier unit is required to cal-

culate the output H 9 In ? Q. Figure 8 presents the hard-

ware unit [40] dedicated to absolute difference (AD) and

accumulation operations (used during motion estimation).

As a results of the analysis the piecewise constant

solution leads to a better trade-off between hardware

complexity and visual quality when the non-linear trans-

formation to be linearized involves quantities which are not

directly observable at the system output, like the coeffi-

cients of the RRF for illumination estimation depending on

Sh and Sv. In such a case the visual quality using a

piecewise constant approximation is the same as using a

linear one, but the former is simpler since it is based on a

LUT and avoids using multipliers (compare Figs. 6, 7).

On the contrary the piecewise linear approach shows

better quality results and is adopted only to approximate

the reflectance processing operator in (9). The piecewise

linear approach has been also used for the division

operation.

To be noted that the edges of the approximating seg-

ments for both piecewise linear and piecewise constant

operators, determining in Figs. 6 and 7 the thresholds of

the edge comparator and the slopes and offset data to be

stored in the ROM, have been selected taking into account

the statistical distribution of the input samples of the

operators under linearization. Several edge distribution

laws have been compared to find the best trade-off between

circuit complexity and algorithmic accuracy. The latter has

been measured with both a PSNR-based objective criterion

and a visual perception subjective one. Particularly, in this

work, we have considered linear and non-linear (expo-

nential, quadratic, cubic, and fourth order polynomial)

distribution laws. Among them the cubic distribution law

leads to the best trade-off.

After the linearization of the operator, the number of

precision bits for data representation has been specifically

tailored to reduce the memory requirement and the ASIP

circuit complexity. In the case study, we found that fixed-

point data representation for the hardware implementation

can ensure unnoticeable algorithmic performance reduction

(measured both by PSNR and visual subjective criteria

considering several test images as input stimuli) versus the

original algorithm in Sect. 3. Particularly 8-bit size can be

In edge 
comparator ROM

Parameter

*

Slopes 
H

+

Offsets 
Q

Out 
H⋅In+Q

Fig. 6 Implementation block diagrams for piecewise linear approx-

imation of non-linear operators

In Outedge 
comparator

LUT

Parameter

Fig. 7 Implementation block diagrams for piecewise constant

approximation of non-linear operators

Fig. 8 Combinatorial part of the AD processing element
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used for input pixel representation and 12-bit size can be

used for motion estimation and Retinex processing data

paths. Particularly for motion estimation cost function,

represented on 12 bits, a saturation technique has been

implemented: if the cost function (e.g., SAD) exceeds the

12-bit representation it means that the matching block is

not the optimal one and hence the SAD result is saturated

(it will be discarded during the final SAD minimum

search).

Besides the instruction set dedicated to processing tasks,

the proposed ASIP will include dedicated resources for

other tasks mainly related to memory data transfer man-

agement, control and scheduling of the operations to be

performed and of the data flow (e.g., threshold comparisons

and minimum detection operations for motion estimation,

especially if a predictive algorithm with a first coarse block

matching analysis followed by a refinement iterative search

is adopted). This way different algorithmic configurations

of the Retinex pre-processing filter and of the motion

estimation (FS, but also adaptive predictive search to

reduce the computational complexity while keeping good

algorithmic performances) are supported in hardware.

As example, considering the address generation for the

data memory, from the specifications of Retinex and

motion estimation algorithms it can be noticed that some

predetermined patterns are established iterating over the

image. The specific pattern to be uploaded from memory

depends on the specific algorithm. Thus, a Programmable

Address Generation Unit (PAGU) calculating the next

address for the data memory by incrementing the pixel

pointer is implemented in hardware. This automatic

address calculation feature is reflected in the syntax of

several instructions by a short extension. Thus, the address

update is performed in parallel without the need of wasting

cycles just to update the data address.

Another observation is that in conventional loop

implementations comparisons and conditional branches

create a significant instruction overhead and, even worse,

cause pipeline control hazards. They lead to pipeline stalls

and flushes. These problems can be avoided by imple-

menting a loop mechanism in hardware. This is possible for

loops being executed a predictable number of times. In this

case, it is sufficient to have a loop-parameter initialization

before entering the loop and to manage the loop jumps by

the hardware. This technique is known as zero-overhead

loop. With these implementation strategies, the program-

ming is made easier and pipeline stalls and flushes resulting

from control hazards can be eliminated.

