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Abstract
Purpose Skull base features, including increased foramen ovale (FO) cross-sectional area, are associated with lateral skull
base spontaneous cerebrospinal fluid (sCSF) leak and encephalocele. Manual measurement requires skill in interpreting
imaging studies and is time consuming. The goal of this study was to develop a fully automated deep learning method for FO
segmentation and to determine the predictive value in identifying patients with sCSF leak or encephalocele.
Methods A retrospective cohort study at a tertiary care academic hospital of 34 adults with lateral skull base sCSF leak
or encephalocele were compared with 815 control patients from 2013–2021. A convolutional neural network (CNN) was
constructed for image segmentation of axial computed tomography (CT) studies. Predicted FO segmentations were compared
to manual segmentations, and receiver operating characteristic (ROC) curves were constructed.
Results 295 CTs were used for training and validation of the CNN. A separate dataset of 554 control CTs was matched 5:1
on age and sex with the sCSF leak/encephalocele group. The mean Dice score was 0.81. The sCSF leak/encephalocele group
had greater mean (SD) FO cross-sectional area compared to the control group, 29.0 (7.7) mm2 versus 24.3 (7.6) mm2 (P �
.002, 95% confidence interval 0.02–0.08). The area under the ROC curve was 0.69.
Conclusion CNNs can be used to segment the cross-sectional area of the FO accurately and efficiently. Used together with
other predictors, this method could be used as part of a clinical tool to predict the risk of sCSF leak or encephalocele.

Keywords Automatic segmentation ·Convolutional neural network ·Deep learning · Spontaneous CSF leak · Encephalocele ·
Idiopathic intracranial hypertension

Introduction

Rates of spontaneous cerebrospinal fluid (sCSF) leaks in the
United States are increasing [1, 2]. sCSF leak and encephalo-
cele of the lateral skull base are thought to be due to
chronically increased intracranial pressure causing erosion
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of the tegmen tympani and tegmen mastoideum and has
been associated with obstructive sleep apnea and idiopathic
intracranial hypertension (IIH, previous known as pseudo-
tumor cerebri or benign intracranial hypertension) [3–6].
Diagnosis of IIH by the modified Dandy criteria requires
lumbar puncture to confirm elevated intracranial pressure
and neuroimaging that shows no other etiology for intracra-
nial hypertension, such as a mass or structural lesion [7–11].
This requires patients to undergo an invasive procedure, and
it can be difficult to identify an elevated pressure if a patient is
actively leaking CSF due to the temporary decrease in pres-
sure from egress of fluid acting as a form of “auto diversion”
of CSF. Patients with sCSF leak may not develop the typical
signs, symptoms, and imaging findings, such as papilledema
or magnetic resonance imaging (MRI) findings including
posterior globe flattening, optic nerve ectasia and tortuosity,
and empty sella [12–20] until after skull base repair, which
can result in delayed or missed diagnosis [21–26].
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Prior studies have found associations between skull base
features identifiable on imaging studies and IIH, sCSF leak,
and encephalocele, including thinning of the calvarium and
skull base [27–34] and an enlarged foramen ovale (FO) [35,
36]. Manual measurement of these features requires skill in
interpreting neuroimaging, is time-consuming, and is prone
to inter-observer variation.

U-Net is a convolutional neural network (CNN) that is
commonly used for automated image segmentation, which is
the process of precisely delineating a structure on an image
[37]. U-Net can perform both 2D (one slice at a time) and
3D (entire volume) predictions. 2D predictions have the ben-
efit of being performed at full spatial resolution (~ 0.5 mm
in-plane), while 3D predictions have increased accuracy due
to improved spatial awareness but are performed at a lower
spatial resolution (~ 1.5mm) due tomemory constraints. Pre-
vious researchers have described 2D–3D hybrid prediction
techniques to get both the full resolution and accuracy ben-
efits of 2D and 3D techniques, respectively [38, 39]. Others
have also described a “cascaded” segmentation technique,
first identifying a structure of interest on a whole volume,
then zooming in on that structure to make additional pre-
dictions [40]. We hypothesized that a cascaded, or iterative
prediction technique could provide accurate full-resolution
segmentations of the FOon axial computed tomography (CT)
images for area determination.

