
International Journal of Computer Assisted Radiology and Surgery
https://doi.org/10.1007/s11548-024-03234-8

ORIG INAL ART ICLE

Needle tracking in low-resolution ultrasound volumes using deep
learning

Sarah Grube1 · Sarah Latus1 · Finn Behrendt1 ·Oleksandra Riabova1 ·Maximilian Neidhardt1 ·
Alexander Schlaefer1

Received: 12 January 2024 / Accepted: 3 July 2024
© The Author(s) 2024

Abstract
Purpose Clinical needle insertion into tissue, commonly assisted by 2Dultrasound imaging for real-time navigation, faces the
challenge of precise needle and probe alignment to reduce out-of-plane movement. Recent studies investigate 3D ultrasound
imaging together with deep learning to overcome this problem, focusing on acquiring high-resolution images to create optimal
conditions for needle tip detection. However, high-resolution also requires a lot of time for image acquisition and processing,
which limits the real-time capability. Therefore, we aim to maximize the US volume rate with the trade-off of low image
resolution. We propose a deep learning approach to directly extract the 3D needle tip position from sparsely sampled US
volumes.
Methods We design an experimental setup with a robot inserting a needle into water and chicken liver tissue. In contrast
to manual annotation, we assess the needle tip position from the known robot pose. During insertion, we acquire a large
data set of low-resolution volumes using a 16×16 element matrix transducer with a volume rate of 4Hz. We compare the
performance of our deep learning approach with conventional needle segmentation.
Results Our experiments in water and liver show that deep learning outperforms the conventional approach while achieving
sub-millimeter accuracy. We achieve mean position errors of 0.54mm in water and 1.54mm in liver for deep learning.
Conclusion Our study underlines the strengths of deep learning to predict the 3D needle positions from low-resolution
ultrasound volumes. This is an important milestone for real-time needle navigation, simplifying the alignment of needle and
ultrasound probe and enabling a 3D motion analysis.

Keywords Volumetric ultrasound imaging · Deep learning · Needle tip detection · Real-time · Sparse feature learning

Introduction

In various clinical interventions, accurate needle placement is
crucial for optimal diagnosis and treatment results, e.g., dur-
ing biopsies or epidural punctures. Two-dimensional (2D)
ultrasound (US) imaging provides real-time visualization
of the needle and the punctured tissue and thus optimized
positioning of the needle. However, one common problem
when tracking the needle in 2D is the need for precise align-
ment of the needle with the US probe. Movements of needle
and tissue outside the imaging plane cannot be visualized.
In practice, the needle axis often deviates from this ideal
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alignment, which leads to less accurate needle tip detection
and longer interventions depending on the experience of the
physician. Therefore, recent studies have investigated needle
tip detection in three-dimensional (3D) US images [1, 5, 11,
15]. However, extracting the needle tip position from 3D US
images still faces several challenges. For example, imaging
artifacts caused by acoustic impedance differences at the nee-
dle are amplifiedby the increased number of soundwaves that
are emitted in different spatial directions. Analytical meth-
ods for 3D needle tip detection already show robust results
but are time-consuming and less suited for real-time appli-
cations [15]. Recent studies have investigated deep learning
approaches for 3D needle tracking and showed promising
results [9, 12, 13]. In these approaches, an initial needle seg-
mentation is followed by the determination of the needle
tip position.Alternatively, semantic voxel-wise segmentation
methods have been proposed [10]. The analyzed US volumes
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have been composed of high-resolution 2D images from a
manually rotated probe or a motorized 3D probe [3, 14].
However, acquiring, annotating, and analyzing these large
and high-resolution US volumes is very time-consuming,
impeding real-time application. Even though deep learn-
ing approaches enable fast image processing of less than
0.2 s [14], the proposed manual annotation of 3D volumes
is highly observer-dependent and requires high image qual-
ity.

Summarizing the current literature, deep learning approaches
seem to be a promising approach in order to enable real-time
needle tip tracking in volumetric ultrasound images. How-
ever, until now, high-resolution focused B-Mode ultrasound
volumes have been used for this, limiting the real-time capa-
bility by mainly two factors: first the low acquisition rate
of 1.6–1.8Hz [3] and second the large data size of one US
volume [10]. The latter is an important factor that strongly
influences the time required for subsequent image process-
ing steps. Hence, in order to enable real-time needle tracking,
both, data acquisition and processing have to be improved.

