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Abstract The problem of estimating and predicting

position and orientation (pose) of a camera is approached

by fusing measurements from inertial sensors (accelerom-

eters and rate gyroscopes) and vision. The sensor fusion

approach described in this contribution is based on non-

linear filtering of these complementary sensors. This way,

accurate and robust pose estimates are available for the

primary purpose of augmented reality applications, but

with the secondary effect of reducing computation time and

improving the performance in vision processing. A real-

time implementation of a multi-rate extended Kalman filter

is described, using a dynamic model with 22 states, where

12.5 Hz correspondences from vision and 100 Hz inertial

measurements are processed. An example where an

industrial robot is used to move the sensor unit is presented.

The advantage with this configuration is that it provides

ground truth for the pose, allowing for objective perfor-

mance evaluation. The results show that we obtain an

absolute accuracy of 2 cm in position and 1� in orientation.

Keywords Pose estimation � Sensor fusion �
Computer vision � Inertial navigation

1 Introduction

This paper deals with estimating the position and orienta-

tion (pose) of a camera in real-time, using measurements

from inertial sensors (accelerometers and rate gyroscopes)

and a camera. A system has been developed to solve this

problem in unprepared environments, assuming that a map

or a scene model is available. For a more detailed

description of the overall system and the construction of

scene models we refer to Stricker and Thomas [37] and

Bartczak et al. [24], respectively. In this paper, the sensor

fusion part of the system is described, which is based upon

a rather general framework for nonlinear state estimation

available from the statistical signal processing community.

This problem under ideal conditions can be solved using

only a camera. Hence, it might seem superfluous to intro-

duce inertial sensors. However, the most important reasons

justifying an inertial measurement unit (IMU) are:

• Producing more robust estimates. Any single camera

system will experience problems during periods with

uninformative or no vision data. This will occur,

typically due to occlusion or fast motion. An IMU will

help to bridge such gaps, which will be illustrated in the

present paper.

• Reducing computational demands for image process-

ing. Accurate short time pose estimates are available

using the information from the IMU, reducing the need

for fast vision updates.

The combination of vision and inertial sensors has been

used previously in literature. Corke et al. [7] gave an
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introduction to this field and its applications. Reported

systems apply various methods: inertial measurements are

used as backup [2], for short time pose prediction [23], or

depth map alignment [26]. Alternatively, vision and inertial

subsystems are loosely coupled, using visual pose mea-

surements [1, 6, 31]. Vision relies on either specific targets,

line contours or natural landmarks. Calibration of the

sensors is discussed in e.g., Lobo and Dias [27]. Further-

more, the problem is closely related to the problem of

simultaneous localization and mapping (SLAM) [11, 39],

where camera tracking and scene model construction are

performed simultaneously. Single camera SLAM is dis-

cussed in Davison [8] and Davison et al. [10]. In that

context so-called fast localization algorithms [41] are

investigated as alternatives to inertial support [13, 30].

In our approach, real-time camera pose estimation is

achieved by fusing inertial and vision measurements using

the framework of nonlinear state estimation, covering

methods such as the Extended Kalman Filter (EKF), the

Unscented Kalman Filters (UKF) and the particle filter

(PF). This results in a tightly coupled system, naturally

supporting multi-rate signals. The vision measurements are

based on natural landmarks, which are detected guided by

pose predictions. The measurements from the sensors are

used directly rather than being processed to a vision-based

pose or an inertial-based pose. The components of the

system are well known. However, we believe that the way

in which these components are assembled is novel and we

show that the resulting system provides accurate and robust

pose estimates.

The sensors generating the measurements yt are descri-

bed in Sect. 2. In Sect. 3, the framework for state

estimation in nonlinear dynamic systems is introduced in

more detail and used to solve the sensor fusion problem we

are faced with in the present application. In implementing

this, there are several practical issues that have to be

solved. The overall performance of the system heavily

relies on successful solutions to these matters, which is

explained in Sect. 4. The performance of the implemen-

tation is evaluated in Sect. 5, and finally, the paper is

concluded in Sect. 6.

2 Sensors

An IMU and a digital video camera are combined to pro-

vide measurements to the sensor fusion module, described

in this paper. Both sensors are relatively small and unob-

trusive and they can be conveniently integrated into a

single sensor unit. An example of a prototype is shown in

Fig. 1. An on board digital signal processor containing

calibration parameters is used to calibrate and synchronize

data from the different components.

Before discussing the inertial and vision sensors in the

subsequent sections, the required coordinate systems are

introduced.

2.1 Coordinate systems

When working with a sensor unit containing a camera

and an IMU several coordinate systems have to be

introduced:

• Earth (e): The camera pose is estimated with respect to

this coordinate system. It is fixed to earth and the

features of the scene are modelled in this coordinate

system. It can be aligned in any way; however,

preferably it should be vertically aligned.