The future value of this automated FO measurement lies
in the development of a predictive model of sCSF leak and
encephalocele thatwould be non-invasive, time-efficient, and
not require user expertise. This could be used to identify
patients at increased risk of sCSF leak or encephalocele
who may benefit from additional diagnostic testing and/or
treatment. Among patients who undergo operative repair,
this would also enable determining which patients are at
increased risk of surgical failure (recurrent leak) or contralat-
eral disease (new onset sCSF leak and/or encephalocele).

Methods

Training data gathering

After approval from the institutional review board at the
University of Nebraska Medical Center (IRB# 412–19-EX),
training data was gathered from a dataset of 295 CT head
studies [41]. These were performed on a variety of Gen-
eral Electric (GE, Boston, MA) CT scanners at our hospital
and surrounding outpatient clinics. All CTs were obtained
as axial/contiguous acquisitions, with 0.625 mm slice thick-
ness and reconstructed in standard algorithm with iterative
reconstruction technique. All CTs were obtained with a 512
× 512 imaging matrix, and a field-of-view of either 250 or

320 mm. Exclusion criteria were excessive motion or streak
artifact obscuring measurement of the FO.

Training data labeling

CT studies were first aligned based on landmarks of the bilat-
eral cochleas and nasal bridge approximating the anterior
commissure—posterior commissure line (AC-PC line), in a
technique described in a submitted, unpublished manuscript.
Manual FO labels were placed for each CT image using 3D
Slicer (version 4.11.20210226) [42, 43]. Labels were placed
over the entire FO at the cranio-caudal center of the FO
using a 3 mm spherical brush and editable intensity range
of -3000–350 Houndsfield units (HU). Manual segmenta-
tion was performed by a single author (S.C.), with another
author (J.C.) verifying the accuracy of the manual labels.

U-Net training

The base CT head studies and labels were augmented by
a rotated version of each CT head, with up to a 30-degree
rotation in the sagittal plane, and a rotated and scaled version
of each CT head, rotated up to 30 degrees in the sagittal
plane, and scaled by a factor of 0.5–1.0. Rotation was only
done in the sagittal plane due to axial and coronal alignment
performed prior to predictions. Cropped images and labels
with a spacing of 0.5× 0.5× 0.625 and size of 128× 128×
64 were generated around each FO for training of a second
full resolution model. Each of these 3 paired versions was
then flipped. Of the 3 versions for the original and flipped
images, 1 was selected from each (basically selecting each
for FO once), for a total of 2 per subject and 590 total images.
90%of the imageswere used for training, and 10%were used
for validation of the CNN.

U-Net training was performed using the Project MONAI
Python toolkit [44]. Spacing for training of the full CT head
images was 1.5 × 1.5 × 1.5 mm in x,y,z dimensions, resam-
pled from 0.5 × 0.5 × 0.625. Spacing for training of the
cropped images was at the original resolution of 0.5 × 0.5 ×
0.625. A model for only the right FO was trained. Prediction
for the left FO was accomplished by flipping the image and
using the right FO model. Training was stopped when there
was no improvement in mean Dice coefficient for 50 epochs.

Iterative prediction algorithm design

An iterative prediction technique was implemented. First,
prediction of a FO was performed on the full head CT at
1.5 mm spacing. Then, the CT head was cropped around the
FO at a size of 128 × 128 × 64 and spacing of 0.5 × 0.5 ×
0.5. Prediction was then performed on that image with the
separately trained croppedmodel. The full-resolution predic-
tionwas then transferred back onto a full resolution version of
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Fig. 1 Example of full head and
cropped sizes and spacings used
for training and prediction.
Training was performed on both
the full head and cropped labels.
Prediction was done on the full
head 1.5 mm spacing images,
(a) axial and (b) coronal. Then
the image was cropped around
the prediction, (c) axial and
(d) coronal, and prediction was
done again on the cropped 0.5
mm spacing image. The
full-resolution cropped
prediction was then transferred
back to the whole head image

the CT head. Failures were detected by absence of prediction
data, or abnormal spacing of the predicted foramina (< 35 or
65 mm apart, > 6 mm difference on z-axis, > 5 mm differ-
ence on y-axis). Figure 1 shows an example of full head and
cropped sizes and spacings used for training and prediction.