High volumetric imaging rates are feasible with custom
US matrix transducers that incorporate the same amount of
elements for imaging as channels available in the US sys-
tem. Hence, time-consuming multiplexing of the ultrasound
elements can be avoided. However, the disadvantage asso-
ciated with these probes, which enable real-time volumetric
data acquisition, is the poorer image resolution. Bengs et
al. [2] used a 16×16 element matrix transducer to perform
real-time soft tissue motion analysis in low-resolution US
images using deep learning, which outperformed conven-
tional approaches. However, the feasibility of detecting the
needle tip position in low-resolution US volumes using deep
learning approaches has not been shown yet. An important
prerequisite when using deep learning architectures for nee-
dle tip detection is the generation of reliable ground truth. In
the current literature, either clinical experts manually detect
the needle tip for each volume [14] or conventional analytical
algorithms are used. However, both methods are error-prone
and time-consuming, making it difficult to investigate and
implement accurate deep learning approaches.

As real-time capability is particularly important for nee-
dle insertions, our work addresses the problem of 3D needle
tip detection in low-resolution US volumes acquired with a
16×16 element matrix probe.We aim to increase the tempo-
ral volume acquisition rate with the trade-off of minimized
image resolution. We hypothesize that with the application
of deep learning methods, we do not need to acquire high-
resolution volumes that can be easily annotated by clinical
experts. Instead, we design an experimental setup to acquire
a large data set with our needle being inserted in water or
a tissue phantom in a reproducible fashion. In this way, we
acquire data with a known orientation relative to the US vol-
ume, which directly serves as ground truth for training. We

perform several evaluations using robot positions as train-
ing target. We define a deep learning approach that directly
extracts the needle tip position from the low-resolution US
volume without the need for prior needle segmentation or
manual annotation.

Material andmethods

Wepresent an experimental setup for automated data acquisi-
tion of needle punctures using a robot. US volumes of needle
insertions are acquired inwater as an imagingmediumaswell
as in chicken liver tissue. We perform needle insertions par-
allel to the ultrasound coordinate system and at tilted angles.
For needle tip detection,we propose a deep learning approach
and compare its performance with a conventional segmenta-
tion approach.

Experimental setup and calibration

An overview of our experimental setup for data acquisition is
depicted in Fig. 1. Our setup contains a hexapod robot, a US
systemwith a custom volumetric US probe and a needle. The
needle has a trocar needle tip and a diameter of 2.15mm. The
hexapod (HexapodH-820, PI, DE) with axial repeatability of
20µm drives the needle relative to the volumetric US probe
which is rigidly mounted to a base plate. The US probe (Ver-
mon, FR) contains 16×16 elements embedded at a pitch
of 0.3mm and has a central frequency of 3MHz. Volumet-
ric image data are acquired with a 256-channel US system
(Griffin, Cephasonics, USA) by connecting each element to
an individual channel without multiplexing.

The transformation matrices and notations of our setup
are depicted in Fig. 1a. First, the transformation between
hexapod base (H) and needle tip (NT) in the hexapod coordi-
nate system (HTNT) is estimated with a hand-eye-calibration
and the QR24 algorithm [4]. For needle calibration, we use
external markers attached to the needle shaft and a tracking
camera (fusionTrack 500, Atracsys, CH) with a resolution
of 0.09mm and a temporal sampling rate of 200Hz. We
report a translational error of 0.07mm and a rotational error
of 0.07◦ based on 761 different poses of the robot. Second,
we estimate the transformation from hexapod (H) to US (US)
coordinate system (HTUS), assuming parallel coordinate axes
and a pure translational transformation. We determine the
needle tip position in acquired US volumes using con-
ventional image processing methods. The translation offset
between the US and hexapod coordinate systems is calcu-
lated by minimizing the mean error between the detected
needle tip positions in the US volume and the corresponding
hexapod poses. Please note that the needle tip ground truth
positions in the hexapod coordinate system are given in mm;
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Fig. 1 Experimental setup: for
data acquisition we use a
hexapod robot (A) to drive the
needle (C) inside a phantom. A
matrix transducer containing
16×16 elements (B) is used for
ultrasound needle tracking. On
the right is depicted the
experimental setup for data
acquisition in liver soft-tissue

Fig. 2 US volume with needle:
a schematic drawing (left) of a
needle position relative to the
ultrasound transducer (US) is
shown with the corresponding
ultrasound volume in
water (middle) and liver
(right).The ultrasound volume is
visualized using maximum
intensity projection

hence, we divide them by the pixel resolution of 0.3mm to
get the hexapod pose in pixel units.