• Camera (c): The coordinate system is attached to the

moving camera. Its origin is located in the optical

center of the camera, with the z-axis pointing along the

optical axis. The camera, a projective device, acquires

its images in the image plane (i). This plane is

perpendicular to the optical axis and is located at an

offset (focal length) from the optical center of the

camera.

• Body (b): This is the coordinate system of the IMU.

Even though the camera and the IMU are rigidly

attached to each other and contained within a single

package, the body coordinate system does not coincide

with the camera coordinate system. They are separated

by a constant translation and rotation.

These coordinate systems are used to denote geometric

quantities, for instance, ce is the position of the camera

coordinate system expressed in the earth system and Rcb is

the rotation matrix from the body system to the camera

system.

Fig. 1 A prototype of the MATRIS project, integrating a camera and

an IMU in a single housing. It provides a hardware synchronized

stream of video and inertial data
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2.2 Inertial sensors

The sensor unit contains an IMU with three perpendicu-

larly mounted 1,200 �/s ADXLXRS300 angular velocity

sensors and two 5 g 2D ADXL22293 accelerometers,

which are mounted such that three of the sensitive axes are

perpendicular to each other. MEMS rate gyroscopes are

chosen because of their dramatically reduced size and low

cost as compared to alternatives such as fiber optic angular

velocity sensors.

The signals from the inertial components are synchro-

nously measured at 100 Hz using a 16 bit A/D converter.

A temperature sensor is added to compensate for the

temperature dependency of the different sensing

components.

The assembly containing the gyroscopes and acceler-

ometers has been subjected to a calibration procedure to

calibrate for the exact physical alignment of each compo-

nent, the gains, the offsets and the temperature relations of

the gains and offsets. With these a 3D angular velocity

vector and a 3D accelerometer vector, both resolved in the

body coordinate system, are computed using an on board

processor. See e.g., Titterton and Weston [40] and Chat-

field [5] for suitable background material on inertial

sensors and the associated signal processing.

The calibrated gyroscope signal yx,t contains measure-

ments of the angular velocity xb
eb;t from body to earth (eb)

expressed in the body coordinate system (b):

yx;t ¼ xb
eb;t þ db

x;t þ eb
x;t: ð1Þ

Even though the gyroscope signal is corrected for

temperature effects, some low-frequency offset

fluctuations dx;t remain, partly due to the unmodeled

acceleration dependency. The remaining error ex,t
b is

assumed to be zero mean white noise. The measurements

are not accurate enough to pick up the rotation of the earth.

This implies that the earth coordinate system can be

considered to be an inertial frame.

A change in orientation can be obtained by proper

integration of the gyroscope signal. This orientation can be

obtained even during fast and abrupt movements, not

relying on any infrastructure other than the gyroscope

itself. However, the accuracy in orientation will deteriorate

for periods longer than a few seconds.

The calibrated accelerometer signal ya,t contains mea-

surements of the combination of the body acceleration

vector €bt and the gravity vector g, both expressed in the

body coordinate system:

ya;t ¼ €b
b

t � gb þ db
a;t þ eb

a;t: ð2Þ

Even though the accelerometer measurement is

corrected for temperature effects a small low-frequency

offset da,t remains. The error ea,t
b is assumed to be zero

mean white noise.

Gravity is a constant vector in the earth coordinate

system. However, expressed in body coordinates gravity

depends on the orientation of the sensor unit. This means

that once the orientation is known, the accelerometer signal

can be used to estimate the acceleration, or alternatively,

once the acceleration is known, the direction of the vertical

can be estimated.

Accelerations can be integrated twice to obtain a change

in position. This can be done during fast and abrupt

motions as long as an accurate orientation estimate is

available, for instance from the gyroscopes. However, the

accuracy of the position change will deteriorate quickly as

a result of the double integration and the sensitivity with

respect to orientation errors.

2.3 Monocular vision

Apart from the inertial sensors, the sensor unit is equipped

with a ptGrey DragonFly CCD camera with a perspective

lens with a focal length of 3.2 mm. Color images with a

resolution of 320 · 240 pixels at a frame rate of 12.5 Hz

are streamed to a PC using a firewire connection. The

camera is triggered by the IMU clock allowing for syn-

chronized measurements.

This setup is one realization of monocular vision:

cameras can vary in sensor type, resolution, frame rate, and

various lens types can be used ranging from perspective to

fish-eye. However, they remain projective devices, that is,

they are bearings only sensors which do not provide dis-

tance directly.