Model testing

Testing of the model was performed on a separate dataset of
554 patients, including 34 patients with known sCSF leak or
encephalocele confirmed at the time of surgical repair of the
skull base, and 520 control patients. This dataset included
CT head, CT temporal bone, CT face, and CT sinus studies.
For each subject, the CT was first aligned using the same
landmark-based technique. If the nasal bridgewasnot visible,
such as on a temporal bone CT, the image was registered to a
template CT head, then just the cochleas were aligned along
the z- and y-axes. Predictions were then made for the right
and left FO as detailed above. FO area was calculated for
each predicted slice (number of voxels * voxel area), and the
slice with the largest area was selected and recorded.

Processing was performed on a computer with an Intel
Core i7-9700K CPU (Intel Corporation, Santa Clara, CA),
and an NVIDIA GeForce GTX 1080 Ti GPU (Nvidia Cor-
poration, Santa Clara, CA).

Statistical analysis

Demographic and clinical variables including age at time
of imaging, sex, race, ethnicity, height, and weight were
collected. Patient charts were reviewed for pertinent comor-
bidities, and the following were recorded as present or
absent: diabetes mellitus (DM), osteoporosis, hypertension
(HTN), chronic kidney disease (CKD), obstructive sleep
apnea (OSA), idiopathic intracranial hypertension (IIH),
and hydrocephalus. Patients in the sCSF leak/encephalocele
group were matched 5:1 to control patients on age and sex
using a nearest neighbor matching algorithm.

Categorical variableswere reported as counts and percent-
ages, and continuous variables were reported as mean and
standard deviation, or median and interquartile range (IQR)
if skewed. Associations between categorical variables were
assessed using chi square tests, or Fisher’s exact test when
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expected cell sizeswere low.Associations betweengroup and
continuous variables were assessed using independent sam-
ples t-tests. Receiver operating characteristic (ROC) curves
were constructed to evaluate the diagnostic ability of the FO
size as a binary classifier, and the area under the curve (AUC)
was calculated for each ROC curve. Statistical analysis was
performed in R version 4.1.2 (R Foundation for Statistical
Computing, Vienna, Austria). All tests were two-tailed with
statistical significance defined by an α � 0.05.

Results

Training data gathering

295 CT head studies on unique patients were selected for
CNN training data creation. The minimum age was < 1 year,
maximum age was 92 years, and mean (SD) age was 54.5
(19.3) years. 51% were male.

U-Net training

After augmentation by rotation, scaling, and flipping, 590
studies were semi-randomly selected for U-Net training
(90%) and validation (10%) as detailed in the methods
section.MeanDice scoreswere 0.66 for the full head / 1.5mm
spacing right FO and 0.81 for the cropped / 0.5 mm spacing
right FO.

The FO areas predicted by the CNN in this training set
compared favorably with the manual ground truth measure-
ments on the same imaging studies. Themean (SD)manually
measured right FO area was 22.8 (7.1) mm2, and the left FO
area was 22.7 (6.8) mm2. The mean (SD) predicted right FO
area 22.4 (6.4) mm2, and the predicted left FO area was 22.2
(6.6) mm2. The difference in the sample mean foramen size
between measured and predicted values was 0.4 mm2 for the
right foramen (1.8% of the foramen area), and 0.5 mm2 for
the left foramen (2.2% of the foramen area). At the level of
individual foramina, there was a mean (SD) difference of
1.52 (2.35) mm2 between the manually measured and pre-
dicted right FO, and a mean difference of 1.73 (3.28) mm2

for the left FO, with an overall mean difference of 1.62 (2.66)
mm2 (Table 1).