Data set acquisition

We use the open-source framework SUPRA [6] to acquire
focused B-Mode US volumes with a sampling frequency of
4Hz, an imaging depth of 5mm to 40mm, and an open-
ing angle of 70◦. We apply beamforming and construct
our US volumes from 16 beams while assuming a constant
speed of sound of 1500m/s. This results in US volumes
of 117×134×134 pixels along the depth and lateral axes,
respectively. Assuming a pixel resolution of 0.3mm in all
dimensions we report an effective field of view (FOV) of 5–
40mm along the depth axis and a maximum lateral width of
40.35mm. We track the needle movement with a temporal
sampling rate of 200Hz by recording the hexapod positions.

Weperformneedle insertions inwater aswell as in chicken
liver tissue. We manufacture a phantom with a fresh chicken
liver embedded in 10% gelatine concentration. To enhance
speckle, we add graphite powder to the gelatine before
pouring. The phantom is depicted in Fig. 1b. Exemplary
low-resolution US volumes of needle insertions acquired in

water and liver are shown in Fig. 2. The needle is inserted in
yH-direction over a distance of 15mm. During needle inser-
tion, we constantly acquire US volumes and track the needle
movement based on the hexapod position.

First, we perform twelve needle insertions parallel to the
yUS-direction of the US coordinate system. Based on the
orientation of the setup components shown in Fig. 1a, we
assume that the needle moves in the negative yUS-direction
of the US coordinate system with a velocity of 1.5mm/s. In
Fig. 3, the driven needle trajectories are shown in the hexapod
coordinate system. The insertions are performed at different
starting positions relative to the US volume by varying the
needle height zH ([−8, −10, −13, −18] mm) and horizontal
xH position ([−15, −20, −25] mm). In total, our data set
with the needle aligned parallel to the US coordinate system
contains about 600USvolumes acquired inwater and another
600 volumes in liver tissue.

Second, we investigate the feasibility of tracking the nee-
dle tip while the needle axis is tilted, hence not aligned to
the US axis. We perform needle insertions with the needle
rotated around the xH axis (αxH) and zH axis (αzH). We use
three different needle angles (αzH = ±5◦, αxH = −5◦) in
water. For each needle angle we perform nine insertions with
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Fig. 3 Trajectory showing the acquired needle positions in water and
liver in hexapod coordinates. The colors indicate exemplarily for fold 1
whether data are used for training, validation, or testing. Needle inser-
tion is performed along positive yH direction. Note that we can differ
between a test set at medium and bottom depth

a velocity of 1mm/s in needle axis direction with different
xH and zH positions. Our tilted data set contains about 2000
US volumes acquired in water.

Deep learning approach

We use a 3DDenseNet architecture to directly predict the 3D
needle tip position from a US volume as input. Our network
is based on a DenseNet-121 architecture [7] while we extend
the data processing to three dimensions. For efficient train-
ing, we crop the US volume to a FOV of 11.25–40mm along
depth direction and 7.5–32.85mm in xUS- and yUS-direction.
Please note that we only crop the US volumes and do not per-
form any additional pre-processing. We define a regression
problem to receive the three-dimensional position vector of
the needle tip as the output of the network. All US volumes
are fed into the network with labels describing the 3D posi-
tion of the needle tip. We distinguish between experiments
where we use the recorded needle tip positions in hexapod
coordinates (COSH) as the training target and the positions
in US coordinates (COSUS) as the training target. For our
quantitative analysiswe use the hexapod coordinates as train-
ing target as they are more precise and eliminate additional
inaccuracies due to US image distortions in the calibration
betweenultrasound andhexapod.All networks are trained for
800 epochswith a batch size of 8, a learning rate of 1 × 10−3,
using the Adam optimizer [8]. We define the loss function as
the mean squared error between the label and the predicted
vector of the needle position. For testing, we use the model
which shows best performance on the validation data set.