Extracting camera position and orientation from images

is a known and well studied problem in computer vision

[28, 16]. The key ingredient is to find correspondences,

relations between a feature found in the image which

corresponds to an element in the scene model. All these are

rather abstract concepts, which do have numerous imple-

mentations, ranging from Harris detectors [15] and point

clouds models to patches and textured free-form surfaces

models [24]. The correspondences are the pieces of infor-

mation which can be extracted from an image, and they

will be considered to be the vision measurements in this

article.

Point correspondences zc $ zi are the relation between

3D points zc and 2D image points zi. For a perspective lens

and a pinhole camera the correspondence relation is

zi ¼ fzc
x=zc

z

fzc
y=zc

z

� �
þ ei; ð3aÞ

or equivalently,
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0 � �fI2 zi
t

� �
zc

t ¼ �fI2 zi
t

� �
Rce

t ze � ce
t

� �
; ð3bÞ

where f is the focal length and I2 the 2 · 2 identity

matrix. The error ei
t is assumed to be a zero mean white

noise. Here, it is worth noting that this assumption is not

that realistic, due to outliers, quantization effects etc. From

(3b) it can be seen that the camera pose depends on the

rotation matrix Rce and the position ce. Hence, given suf-

ficient correspondences and a calibrated camera the camera

pose can be solved. Similar relations can be derived for

e.g., line correspondences which also provide information

about the camera pose and optical velocity fields which

provide information about the camera velocity [7].

Correspondences are bearings only measurements and

as such they provide information about absolute position

and orientation with respect to the earth coordinate system.

Note that everything is determined up to a scale ambiguity;

viewing a twice as large scene from double distance will

yield an identical image. However, these vision measure-

ments are available at a relatively low rate due to the trade

off between exposure time and accuracy (pixel noise and

motion blur) which is an important limit for small aperture

cameras. Furthermore, processing capacity might constrain

the frame rate. Hence, the observed image can change

drastically from frame to frame, which occurs already with

normal human motion. This is the main cause for the

limited robustness inherent in single camera systems.

The computer vision implementation used in the present

implementation is based on a sum of absolute difference

(SAD) block matcher in combination with a planar patch or

free-form surface model of the scene. More details can be

found in Stricker and Thomas [37], Bartczak et al. [24] and

Skoglund and Felsberg [35]. Both pixel data and 3D

positions are stored for each feature. An example of a scene

model is shown in Fig. 2. While tracking, search templates

are generated by warping the patches in the model

according to homographies calculated from the latest pre-

diction of the camera pose. These templates are then

matched with the current calibrated camera image using the

block matcher. In this way correspondences are generated.

3 Sensor fusion

The inertial and vision sensors contained in the sensor unit

have complementary properties. Vision in combination

with the map gives accurate absolute pose information at a

low rate, but experiences problems during moderately fast

motions. The IMU provides high rate relative pose infor-

mation regardless of the motion speed, but becomes

inaccurate after a short period of time. By fusing infor-

mation from both sources it is possible to obtain robust

camera pose estimates.

Combing inertial and vision sensors is possible in sev-

eral ways. For instance, vision-based methods might be

extended by using pose predictions from the IMU. These

pose predictions can be used to determine where in the

image the features are to be expected. Once detected, the

features can be used to calculate the pose and this pose is

then used as a starting point for the next pose prediction by

the IMU. Alternatively, the IMU can be considered to be

the main sensor, which is quite common in the navigation

industry. In that case, vision can be used for error correc-

tion, similar to how radio beacons or the global positioning

system (GPS) are used to correct the drift in an inertial

navigation system (INS).

Although the sensors have different properties, it is from

a signal processing perspective not relevant to assign a

‘main’ sensor and an ‘aiding’ sensor. Both vision and

inertial sensors are equivalent in the sense that they both

provide information about the quantity of interest, the

camera pose in this application. The objective is to extract

as much information as possible from the measurements.

More specifically, this amounts to finding the best possible

estimate of the filtering probability density function (pdf)

p(xt|y1:t), where y1:t,fy1; . . .; ytg: The topic of this section

Fig. 2 An example of a scene

model consisting of planar

patches (lower right) and the

actual scene that is modelled

(upper left)
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is to provide a solid framework for computing approxi-

mations of this type. First, a rather general introduction to

this framework is given in Sect. 3.1. The rest of this section

is devoted to explaining how this framework can be applied

to handle the present application. The models are intro-

duced in Sect. 3.2 and the fusion algorithm is discussed in

Sect. 3.3.

3.1 Theoretical framework

The objective in sensor fusion is to recursively in time

estimate the state in the dynamic model,

xtþ1 ¼ ftðxt; ut; vtÞ; ð4aÞ

yt ¼ htðxt; ut; etÞ; ð4bÞ

where xt 2 R
nx denotes the state, yt 2 R

ny denote the

measurements from a set of sensors, vt and et denote the

stochastic process and measurement noise, respectively.