Summarizing, the ASIP proposed in this work shares

part of the set of 42 instructions, detailed in [24], with a

previously designed ASIP for Retinex filtering of color

images/video sequences in consumer applications. The

shared instructions belong to the following groups: non-

linear transformations, arithmetical computations, memory

accesses, processor initialization, data flow and loop con-

trol. With respect to the instruction-set in [24] the current

ASIP design, as described above, avoids computational

units for space color conversion and gamma luminance

correction while introduces new instructions dedicated to

ME processing: minimum search to evaluate the best

matching block and its cost function and the MV coordi-

nates; threshold comparison for early stop search criteria;

cost function evaluation.

4.2 Pipelined architecture

The ASIP proposed for this case study is based on a seven-

stage pipeline architecture sketched in Fig. 9. The names

assigned to each stage are mnemonical names applying to

the presented particular case. Depending on the instruction,

different operations can be executed in the same stage. As

described hereafter the operation of the first three stages,

FE, DC and LD, are independent from the specific oper-

ating part of the currently implemented algorithm while the

operations realized in the other stages (Exe1, Exe2, Exe3

and WB) depend on which algorithm is actually processed.

The selection of the pipeline architecture in Fig. 9 is

motivated by the fact that this ASIP is an evolution, tar-

geting both Retinex and ME algorithms, of the previous

Retinex-ASIP, we proposed in [24]. As we already detailed

in [24] the seven-stage pipeline architecture is needed to

implement a Single instruction non-linear transformations,

i.e., a single instruction able to load an operand from the

data memory, to perform the luminance or reflectance

transformations in the piecewise linearized form, and to

store the result back to the data memory. The ASIP design

in this paper and that in [24] share part of their set of

instructions, as described in Sect. 4.1; therefore the adop-

tion of the seven-stage pipeline hardware architecture has

been confirmed as starting point for the new ASIP devel-

opment in this work.

Hereafter, we briefly describe the role of each stage:

• FE is the fetch stage in which the instruction is fetched

from the program memory.

Fig. 9 Pipeline and memory organizations for the ASIP
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• DC is the decode stage where the instruction is decoded

producing the control signals for the operating part.

• LD is the load stage in which the operand is loaded

from the data memory; since the motion estimation task

requires a much higher computation capability than the

Retinex one, in case of ME 4 pixels will be processed in

parallel (a 32-bit operand is loaded from memory).

• Exe1 is the comparison stage where, during Retinex

processing through piecewise linearized operators, the

loaded operand is compared to the edges on the

abscissa axis to identify the correct approximation

interval; during motion estimation processing instead

four pixels (a 32-bit operand) from the previous frame

memory are loaded and the absolute differences with

the current pixels are calculated (4 absolute difference

calculated in parallel using an array of 4 processing

elements) and accumulated with previous calculated

ones.

• Exe2 is the stage where, during Retinex processing, the

result of the previous comparison is used to address a

ROM storing the parameters (offset Q, slope H) of the

correct piecewise segment or directly the LUT con-

taining the output result for piecewise constant oper-

ators; during motion estimation implementation the

same operations of Exe1 are implemented for other four

couples of pixels belonging to the current image block

and its relevant candidate matching block from the

previous frame.

• Exe3 is the stage in which the fetched ROM parameters

are used to calculate the output according to the

piecewise segment expression H 9 IN ? Q; such stage

is by-passed if a piecewise constant operator has to be

implemented. During motion estimation an adder tree

adds up the four absolute-difference results coming

from Exe2 stage. Moreover, if the SAD relevant to a

block matching operation is terminated, it is compared

to the previous evaluated SADmin to detect the mini-

mum SAD value and the corresponding MV coordi-

nates. In case a predictive search algorithm is

implemented, the evaluated cost function is compared

to proper thresholds for early search termination

criteria.

• WB is the write-back stage in which the output is stored

back to memory: a data frame memory if the Retinex

operator is the one currently computed and the result is

a 8-bit filtered pixel; the SAD/MV memory if the ME

operator is the one currently computed and the result is

a 12-bit SADmin value plus relevant MV coordinates

stored in ten bits [displacement in the range (-16, ?15]

pixel along both x and y axis).