For our experiments with the needle axis parallel to theUS
coordinate axis, we train two individual networks on US data
acquired either in water or from the liver phantom. For each
network,we performafivefold cross-validation on the twelve

insertion data sets acquired. For each fold, we define two
insertion paths for testing, two insertion paths for validation,
and the remaining ones for training. The test data set remains
the same for all five folds. For the test data,weuse an insertion
path positioned at a medium depth and one positioned at a
lower depth of the US volume, hereafter referred to as the
upper and bottom test set, respectively. For the validation
data set, we use a new pair of insertion paths for each fold.
We make sure these two paths do not lie in the same plane
along the zH-axis or xH-axis. Figure3 shows the respective
data split for fold 1.

For the data set with tilted needle axis, we perform a five-
fold cross-validation on the nine insertion data sets acquired.
For each fold, we randomly define three insertion paths for
testing (one path per needle angle), six for validation (two
paths per needle angle), and the remaining ones for training.

The trainings are performed on a NVIDIA GeForce RTX
4090 GPU.

Conventional needle tip detection

The main steps of the conventional segmentation approach
(CSM) for needle tip detection are shown in Fig. 4. First, we
identify the region of interest (ROI) containing the needle.
For this, we assume that the needle is the largest structure
in the US image. We apply a median filter (size=[25, 3, 3])
and search for the largest contiguous area with pixel values
greater than 128 in the US image. We define a ROI that is
centered in the largest structure with ± 25 pixels in the xUS-
and zUS-direction. The yUS-direction is not cropped. In the
next step, the needle is segmented in the original US image,
cropped to theROI and its needle tip is detected.Weperforma
binary image segmentation based on a fast marching method
using weights based on weighted grayscale differences. We
define the needle tip as the farthest point from the edge of
the segmented structure.

Experiments andmetrics

In our conducted experiments, we mainly differ between the
chosen method for needle tip detection and the medium in
which we perform the insertions. First, we evaluate the track-
ing performance of our conventional segmentation approach
compared to our deep learning approach. For this analysis,
we use the parallel needle insertion data in water only. Sec-
ond, we compare the needle tip prediction performancewhen
using the hexapod position as training label compared to
using training labels in the US coordinate system. Third we
evaluate the performance on a liver data set. In the end, we
evaluate the performance on a data set with tilted needle ori-
entations.We evaluate the needle tracking performance of the
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Fig. 4 Conventional needle tip
tracking: main steps of the
conventional segmentation
method for needle tip tracking.
First, a ROI is defined. Second,
the needle is segmented and the
needle tip is computed. The
volumes are visualized using
maximum intensity projection
and the jet colormap

different experiments based on the mean absolute translation
error

e(xH, yH, zH) =
N∑

i=1

|li − pi | (1)

over N US volumes with li denoting the training label and
pi the predicted target position.

Results

Table 1 shows the needle tip tracking errors. The conventional
needle tip tracking results in a mean absolute translation
error of 1.32±0.73mm. In comparison, our deep learning
approach outperforms the conventional method. Using the
water data set with hexapod as training target results in a
mean translation error of only 0.54±0.15mm which is an
error reduction by nearly 1mm. When comparing the dif-
ferent training targets (hexapod- and US coordinate system),
similar errors occur. Using the data set with tilted needle
orientations (αN), we report a slightly decreased error of
0.17mm. Our DenseNet-121 leads to an inference time for
processing a 3D US volume of 0.01 s.

In addition to the mean position errors, Table 1 shows
the individual position errors along the hexapod coordinate
axis. For the conventional segmentation approach, particu-
larly large errors are shown along the xH axis.

Our experiments on chicken liver tissue demonstrate the
ex vivo applicability of our deep learning method for nee-
dle tip tracking. However, an increase in tracking errors can
be observed along all axes compared to our experiments in
water.

In Fig. 5, the mean position errors for the test insertion
paths acquired in the upper and lower part of the US vol-
ume are analyzed separately. While similarly good position
estimates are obtained in water for insertion at both imag-
ing depths, large deviations are observed for liver tissue in
the case of insertion in the lower part of the US volume. In

particular, there are deviations of up to 7.09mm for the esti-
mates along the zH axes. However, in the case of the upper
test path, the needle tip positions still can be predicted with
sub-millimeter accuracy.