The process model equations, describing the evolution of

the states (pose etc.) over time are denoted by f : Rnx �
R

nv � R
nu ! R

nx : Furthermore, the measurement model is

given by h : Rnx � R
nu � R

ne ! R
ny ; describing how the

measurements from the IMU and the camera relate to

the state. The goal is to infer all the information from the

measurements yt onto the state xt. The way of doing this is

to compute the filtering pdf p(xt|y1:t). The filtering pdf

contains everything there is to know about the state at time

t, given the information in all the past measurements y1:t.

Once an approximation of p(xt|y1:t) is available it can be

used to form many different (point) estimates, including

maximum likelihood estimates, confidence intervals and

the most common conditional expectation estimate

x̂t ¼ Eðxtjy1:tÞ: ð5Þ

The key element in solving the nonlinear state estimation

problem in real time is the propagation of p(xt|y1:t) over

time. It is well known, see [19] that a recursive solution can

be obtained by applying Bayes’ theorem, introducing

model (4) in the iterations,

pðxtjy1:tÞ ¼
pðytjxtÞpðxtjy1:t�1ÞR
pðytjxtÞpðxtjy1:t�1Þdxt

; ð6aÞ

pðxtþ1jy1:tÞ ¼
Z

pðxtþ1jxtÞpðxtjy1:tÞdxt: ð6bÞ

Hence, the quality of the solution is inherently coupled

to the models and hence good models are imperative. It is

worth noticing that (6a) and (6b) are often referred to as

measurement update and time update, respectively. The

sensor fusion problem has now been reduced to

propagating (6) over time as new measurements arrive.

The problem is that the multidimensional integrals present

in (6) lack analytical solutions in all but a few special

cases. The most common special case is when (4) is

restricted to be a linear dynamic system, subject to additive

Gaussian noise. Then all the involved densities will be

Gaussian, implying that it is sufficient to propagate the

mean and covariance. The recursions updating these are of

course given by the Kalman filter [21].

However, in most cases there does not exist a closed

form solution for (6), forcing the use of approximations of

some sort. The literature is full of different ideas on how to

perform these approximations. The most common being

the EKF [36, 32] where the model is linearized and the

standard Kalman filter equations are used for this linearized

model. A conceptually more appealing approximation is

provided by the PF [14, 18, 22] which retains the model

and approximates (6). Other popular approximations for

the nonlinear state estimation problem are provided for

example by the UKF [20] and the point-mass filter [3, 4].

For a more complete account of the nonlinear state esti-

mation problem, see e.g., Schön [33].

3.2 Models

The probability density functions p(xt+1|xt) and p(yt|xt) are

the key elements in the filter iterations (6). They are

usually implicitly specified by the process model (4a) and

the measurement model (4b). For most applications the

model formulation given in (4) is too general. It is often

sufficient to assume that the noise enters additively,

according to

xtþ1 ¼ ftðxtÞ þ vt; ð7aÞ

yt ¼ htðxtÞ þ et: ð7bÞ

The fact that the noise is additive in (7) allows for

explicit expressions for p(xt+1|xt) and p(yt|xt), according to

pðxtþ1jxtÞ ¼ pvt
ðxtþ1 � ftðxtÞÞ; ð8aÞ

pðytjxtÞ ¼ pet
ðyt � htðxtÞÞ; ð8bÞ

where pvt
ð�Þ and pet

ð�Þ denote the pdf’s for the noise vt and

et, respectively. Note that the input signal ut has been

dispensed with, since it does not exist in the present

application. The rest of this section will discuss the model

used in the current application.

First of all, the state vector has to include the position

and the orientation, since they are the quantities of interest.

However, in order to be able to use the IMU and provide

predictions the state vector should also include their time
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derivatives, as well as sensor biases. The state vector is

chosen to be

xt ¼ be
t

_b
e

t
€b

e

t qbe
t xb

eb;t db
x;t db

a;t

� �T

: ð9Þ

That is, the state vector consists of position of the IMU

(the body coordinate system) expressed in the earth system

be, its velocity _b
e

and acceleration €b
e
; the orientation of the

body with respect to the earth system qbe, its angular

velocity xb
eb; the gyroscope bias db

x and the accelerometer

bias db
a : All quantities are three dimensional vectors, except

for the orientation which is described using a four-

dimensional unit quaternion qbe, resulting in a total state

dimension of 22. Parameterization of a three-dimensional

orientation is in fact rather involved, see e.g., Shuster [34]

for a good account of several of the existing alternatives.