Overall considering the proposed architecture is able to

process for each clock cycle a maximum (without pipeline

stalls or flushes) of eight absolute-difference operations at

pixel level during motion estimation processing and one

complete non-linear operator at pixel level for Retinex

processing.

4.3 Memory organization and by-passes

Besides pipeline stage definition, for the ASIP is also

important defining the memory organization since multi-

media applications are memory dominated. Both the par-

ticular memory organization and the data pipelining are

important ASIP hardware customizations applying to the

case study.

For motion estimation and for the iterative applications

of the RRF inside the Retinex, it is necessary to store at

least one previous frame. It can be also the case that the

video processing is split over several pipeline stages, by the

means of frame pipelining, to increase the throughput. In

such a case the memory size of a single frame has to be

multiplied by the number of used pipeline stages. To

reduce the memory amount one way is pursued by reducing

the number of precision bits (see Sect. 4.1). Another

effective way to reduce memory is to remove the pipelining

at a frame level. This solution is based on a re-utilization of

the same memory to store the intermediate data concerning

the partially processed frames. The main drawback is, of

course, the throughput reduction, which is a critical spec-

ification item. To improve timing performance while

keeping the benefits of a memory organization which

minimizes the use of large frame memories, pipeline pro-

cessing can be re-introduced moving it from the frame

level to the pixel level. Therefore, pixel-level pipelining

has been implemented in the ASIP architecture proposed in

Fig. 9 since it is more efficient in terms of memory usage

than frame-level pipelining. This permits the parallel pro-

cessing of several pixels making the architecture timing

efficient as well.

Because of the trade-off between memory resources and

data throughput, we decided to use three frame memories:

synchronous SRAM named X, Y and Z RAM in Fig. 9.

This solution allowed us to keep a good degree of par-

allelism, since it is possible, for instance, to perform the

operations needed for the Retinex on luminance and

reflectance at the same time, without increasing the mem-

ory requirements too much. Indeed, at least two frame

memories (the X and Y RAM) are needed during motion

estimation to store the current frame and the previous

frame from which candidate matching blocks are uploaded.

The third frame memory (Z RAM) is needed to allow

correct interleaving of Retinex and motion estimation

processing tasks when realizing the integrated robust

motion analysis algorithm proposed in Sect. 3.
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When starting the analysis of an acquired input video

the first frame I is filtered with Retinex operator (using X

and Y RAM for iterative applications of the RRF for

luminance estimation) and the final result I* in stored in the

Z RAM. Then the subsequent input frame I ? 1 is pro-

cessed using X and Y RAM and storing the filtered frame

I* ? 1 in Y RAM. After Retinex processing, the motion

estimation is implemented using I* ? 1, stored in Y RAM,

as current reference frame and I*, stored in Z RAM, as

previous frame. The results of the motion analysis are

stored in the SAD/MV RAM while concurrently the next

frame to be filtered I ? 2 is pre-fetched in the X RAM.

After motion analysis the frame I ? 2 is filtered using X

and Z RAM (Y RAM still stores the frame I* ? 1 that will

be used for motion analysis while the frame I* can be

deleted since it is no more needed) and the final results

I* ? 2 stored in Z RAM. Subsequently the motion esti-

mation is implemented using I* ? 2, stored in Z RAM, as

current reference frame and I ? 1*, stored in Y RAM, as

previous frame. The results of the motion analysis are

stored in the SAD/MV RAM while concurrently the next

frame to be filtered I ? 3 is pre-fetched in the X RAM. The

processing flow then continues alternating Retinex and

motion estimation phases.

Besides X, Y and Z RAM the memory organization is

completed with a program memory from which program

instructions are fetched, and a motion estimation results

memory where SADmin and MV coordinates are stored for

each 16 9 16 image block of the frame which is currently

processed.

In other ASIP architectures proposed in literature, e.g.

[24, 25], the connections between pipeline stages and

memories were fixed: the data RAM can be accessed in

read mode or write mode only from certain stages. Using

fixed connections can cause data transfer overheads in case

of new algorithmic versions needing direct memory access

from other stages. However, designing multi-port RAM

concurrently accessible from all execution stages is too

expensive in terms of area and power. Such problem is

solved in the proposed ASIP architecture in Fig. 9 con-

necting the memory resources and the pipeline ASIP stages

through a configurable interconnect matrix (see program-

mable switch matrix in Fig. 9). Hence, by proper pro-

gramming an array of MOS switch through a context

configuration memory the desired coupling between exe-

cution stages and memories can be customized after post-

silicon fabrication.

