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Abstract
Purpose Parkinson disease (PD) is a common progressive neurodegenerative disorder in our ageing society. Early-stage PD
biomarkers are desired for timely clinical intervention and understanding of pathophysiology. Since one of the characteristics
of PD is the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, we propose a feature extraction
method for analysing the differences in the substantia nigra between PD and non-PD patients.
Method Wepropose a feature-extractionmethod for volumetric images based on a rank-1 tensor decomposition. Furthermore,
we apply a feature selectionmethod that excludes common features between PD and non-PD.We collect neuromelanin images
of 263 patients: 124 PD and 139 non-PD patients and divide them into training and testing datasets for experiments. We then
experimentally evaluate the classification accuracy of the substantia nigra between PD and non-PD patients using the proposed
feature extraction method and linear discriminant analysis.
Results The proposed method achieves a sensitivity of 0.72 and a specificity of 0.64 for our testing dataset of 66 non-PD
and 42 PD patients. Furthermore, we visualise the important patterns in the substantia nigra by a linear combination of rank-1
tensors with selected features. The visualised patterns include the ventrolateral tier, where the severe loss of neurons can be
observed in PD.
Conclusions We develop a new feature-extraction method for the analysis of the substantia nigra towards PD diagnosis. In
the experiments, even though the classification accuracy with the proposed feature extraction method and linear discriminant
analysis is lower than that of expert physicians, the results suggest the potential of tensorial feature extraction.
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Introduction

Parkinson disease (PD) is a common progressive neurode-
generative disorder in our ageing society. Approximately
8.5 million people have been affected worldwide in 2017
[1]. The diagnosis of PD depends on the clinical features
acquired from the patient’s history and neurological exam-
ination [2]. Available treatments for PD are still only for
symptomatic relief and fail to stop the neurodegeneration
progress. Early-stage PD biomarkers are desired for timely
clinical intervention and understanding of pathophysiology
[3]. Several advanced imagingmarkers have emerged as tools
for visualising neuro-anatomic and functional processes in
PD. As one of them, neuromelanin-sensitive MRI uses high-
spatial-resolution T1-weighted imaging with fast spin-echo
sequences at 3-Tesla MRI [4, 5]. This imaging provides a
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neuromelanin image with neuromelanin-sensitive contrast,
and T1 high-signal-intensity areas in the midbrain represent
neuromelanin-rich areas. One characteristic of PD is pro-
gressive loss of dopaminergic neurons in the substantia nigra
pars compacta [6]. Furthermore, neuromelanin exists only in
dopaminergic neurons of the substantia nigra pars compacta
and noradrenergic neurons of locus coeruleus. Therefore, a
neuromelanin image is useful for analysing the substantia
nigra by capturing early PD-related changes. Figure1 shows
examples of a neuromelanin image and its annotation label
indicating the substantia nigra.

To analyse the substantia nigra as volumetric data, which
enables us to analyse shape and texture information simul-
taneously, our group tackled the automated volumetric
segmentation by deep learning models [7, 8] and the sta-
tistical analysis by higher-order tensor decomposition [9].
For the segmentation, by using neuromelanin images, we
achieved amore accurate segmentation [8] than T2-weighted
images [7]. In the statistical analysis [9], we found that
T1-weighted and neuromelanin images share similar three-
dimensional patterns in a fifth-order tensor decomposition of
multisequence of T1-weighted, T2-weighted and neurome-
lanin images. Furthermore, in the decomposition, we found
that three-dimensional patterns of the substantia nigra in
neuromelanin images are more compressible than T1- and
T2-weighted images. These previous results indicate that we
can obtain the small number of informative features of the
substantia nigra fromneuromelanin images. In relatedworks,
even though a deep learning model with an large dataset of
T1-weighted images of the whole brain has been reported
[10], the analysis of the substantia nigra on a neuromelanin
image has been reported only for a small dataset of 55 patients
[11]. Furthermore, this analysis manually selected a rectan-
gular region around the substantia nigra on the axial slices
of and input to a two-dimensional convolutional neural net-
work. A volumetric data analysis for the substantia nigra is
still an open problem.

We propose a new feature-extraction method to analyse
PD-related patterns in neuromelanin images of the substan-
tia nigra. Exploring discriminative features for classifying
the substantia nigra between PD and non-PD is essential for
finding PD biomarkers. As a higher-order tensor expression
of volumetric images [12], we express a set of volumetric
images of the extracted substantia nigra as a fourth-order
tensor. Inspired by tensor-based analytical methods [13–15],
we decompose this into a linear combination of fourth-order
rank-1 tensors. By re-ordering the elements of this decompo-
sition result, we obtain each decomposed volumetric image
by identical third-order rank-1 tensors. Since decompositions
of each image are based on the identical third-order rank-
1 tensors, a set of weights expresses the characteristics of
a volumetric image. Therefore, by selecting discriminative
weights for classifying PD and non-PD as a feature vector,

Fig. 1 Neuromelanin imaging and substanita nigra.a Captured image.
b Annotated region of the substantia nigra

we achieve a feature extraction for analysing patterns of the
substantia nigra. Our tensorial feature extraction offers the
visualisation of discriminative patterns by reconstructing an
volumetric image from selected features.

Methods

Tensor expression

In tensor algebra, the number of dimensions is referred to
as the order of a tensor. We set an M-th-order tensor A ∈
R

I1×I2×···×IM . An element with indices (i1, i2, i3, . . . , iM )

inA is denoted by ai1i2...iM . The index of a tensor is referred
to as the mode of a tensor. For example, i3 is the index for
mode 3.