The reason for using unit quaternions is that they offer a

nonsingular parameterization with a rather simple

dynamics. Using (9) as state vector, the process model is

given by

be
tþ1 ¼ be

t þ T _b
e

t þ
T2

2
€b

e

t ; ð10aÞ

_b
e

tþ1 ¼ _b
e

t þ T€b
e

t ; ð10bÞ

€b
e

tþ1 ¼ €b
e

t þ ve
€b;t
; ð10cÞ

qbe
tþ1 ¼ exp � T

2
xb

eb;t

� �
� qbe

t ; ð10dÞ

xb
eb;tþ1 ¼ xb

eb;t þ vb
x;t; ð10eÞ

db
x;tþ1 ¼ db

x;t þ vb
dx;t
; ð10fÞ

db
a;tþ1 ¼ db

a;t þ vb
da;t
; ð10gÞ

where the quaternion multiplication and exponential are

defined according to

p0

p

� �
� q0

q

� �
,

p0q0 � p � q
p0qþ q0pþ p� q

� �
; ð11aÞ

expðvÞ,
cos kvk
v
kvk sin kvk

� �
: ð11bÞ

A standard constant acceleration model (10a)–(10c) has

been used to model the position, velocity and

acceleration. Furthermore, the quaternion dynamics is

standard, see e.g., Shuster [34]. Finally, the angular

velocity and the bias terms are simply modeled as random

walks, since there is no systematic knowledge available

about these terms.

There is more than one sensor type available, implying

that several measurement models are required. They have

already been introduced in Sect. 2, but for convenience

they are all collected here,

ya;t ¼ Rbe
t ð€b

e

t � geÞ þ db
a;t þ eb

a;t; ð12aÞ

yx;t ¼ xb
eb;t þ db

x;t þ eb
x;t; ð12bÞ

yc;t ¼ �fI2 zi
t

� �
Rcb Rbe

t ze
t � be

t

� �
� cb

t

� �
þ ec;t: ð12cÞ

Note that the rotation matrix Rt
be is constructed from qt

be

[25]. The transformation from body to camera coordinate

system is included in (12c), compared to (3b).

3.3 Fusion algorithm

The nonlinear estimation framework discussed in Sect. 3.1

suggests Algorithm 1 to fuse the multi-rate information

from the inertial and vision sensors. The algorithm uses the

models (10) and (12) to perform the time and measurement

update steps given in (6). Note that Algorithm 1 is generic

in the sense that we have not specified which state esti-

mation algorithm is used. Our implementation, which runs

in real time with 100 Hz inertial measurements and frame

rates up to 25 Hz, uses the EKF to compute the estimates,

implying that all involved pdf’s are approximated by

Gaussian densities. An UKF implementation was found to

give similar accuracy at the cost of a higher computational

burden [29]. This confirms the results from Armesto et al.

[1].

When the sensor unit is static during initialization, the

IMU provides partial or full (using magnetometers)

Algorithm 1 Recursive camera pose calculation

1. Perform an initialization and set initial state estimate and

covariance.

x0 * p(xo)

2. Time update. Calculate p(xt|y1:t–1) by propagating p(xt–1|y1:t–1)

through the process model (10).

3. Accelerometer and gyroscope measurement update using

model (12b).

xt * p(xt|y1:t)

4. If there is a new image from the camera,

(a) Predict feature positions from the scene model using

x̂t ¼ Eðxtjy1:tÞ:
(b) Detect the features in the image.

(c) Measurement update with the found point correspondences

using model (12c).

xt * p(xt|y1:t)

5. Set t: = t + 1 and iterate from step 2.
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orientation estimates. This information can be used to

constrain the search space when initializing from vision.

The high frequency inertial measurement updates in

Algorithm 1 provide a rather accurate state estimate when

a new image is acquired. This implies that the feature

positions can be predicted with an improved accuracy,

which in turn makes it possible to use a guided search in

the image using reduced search regions. The algorithm

can calculate the expected covariance of a measurement.

This can be the basis for a temporal outlier removal as a

complement to the spatial outlier removal provided by

RANSAC methods [12]. Alternatively it can be used to

predict the quantity of new information that a certain

feature can contribute, which might be useful for task

scheduling when the computational resources are limited

[9].

The camera pose is estimated implicitly by Algorithm 1

rather than trying to determine it explicitly by inverting the

measurement equations. Hence, when sufficient motion is

present, the system is able to continue tracking with a very

low number of features and maintain full observability

using temporal triangulation.

The information from the IMU makes Algorithm 1

robust for temporary absence of vision. Without vision

measurements the estimates will eventually drift away.

However, short periods without vision, for instance, due to

motion blur, obstruction of the camera or an unmodeled

scene, can be handled without problems.