Model application

A separate dataset of 554 CT studies was used for evaluation
of the segmentation algorithm in identifying patients with
lateral skull base sCSF leak or encephalocele. Themean (SD)
age of patients at the time imaging studies was 63.6 (17.9)
years and ranged from 19 to 101 years. 49% were male. This
included 34 imaging studies from patients with known lateral
skull base sCSF leak or encephalocele that was confirmed at

Table 1 Comparison of ground truth (manual measurements) with pre-
dicted area for training CT dataset (n � 295)

Foramen ovale
area, mm2

Ground
truth

Predicted
area

Difference†

Left FO, mean
(SD)

22.7 (6.8) 22.2 (6.6) 1.7 (3.3)

Right FO, mean
(SD)

22.8 (7.1) 22.4 (6.4) 1.5 (2.7)

†Mean of differences between paired (ground truth and predicted area)
values

the time or surgical repair via amiddle cranial fossa approach
and 520 controls without IIH, CSF leak, or encephalocele.

Segmentation failed 9 times, including 8 times on control
patients. Seven failures were due to excessive motion during
image acquisition (an example is shown in Fig. 2A), and one
failure was due to an uncorrectable gantry tilt issue. Segmen-
tation failed once on a patient in the sCSF leak/encephalocele
group who had numerous arachnoid granulations along the
skull base obscuring the FO (Fig. 2B).

Patients in the sCSF leak/encephalocele group were
matched 5:1 to controls using a nearest neighbor algo-
rithm. Mean (SD) age was 53.3 (11.6) years in the sCSF
leak/encephalocele group, and 53.2 (20.2) years in the con-
trol group. There were no significant differences in age (P
� 0.95) or sex (P � 0.37) between the matched groups.
Body mass index (BMI) was significantly higher in the
sCSF leak/encephalocele group (median 37.0 kg/m2 vs.
24.4 kg/m2,P < 0.001). The rates of diabetesmellitus (44.1%
vs. 20.6%,P� 0.004) andOSA (29.4% vs. 8.8%,P� 0.002)
were higher in the sCSF leak/encephalocele group compared
to the control group. The rates of osteoporosis (14.1%vs. 0%,
P � 0.002) and CKD (8.8% vs. 0%, P � 0.08) were higher in
the control group compared to the sCSF leak/encephalocele
group. No significant differences were found for the rates
of HTN (P � 0.35), IIH (P � 0.17), or hydrocephalus (no
patients in either group).

The mean (SD) FO area was significantly higher in the
sCSF leak/encephalocele group: 25.4 (6.1) mm2 versus 22.2
(6.2) mm2 (P � 0.008) (Table 2). There was a larger differ-
ence between left and right FO among patients in the sCSF
leak/encephalocele group, with a mean (SD) difference of
7.2 (5.3) mm2 between the 2 sides, compared to the control
group, which had a mean (SD) difference of 4.2 (4.7) mm2,
but this did not reach statistical significance (P� 0.56). Com-
parison of the larger of the 2 foramina for each patient yielded
an even greater difference between the 2 groups: 29.0 (7.7)
mm2 versus 24.3 (7.6) mm2 (P � 0.002) (Fig. 3). A bino-
mial test of the patients with measurable foramina showed
that in neither the sCSF leak/encephalocele group (n � 33, P
� 0.49, 95% CI 0.39–0.75) nor the control group (n � 179,
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Fig. 2 Segmentation failures: A
Coronal CT image showing
excess motion during image
acquisition, which was
responsible for the majority of
segmentation prediction failures.
B Failure of segmentation in
patient with known idiopathic
intracranial hypertension and
CSF leak. Note the numerous
arachnoid granulations along the
central skull base obscuring the
foramen ovale (arrow)