A problem related to the pipeline architecture proposed

in Fig. 9 is data dependencies. The seven-stage pipeline

leads to the disadvantage of data hazards: e.g., in the LD

stage an instruction (consumer) may read from a shared

storage, a general purpose register or a memory location,

which is expected to be written by a previous instruction

(producer). If the producer instruction has not yet reached

the WB stage in which the final result is stored in the

shared storage, the consumer instruction will load an out-

dated value. Data dependencies can be solved efficiently

through bypasses which forward data immediately from a

pipeline stage back to a previous stage. In previous ASIP

versions for Retinex processing proposed in literature [24,

25] fixed bypasses are implemented only from the last two

stages to the relevant preceding stages. This approach can

limit the efficiency of the ASIP for algorithms needing

bypasses from other stages. As reported in Fig. 10 to

overcome such problem in the new ASIP architecture

proposed in this work there is a configurable interconnect

switch matrix allowing for post-fabrication customization

of the bypasses between the different execution stages of

the pipeline. As discussed above the configuration mech-

anism is based on writing the desired configuration bit plan

in a context configuration memory.

To be noted that when using configurable connections

for by-passes, see Fig. 10, and for memory accesses, see

Fig. 9, the increased flexibility (i.e., with respect to the

proposed algorithm in Sect. 3 the ASIP can be easily

updated to support future new algorithmic versions

requiring different schemes for by-passes and for direct

memory access) is paid with a small overhead in terms of

area and increased time propagation delay. However, given

the good performance results achieved in Sect. 5 when

implementing the architecture in standard-cells CMOS

technology, in this work, we preferred increasing the ASIP

architecture flexibility adopting the configurable connec-

tion schemes in Figs. 9 and 10.

5 CMOS implementation results and performance

After the design of the architecture in Sect. 4 with LISAtek,

a parametric VHDL description of the ASIP has been

automatically generated and then manually refined for

those paths representing a bottleneck in terms of timing.

The VHDL data base, configured according to the machine

arithmetic sizing reported in Sect. 4.1, has been synthesized

with the Synopsys CAD tool in a 65 nm 1.1 V supply

voltage nine metal layers CMOS standard-cells technology.

Fig. 10 Implemented by-pass mechanisms
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To be noted that for the CMOS technology three library

versions were available: beside the standard library nomi-

nal voltage threshold (NVT) there are also the high voltage

threshold (HVT), optimized for low power consumption,

and particularly for low leakage power) and the LVT (low

voltage threshold, optimized for high speed). In this work,

we used the HVT library version to minimize the power

consumption. As detailed hereafter the achieved timing

performance with HVT still meet the real-time require-

ments of automotive scenarios.

The ASIP processing core, synthesized in the above

mentioned CMOS technology, has a complexity of roughly

105 kgates plus 15 kB of ROM to implement LUT-based

operators. The static power consumption (leakage power)

amounts to roughly 25 lW. Such results are very inter-

esting when compared to the alternative solution of

assembling together two separate ASIPs, already available

in literature, e.g., in [39], one dedicated to Retinex pro-

cessing and one to motion estimation. This second case

would require a circuit complexity of at least 215 kgates

plus 20 kB of ROM plus extra resources for communica-

tion and coordination of the two ASIP macrocells.

The requirements in terms of program and data memory

(X, Y and Z data SRAM plus SAD/MV results SRAM) for

our design are reported in Table 1 for different formats

which are typical for cameras used in automotive and

transport system applications. To be noted that the algo-

rithmic results reported in Sect. 3 referred to SIF format.

The required memory from Table 1 can be easily

implemented on-chip, for all considered formats, using the

memory blocks provided by the used 65 nm standard-cell

technology. Since on-chip RAM storage is used for the

program memory, at board-level an external non-volatile

programmable ROM is needed from which each time the

ASIP chip is powered-on the program to be executed

should be uploaded.