Finally, Algorithm 1 is rather flexible. It can be rather

straightforwardly extended to include other information

sources. For instance, a GPS might be added to aid with

outdoor applications.

4 Implementation considerations

When implementing Algorithm 1, several practical issues

have to be solved. These turn out to be critical for a suc-

cessful system, motivating their treatment in this section.

4.1 Metric scale

As mentioned in Sect. 2.3, vision-only methods suffer from

a scale ambiguity, since projections, unit-less measure-

ments, are used. Once the scale of the scene model is

defined, camera pose can be determined explicitly using

three or more correspondences in combination with a cal-

ibrated camera. However, changing the scale of a scene

model will give scaled, but indistinguishable poses. Hence,

for vision-only applications scene models can have an

arbitrary scale; a standard choice is to define the unit length

to be the distance between the first two cameras.

For the inertial–vision combination, the scale is rele-

vant. Sensor fusion utilizes position information both

from the camera and the IMU, which implies that these

quantities must have identical units. Scale is also impor-

tant when assumptions are made about the motions of the

camera, for instance the type and parameters of a motion

model [10].

Introducing a metric scale into the scene model solves

this issue. An existing scene model with arbitrary scale can

be converted by comparing it with a Computer Aided

Design (CAD) model or measuring an object with known

dimension. An interesting solution might be to include

metric information, for instance using accelerometers, in

the algorithms for building the scene models. However,

this is still an open question.

4.2 Vertical alignment

Accelerometers cannot distinguish accelerations of the

body from gravity, as previously discussed in Sect. 2.2. To

separate the contributions in the measurement, the gravity

vector can be rotated from the earth coordinate system to

the body frame and then subtracted. Hence, the scene

model should be vertically aligned, or equivalently the

gravity vector should be known in the scene model.

Typically, this is not the case.

The performance of the system is extremely sensitive to

this alignment, since gravity is typically an order of mag-

nitude larger than normal body accelerations. For example,

a misalignment of 1� introduces an artificial acceleration of

0.17 m/s2 which gives rise to a systematic position drift of

8.5 cm when integrated over 1 s. Hence, even for small

errors a systematic drift is introduced which causes the

system to lose track without continuous corrections from

correspondences. In this case the drift followed by a cor-

rection gives rise to a sawtooth pattern in the estimates,

which deteriorates performance and will be visible as

‘jitter’.

The gravity vector can be determined by averaging the

accelerometer readings over some time, while the camera

is stationary in a known pose. However, a preferable

method is to record accelerometer measurements while

scanning the scene and include this data in the model

building procedure to align the scene model vertically.

4.3 Sensor pose calibration

The camera and the IMU both deliver measurements which

are resolved in the camera and the body coordinate system,

respectively. Typically, these do not coincide, since the

sensors are physically translated and rotated with respect to

J Real-Time Image Proc (2007) 2:149–160 155

123



each other. This rigid transformation should be taken into

account while fusing the measurements.

The problem of determining the relative position and

orientation is a well studied problem in robotics where it is

known as hand–eye calibration, see e.g., Strobl and Hirz-

inger [38] for an introduction to this topic. However, most

methods do not apply directly since the IMU does not

provide an absolute position reference. Absolute orienta-

tion information is available since the accelerometers

measure only gravity when the sensor unit is stationary.

The orientation part of the calibration is determined

using a slight modification of standard camera calibration

procedures [42], where the calibration pattern is placed on

a horizontal surface and accelerometer readings are taken

in the various camera poses. The camera poses are deter-

mined in the camera calibration procedure, from which the

vertical directions in the camera frame can be determined.

The combination of these and the vertical directions in the

body frame measured by the accelerometers allows for

calculation of the rotation between the frames [17, 27].

This method requires accurate positioning of the calibra-

tion pattern. As floors and desks in buildings are in practice

better horizontally aligned than the walls are vertically

aligned, it is recommended to use horizontal surfaces.

The translational part of the calibration is harder to

estimate, and a solid calibration method which does not

require special hardware is an open issue. The translation

should also be available from technical drawings of the

sensor unit and a rough guess using a ruler gives a quite

decent result in practice. However, with increasing angular

velocity this parameter becomes more dominant and an

accurate calibration is necessary.

4.4 Time synchronization

It is very important to know exactly when the different

measurements are taken. Multiple sensors usually have

multiple clocks and these have to be synchronized. This

can be achieved for instance by starting them simulta-

neously. However, clocks tend to diverge after a while,

which will introduce problems during long-term operation.

Hardware synchronization, i.e., one central clock is used to

trigger the other sensors, solves this problem and this

procedure has been applied in the sensor unit described in

Sect. 2.