Fig. 3 Comparison of mean areas
of the foramen ovale for control
patients versus patients with
sCSF leak or encephalocele.
Significant differences in the
means were found between the
two groups for the left FO, right
FO, mean (mean value
comparing each patient’s left and
right side) FO, and the larger (the
larger of the two comparing each
patient’s left versus right side)
FO. Error bars are the standard
error of the mean

P � 0.18, 95% CI 0.48–0.63) was the left or right foramen
significantly larger than compared to the contralateral side.
The laterality of the larger FO was ipsilateral to the laterality
of the CSF leak or encephalocele in only 17 (50%) patients,
which was not significantly different from chance (P � 0.52,
95% CI 0.34–0.69).

ROCcurveswere constructed to assess the diagnostic abil-
ity of the FO area as a binary classifier to identify patients
with sCSF leak/encephalocele. Figure 4 shows ROC curves
created to show the predictive value in identifying patients
in the sCSF leak/encephalocele group compared to age- and
sex- matched controls using (A) the mean FO size (mean
of left and right foramen) for each patient, and (B) using
the larger FO (left or right) for each patient. The area under
the ROC curve (AUC) was 0.65 when using the area of the
average (mean of left and right) FO for each patient. This
increased to an AUC of 0.69 when using the area of the larger
of the 2 foramina (left or right) for each patient in both the

sCSF leak/encephalocele and control groups. Using a cutoff
value of 30mm2 to diagnose an enlarged FO, as described by
Butros et al. in patients with IIH,19 gives a sensitivity of 30%
and a specificity of 79% for the sCSF leak/encephalocele
group.

Discussion

Our data show the utility of using a CNN with an iterative
technique to produce accurate full-resolution 3D segmenta-
tion of the FO utilizing U-Net. This allows the segmentation
and analysis of smaller detailed structures such as the FO,
circumventing memory restrictions previously encountered
with full-resolution prediction. It also continues to benefit
from the spatial awareness of 3Das opposed to 2Dprediction,
further increasing accuracy. While the increased accuracy of
segmentation at full resolution is intuitive, the Dice score
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Fig. 4 ROC curves were
constructed to show the
predictive value in identifying
patients in the sCSF
leak/encephalocele group
compared to age- and sex-
matched controls using (A) the
mean foramen ovale size (mean
of left and right foramen) for
each patient, and (B) using the
larger foramen ovale (left or
right) for each patient

increase from 0.66 to 0.81 also objectively demonstrates an
improvement. The model was also quite robust, only fail-
ing to segment the FO on CT studies for clear reasons (e.g.,
motion artifact, unidentifiable FO). Finally, no extra manual
effort was required for this implementation, as the cropped
images and labels were automatically generated. Differences
in measurements between the manual segmentations and the
predicted (deep learning algorithm) measurements were <
2 mm2 on average and are not simply due to errors of the
CNN but are a function of the inherent challenge in the inter-
pretation of voxels at the edge of foramen, with intermediate
opacity between bone and soft tissue, which is a challenge
that is always present in manual measurements as well.

The clinical utility of this technique lies in its ability
to predict the risk of patients developing a lateral skull
base sCSF leak or encephalocele, using data (CT images)
that are already readily available for many patients. There
is currently no agreement on screening or management of
sCSF leak in patients with IIH or other pathologies associ-
ated with elevated intracranial pressure [45]. While reported
rates of surgical repair are high, there is room for improve-
ment in identifying patients at high risk of sCSF leak or
encephalocele, which could potentially be prevented through
targeted interventions, and among patients who undergo sur-
gical repair, identifying patients at risk of surgical failure due
to increased intracranial pressure that was not identified prior
to repair due to a CSF fistula [46–49].