The maximum achieved clock frequency for the pro-

posed ASIP in the CMOS 65 nm—HVT technology at

1.1 V is 300 MHz. This allows for a maximum throughput

of about 2,400 millions of absolute-difference operations

per second if using the ASIP only for motion estimation

processing. Such performance enables real-time calculation

of motion estimation for all the considered image formats

in Table 1 at 30 frame/s, using different search algorithms

including the worst case of FS (through the paper mono-

chrome images and 16-pixel search displacement are con-

sidered). When using the ASIP only for Retinex processing

the computational throughput amounts to roughly 9 million

of pixels per second since, in average, using the Retinex

algorithm in Sect. 3 roughly 30 clock cycles are needed for

a single pixel filtering. Hence the ASIP can be used to

process in 1 s large still images or in real-time VGA videos

up to 30 frames/s.

As already discussed in Sect. 4, when implementing the

integrated algorithm (Retinex plus motion analysis)

described in Sect. 3 using the proposed ASIP, the Retinex

pre-processing phase and the motion estimation phase can

not occur in parallel. The two processing tasks should be

time interleaved and in average the ASIP is used half-time

for Retinex processing and half-time for motion estimation.

Hence the integrated algorithm in Sect. 3 using the pro-

posed ASIP can be implemented in real-time up to

30 frames/s for QCIF, SIF and CIF formats and up to

15 frames/s for VGA formats. The achieved performances

match the requirements of typical vision-based system in

automotive applications or for intelligent transport systems.

The dynamic energy cost of the ASIP processing core (in

the 65 nm CMOS technology) when running the algorithm

in Sect. 3 amounts to roughly 12 nJ/pixel.

Finally, the parametric VHDL architecture of the ASIP

has been re-synthesized considering, for the hardware units

which implement motion estimation specific instruction,

input samples quantized on 2 bits instead of 8 bits. The

other hardware units (dedicated to Retinex filtering tasks or

to general activities for I/0 interfacing, memory manage-

ment, instruction and data flow scheduling) have been left

untouched with respect to the previous discussed ASIP

architecture. Synthesizing this new ASIP processor permits

analyzing the complexity of the quantized-algorithm dis-

cussed in Sect. 3.3. The synthesis results on the same

65 nm CMOS technology prove that a lower circuit com-

plexity is obtained, roughly 95 kgates for the logic, toge-

ther with a small speed improvement being the maximum

clock frequency roughly 320 MHz. Using the quantized

motion estimation also the memory requirements in

Table 1 can be reduced since only 2 out of 3 frame

memories are required while the size of the third can be

reduced by a factor 8-bit/2-bit = 4.

6 Conclusions

The problem of robust motion analysis of images acquired

in real road scenarios for automotive or intelligent transport

system applications is addressed in the paper. A novel

technique based on integrated Retinex-like pre-processing

algorithm with block matching video motion estimator is

Table 1 RAM needed for the ASIP to process various formats

QCIF

(176 9 144)

SIF

(320 9 240)

VGA

(640 9 480)

Program memory 1 kB

X, Y, Z SRAM 25 kB each 75 kB each 300 kB each

SAD/MV RAM 0.3 kB 0.8 kB 3.2 kB

Total RAM 75.3 kB 225.8 kB 903.2 kB
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presented allowing for many benefits versus state-of-art

solutions: the entire system is more robust; the estimated

motion vectors are more reliable and less dependent on

critical ambient conditions like shadows or flashes; the

proposed algorithm may allow to perform motion estima-

tion using very few bits, still maintaining good perfor-

mances. Real-time implementation is achieved by design a

novel ASIP hardware architecture. With respect to a

straightforward solution based on assembling different

macrocells specific for motion estimation and Retinex pre-

processing, the proposed ASIP architecture exploits the

integration of the two techniques to optimize both the

processing core and the memory organization. Synthesized

in a 65 nm CMOS standard-cells technology, with 1.1 V

supply and low-leakage HVT library version, the ASIP

ensures real-time processing for video formats up to VGA

with a bounded circuit complexity of 105 kgates and 15 kB

of ROM for the processing core with a static power con-

sumption of 25 lW and a dynamic energy cost of roughly

12 nJ/pixel. The on-chip memory size is in the order of

hundreds of kilobytes depending on the supported image

format. The achieved results prove the suitability of the

proposed technique for real-time and motion analysis in

automotive and intelligent transport systems applications.
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