4.5 Filter tuning

The process and measurement models described in Sect. 3

have a number of stochastic components which are used to

tune the filter. The settings used in the present setup are

given in Table 1. The measurement noise typically depends

on the sensors and should be experimentally determined.

For the accelerometers and gyroscopes a measurement of a

few seconds with a static pose was recorded to calculate an

accurate noise covariance. Alternatively, the specification

by the manufacturer can be used.

The noise acting on the vision measurements is harder to

determine. The algorithms return a point estimate for the

obtained matches, but typically there is no stochastic

information available. The accuracy for each match is

highly individual and can vary a lot depending on e.g.,

lighting conditions, local texture, viewing angle, distance

and motion blur. These individual characteristics cannot be

captured by a common noise setting. Hence, it would be

beneficial to include accuracy estimation in the image

processing algorithms. Although attempts are being made

to solve this open issue, see e.g., Skoglund and Felsberg

[35], the current implementation uses a predefined noise

covariance.

The process model currently used is a random walk in

acceleration and angular velocity. This model is not so

informative but is very general and is useful for tracking

uncontrolled motions such as those generated by a human.

The motion model is to be considered as a separate source

of information, apart from the sensors. Hence, when more

information is available in a certain application, for

instance in the form of control signals, these should be

Table 1 Specifications for the sensor unit and the parameter values

used for in the filter tuning

IMU

Gyroscope range ±20.9 rad/s

Gyroscope bandwidth 40 Hz

Accelerometer range ±17 m/s2

Accelerometer bandwidth 30 Hz

Sample rate 100 Hz

Camera

Selected resolution 320 · 240 pixel

Pixel size 7.4 · 7.4 lm/pixel

Focal length 3.2 mm

Sample rate 12.5 Hz

Filter settings

Gyroscope measurement noise 0.01 rad/s

Accelerometer measurement noise 0.13 m/s2

2D feature measurement noise 0.1 pixel

3D feature measurement noise 1 mm

Angular velocity process noise 0.03 rad/s

Acceleration process noise 0.1 m/s2

Gyroscope bias process noise 0.5 mrad/s

Accelerometer bias process noise 0.5 mm/s2

Note that the noise parameters specify the standard deviation
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included in the model to improve the filter performance.

The covariances in the process model can be seen as tuning

knobs, controlling the relative importance of the mea-

surements and the process model and as such they are

important parameters for stable tracking.

Valid models and parameters are imperative to obtain

good estimates. The innovations, defined as the difference

between a measurement and its expected value,

et ¼ yt � ŷt; ð13Þ

can be used to asses whether the models are correctly

tuned. Under the model assumptions, the innovations

should be normally distributed and the squared normalized

innovations et
T St

–1 et, where St is the predicted covariance

of the measurement, should have a v2 distribution. It is

highly recommendable to monitor these performance

indicators, especially during testing, but also during normal

operation.

5 Experiments

This section is concerned with an experiment where

Algorithm 1 with an EKF is used to fuse the measurements

from the sensor unit in order to compute estimates of its

position and orientation. The experimental setup is dis-

cussed in Sect. 5.1 and the performance of the proposed

inertial–vision combination provided by the sensor unit is

assessed in Sect. 5.2.

5.1 Setup

The sensor unit is mounted onto a high precision 6 degrees

of freedom (DoF) ABB IRB1440 industrial robot, see

Fig. 3. The reason for this is that the robot will allow us to

make repeatable 6 DoF motions and it will provide the true

position and orientation. The robot has an absolute accuracy

of 2 mm and a repeatability of 0.2 mm. This enables sys-

tematic and rather objective performance evaluation of

various algorithms, based on absolute pose errors instead of

the commonly used feature reprojection errors. The sensor

unit provides 100 Hz inertial measurements synchronized

with 12.5 Hz images. The complete specification is listed in

Table 1. The scene used for the experiments consists of two

orthogonal planar surfaces as shown in Fig. 2. Because of

the simple geometry, the scene model could be constructed

from a textured CAD model. Its coordinate system is such

that the x-axis points upward and that the y- and z-axes span

the horizontal plane. Although the scene was carefully

positioned, it had to be calibrated w.r.t. gravity as described

in Sect. 4.2. It should be emphasized that the scene has been

kept simple for experimentation purposes only. The system

itself can handle very general scenes and these are modeled

using the methods described in Bartczak et al. [24].

With the setup several trajectories have been tested. In

this paper, an eight-shaped trajectory, shown in Fig. 4, will

be discussed in detail. The sensor unit traverses this 2.6 m

eight-shaped trajectory in 5.4 s, keeping the scene in view

at all times. The motion contains accelerations up to 4 m/s2

and angular velocities up to 1 rad/s. Hence, the motion is

quite aggressive and all 6 DoF are exited. As the dis-

placement between images is limited to 15 pixels it is still

possible to use vision-only tracking, which allows for a

comparison between tracking with and without an IMU.