Prior studies have shown the application of deep learning
algorithms for automated detection of intracranial hemor-
rhage, calvarial fracture, midline shift, and mass effect in
patients with head trauma or stroke symptoms using datasets
of head CT scans [50–52]. A deep learning framework has
also been used for differentiating patients with normal cogni-
tion, mild cognitive impairment, Alzheimer’s disease (AD),
and non-AD dementias using MRI brain imaging together
with demographic and clinical data [53]. Similarly, beyond

the usefulness of a non-invasive imaging-based diagnostic
tool to identify patients at risk of sCSF leak or encephalo-
cele, the methods used in the present study could be used
together with other demographic and clinical variables as
part of a largermodel to stratify and direct patients to undergo
further diagnostic workup with lumbar puncture to confirm
IIH or to suggest treatment with weight loss interventions,
acetazolamide, or ventriculoperitoneal shunting to reduce
intracranial pressure [54, 55].

The present study has several limitations. First, alignment
of non-head CT studies (e.g., CT sinus, CT temporal bone)
could be somewhat inconsistent if all landmarks were not
present for alignment in the axial plane, which could slightly
alter the area measurement for that study. Registration to an
aligned template was meant to mitigate that inconsistency.
Also, the precise areas reported in this study are specific to
the training labels and model utilized for prediction. Label-
ing was done with a -3000–350 HU editable intensity range.
As the interface between bone and soft tissue is somewhat
indistinct, a higher range would have led to larger FO areas.
Precise reproduction of study results would need to adhere
to the above editable intensity range for labeling. Finally,
generalizability of the findings may be reduced since the
training dataset was derived from a single CT scanner vendor
(GE), though from a variety of scanner models. Wider use of
the prediction model would likely require additional training
data from more vendors.

Conclusion

An iterative prediction technique allows for accurate and full
resolution 3D segmentation ofmedical images.We described
the use of an automated method of measuring the FO and
the application of this technique for predicting patients with
sCSF leak or encephalocele. Future applications combining
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Table 2 Patient Demographics and Baseline Characteristics of patients
with CSF leak or encephalocele compared to matched controls

Matched
control group

CSF leak/
encephalocele
group

P value

Total (N �
204), n

170 34 N/A

Sex, n (%) 0.37

Male 74 (43.5) 12 (35.2)

Female 96 (56.5) 22 (64.7)

Age, median
(IQR)

55 (34–68) 52 (46–60) 0.81†

Race, n (%) 0.71

White 140 (82.4) 30 (88.2)

Black 18 (10.6) 4 (11.8)

American
Indian/Alaska
native

2 (1.2) 0 (0)

Other 9 (5.3) 0 (0)

Ethnicity, n (%)

Hispanic 12 (7.1) 0 (0) 0.22

BMI, median
(IQR)

24.4
(21.4–28.4)

37.0
(29.8–422.5)

< 0.001†

Comorbidities, n (%)

Diabetes 35 (20.6) 15 (44.1) 0.004

Osteoporosis 24 (14.1) 0 (0) 0.02‡

HTN 87 (51.2) 21 (61.8) 0.26

CKD 15 (8.8) 0 (0) 0.08‡

OSA 15 (8.8) 10 (29.4) 0.002‡

IIH 0 (0) 1 (2.9) 0.17‡

Hydrocephalus 0 (0) 0 (0) n/a

Foramen ovale
area, mm2

0 (0) 0 (0) n/a

Left FO, mean
(SD)

22.2 (6.5) 25.9 (8.4) 0.02

Right FO, mean
(SD)

22.2 (7.4) 24.9 (6.6) 0.04

Mean of L&R
FO, mean
(SD)

22.2 (6.2) 25.4 (6.1) 0.008

Larger of L&R
FO, mean
(SD)

24.3 (7.6) 29.0 (7.7) 0.002

Percent values calculated by diagnosis category (column)
Bold p-values indicate statistical significance. P values are from chi-
square tests unless otherwise noted. †Wilcoxon rank sum test. ‡Fisher’s
exact test
IQR inter-quartile range; BMI body mass index; HTN hypertension;
CKD chronic kidney disease; OSA obstructive sleep apnea; IIH idio-
pathic intracranial hypertension;N/A not applicable;FO foramen ovale;
L left; R right

these measurements with other clinically relevant data may
further increase the predictive power and clinical utility.
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