Discussion

The results presented in this work demonstrate the potential
of using low-resolution US volumes for needle tracking in
real time by deploying a deep learning algorithm.We achieve
a high volume acquisition frequency of 4Hz and report an
inference time of 0.01 s for processing. While training tar-
gets in ultrasound coordinates are closer to the clinical use
case, our study has demonstrated that similar errors occur
in hexapod coordinates. This validates the use of hexapod
coordinates in our approach, as error rates between the two
coordinate systems are comparable. When analyzing the
position errors axis-wise, our deep learning approach per-
forms comparatively well on all axes for experiments in
water while the CSM algorithm reflects substantial devia-
tions. Keeping the almost parallel orientation of the hexapod
and US coordinate axes in mind, errors in xH and yH as well
as zH can be interpreted as deviations in estimating the needle
tip in the axial plane or depth of the US volume, respectively.
Using the deep learning approach a decrease in errors can be
noted when using the tilted data set as it contains a larger
variety of needle tip positions. For the insertions in chicken
liver tissue, a decrease in accuracy can be observed for both
approaches. However, the errors for the CSM algorithm are
again substantially higher. In particular, the estimation of
the yH position becomes inaccurate, potentially revealing a
wrong estimation of the needle tip along the needle shaft. For
our deep learning approach, there are noticeable deviations
in the estimation of the zH-position. When considering these
results separately for the insertion depths (Fig. 5), the devi-
ations particularly correspond to the insertion in the lower
part of the US volume. This might be related to additional
imaging artifacts as the liver tissue contains more structures
and boundaries than water which makes needle tip detec-
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Table 1 Mean absolute error
and standard deviation of the
needle tip position in water as
well as in liver

Method Target Medium e exH eyH ezH

CSM COSH Water 1.32 ± 0.73 1.48 ± 0.83 1.79 ± 2.10 0.70 ± 0.90

DenseNet COSH Water 0.54 ± 0.15 0.79 ± 0.49 0.37 ± 0.24 0.45 ± 0.31

DenseNet COSUS Water 0.48 ± 0.62 0.62 ± 0.38 0.22 ± 0.17 0.61 ± 0.38

CSM COSH Liver 2.21 ± 1.05 1.77 ± 0.55 3.89 ± 3.07 0.99 ± 0.91

DenseNet COSH Liver 1.54 ± 0.73 1.60 ± 1.36 0.96 ± 1.43 2.05 ± 1.98

DenseNet COSH Water; αN 0.37 ± 0.19 0.43 ± 0.41 0.26 ± 0.25 0.40 ± 0.43

The mean error e across all coordinate axes is shown as well as the errors along xH, yH and zH. It is differed
between the conventional segmentation method (CSM) and the DenseNet approach. αN indicates the data set
with tilted needle orientations

Fig. 5 Boxplots showing the
needle tip prediction error for
the trainings data set with
hexapod position as training
targets (COSH). The error is
averaged over all folds. It is
differed between the upper test
set and bottom test set

tion more difficult. Adding more training data with a higher
variety in zH-positions could help to reduce this influence.
However, our accuracy of needle tip prediction achieved in
liver tissue is comparable to those in the current literature
where high-resolution US images were used [10, 12].

Looking at our acquired US volumes, detecting the needle
tip or at least the needle shaft is rather difficult. Consequently,
the accuracy of the conventional segmentation approach is
also not particularly high. On the other hand, our trained
network seems to recognize decisive patterns in the image
data that enable precise regression to a 3D needle tip posi-
tion. Our quantitative results for needle insertion inwater and
chicken liver tissue underline these statements. In summary,
we demonstrate that our network is capable of predicting the
3D needle position from sparsely sampled US volumes to
enable real time needle tracking.

Conclusion

Wepresent a deep learning approach for detecting needle tips
aligned parallel to theUS coordinate axis aswell as tilted nee-
dle tips in low-resolutionUSvolumes acquiredwith a 16×16
matrix transducer. Our approach enables 3D needle tip posi-
tion estimation with an accuracy of 0.37±0.19mm in water
and 1.54±0.73mm in liver tissue. These results are compa-

rable to those in current literature which use high-resolution
US volumes. In future work, more complex network struc-
tures could be investigated to reach even better predictions in
tissue structures. Furthermore, additional training data with
more variety in depth positions could increase the needle
tip prediction performance. The real-time capability of 3D
needle tip detections offers new possibilities for needle inser-
tions. For example, it enables the use of 3D needle tracking
in robotic medical interventions to facilitate and improve real
time navigation.
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