The experiment starts with a synchronization motion,

which is used to synchronize the ground truth data from the

industrial robot with the estimates from the system. Time

Fig. 3 The camera and the IMU are mounted onto an industrial

robot. The background shows the scene that has been used in the

experiments
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Fig. 4 The eight-shaped trajectory undertaken by the sensor unit. The

gray shaded parts mark the interval where vision is deactivated. The

circle indicates the origin of the scene model
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synchronization is relevant, since a small time offset

between the signals will result in a significant error. After

the synchronization, the eight-shaped trajectory (see

Fig. 4) is repeated several times, utilizing the accurate and

repeatable motion provided by the industrial robot.

5.2 Results

The experimental setup described in the previous section is

used to study several aspects of the combination of vision

and inertial sensors. The quality of the camera pose esti-

mates is investigated by comparing them to the ground

truth data. Furthermore, the increased robustness of the

system is illustrated by disabling the camera for 1 s during

the second pass of the eight-shaped trajectory. Addition-

ally, the feature predictions are shown to benefit from the

inertial measurements. The findings will be discussed in the

following paragraphs.

By comparing the estimates from the filter to the ground

truth the tracking errors are determined. Examples of

position and orientation errors (z, roll) are shown in Fig. 5.

The other positions (x, y) and orientations (yaw, pitch)

exhibit similar behavior. The absolute accuracy (with

vision available) is below 2 cm for position and below 1�
for orientation. These values turn out to be typical for the

performance of the system in the setup described above.

Furthermore, the accuracy of the IMU is not affected by the

speed of motion, resulting in a tracking accuracy which is

rather independent of velocity, as illustrated by Fig. 6

which shows the tracking error of the eight-shaped trajec-

tory executed at various speeds. Other experiments, not

described here, show similar performance for various

trajectories.

A proper treatment of the implementation considerations

as discussed in Sect. 4 is necessary in order to obtain good

performance. Still, calibration errors and slight misalign-

ments as well as scene model errors and other unmodeled

effects are causes for non-white noise, which can deterio-

rate the performance. However, with the assumptions and

models used, the system is shown to estimate the camera

pose quite accurately using rather low-rate vision mea-

surements. The estimated camera poses result in good and

stable augmentation.

The system tracks the camera during the entire experi-

ment, including the period where vision is deactivated. The

motion during this period, indicated using gray segments in

Fig. 4, is actually quite significant. Vision-only tracking

has no chance of dealing with such a gap and loses track.

Indeed, such an extensive period where vision is deacti-

vated is a little artificial. However, vision might be

unavailable or corrupted, due to fast rotations, high

velocity, motion blur, or simply too few visible features.

These difficult, but commonly occurring, situations can be

dealt with by using an IMU as well, clearly illustrating the

benefits of having an IMU in the system. In this way,

robust real-time tracking in realistic environments is made

possible.

The measurements from the IMU will also result in

better predictions of the feature positions in the acquired

image. This effect is clearly illustrated in Fig. 7, which

provides a histogram of the feature prediction errors. The

figure shows that the feature prediction errors are smaller

and more concentrated in case the IMU measurement

updates are used. This improvement is most significant

Fig. 5 Tracking error during multiple passes of the eight-shaped

trajectory. The black line shows the position (z) and orientation (roll)

errors, as well as the number of correspondences that were used. The

gray band illustrates the 99% confidence intervals. Note that vision is

deactivated from 9.7 to 10.7 s. The vertical dotted lines mark the

repetition of the motion
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Fig. 6 Tracking error for several experiments executing the eight-

shaped trajectory at different speeds
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when the camera is moving fast or at lower frame rates. At

lower speeds, the vision-based feature predictions will

improve and the histograms will become more similar.

The improved feature predictions facilitate the use of

smaller search regions to find the features. This implies that

using an IMU more features can be detected, given a cer-

tain processing power. On the other hand, the improved

feature predictions indicate that the IMU handles the fast

motion and that the absolution pose information which

vision provides is required at a reduced rate.

6 Conclusion

Based on a framework for nonlinear state estimation, a

system has been developed to obtain real-time camera pose

estimates by fusing 100 Hz inertial measurements and

12.5 Hz vision measurements using an EKF. Experiments

where an industrial robot is used to move the sensor unit

show that this setup is able to track the camera pose with an

absolute accuracy of 2 cm and 1�. The addition of an IMU

yields a robust system which can handle periods with

uninformative or no vision data and it reduces the need for

high frequency vision updates.
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