AnM-th-order tensorA is a rank one if it can be expressed
by M vectors by

A = u(1) ◦ u(2) ◦ · · · ◦ u(M), (1)

where ◦ expresses the outer product. Furthermore, we have
a norm of a tensor as

‖A‖ =
√
√
√
√

I1∑

i1=1

I2∑

i2=1

· · ·
IM∑

iM=1

a2i1i2...iM . (2)

Expressing data as a tensor, we can decompose it into a linear
combination of rank-1 tensors and evaluate its reconstruction
error with the norm.

Tensorial feature extraction

We propose a feature extraction method for classifying vol-
umetric images between two categories. This work assumes
that three-dimensional patterns of volumetric images can be
decomposed into common three-dimensional patterns if vol-
umes of interest (VOIs) are extracted and pre-registered to
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Fig. 2 Tensorial expression by
decomposing a volumetric
image for feature extraction,
selection and visualisation

an appropriate coordinate system for their analysis. Setting
a volumetric image to a third-order tensor X ∈ RI1×I2×I3 ,
we have a linear combination of R patterns such that

X ≈
R

∑

r=1

frYr =
R

∑

r=1

fr (u(1)
r ◦ u(2)

r ◦ u(3)
r ), (3)

where a rank-1 third-order tensor Yr and scalar fr express
a decomposed three-dimensional pattern and its coefficient,
respectively. Figure2 illustrates our tensor expression of vol-
umetric images. Since fr indicates the importance of the r -th
decomposed three-dimensional pattern Yr , we can express
the three-dimensional pattern of X by a feature vector

f = [ f1, f2, . . . , fR]�. (4)

For the practical computation of the above feature extraction,
we introduce nonnegative tensor factorisation, an extension
of canonical polyadic (CP) decomposition.

Canonical polyadic decomposition

SettingX j ∈ R
I1×I2×I3 for j = 1, 2, . . . , J to be volumetric

images in a training dataset, we express these J volumetric
images as the fourth-order tensor T ∈ R

I1×I2×I3×I4 , where
we set I4 = J . For T , we have a CP decomposition1 [14–16]

T =
R

∑

r=1

u(1)
r ◦ u(2)

r ◦ u(3)
r ◦ u(4)

r + E (5)

by minimising a reconstruction error ‖E‖. The number of
rank-1 tensors in tensor decomposition is referred to as the
CP rankof a tensor.Note that there is noorthogonal constraint
for u(n)

r , r = 1, 2, . . . , R for an alternative-least square solu-
tion [16–18] in a CP decomposition. Since a reconstructed
volume image is given by

1 This decomposition is also called as CANDECOMP, PARAFAC or
CANDECOMP/PARAFAC (CP).

X j ≈
R

∑

r=1

u(4)
jr (u(1)

r ◦ u(2)
r ◦ u(3)

r ), (6)

where u(4)
jr is the j-th element of u(4)

r , we have a feature
vector

f j = [u(4)
j1 , u(4)

j2 , . . . , u(4)
j R]� (7)

of an image X j in a training set.
Furthermore, setting X̌k ∈ R

I1×I2×I3 for k = 1, 2, . . . , K
to volumetric images in a testing dataset, we express
these K volumetric images as a fourth-order tensor Q ∈
R

I1×I2×I3× Ǐ4 , where we set Ǐ4 = K . By computing only

Ǔ
(4) = [ǔ(4)

1 , ǔ(4)
2 , . . . , ǔ(4)

R ] with the obtained matri-

ces {U (n) = [u(n)
1 , u(n)

2 , . . . , u(n)
R ]}3n=1 in Eq. (5), we can

decompose volumetric images of a testing dataset with the
three-dimensional patterns in a training dataset. As a result,
we have a feature vector

f̌ k = [ǔ(4)
k1 , ǔ(4)

k2 , . . . , ǔ(4)
kR]� (8)

of an image X̌k in a testing set.

Nonnegative tensor factorisation

We introduce nonnegative tensor factorisation (NTF) [13,
15, 16] into feature extraction. NTF is a simple exten-
sion of CP decomposition. We add nonnegative constraint
U (n) = [u(n)

1 , u(n)
2 , . . . , u(n)

R ] ∈ R
In×R
+ for n = 1, 2, 3, 4,

where R+ is a set of nonnegative real values, into a decom-
position in Eq. (5). In the practical computation of NTF, we
iteratively update each elementwith a gradient-basedmethod
from initial random nonnegative values. For a decomposi-
tion of a testing dataset, we add a nonnegative constraint

Ǔ (4) ∈ R
Ǐ4×R
+ . Using the Khatori-Rao product�, Hadamard

product ∗ and Hadamard division	 [15, 16, 19], Algorithms
1 and 2 summarise NTF for training and test datasets, respec-
tively. From the results of Algorithms 1 and 2, we have
{ f j }Jj=1 and { f̌ k}Kk=1.
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Algorithm 1: NTF for a training dataset
Input: a fourth-order tensorT of a training dataset,

CP rank R, a sufficient small number ε,
the maximum number of iteration N

1: Initialise U (n) = [u(n)
1 , u(n)

2 , . . . , u(n)
R ] ∈ R

In×R
+ , ∀n

2: ε2 ← ‖T ‖2
3: for i = 1, 2, . . . , N
4: for n = 1, 2, 3, 4
5: {α, β, γ } ← {1, 2, 3, 4} \ n with α < β < γ

6: Φ ← T(n)(U (γ ) � U (β) � U (α))

7: Ψ ← U (n)(U (α)�U (α) ∗ U (β)�U (β) ∗ U (γ )�U (γ ))

8: replace nonpositive values in Φ and Ψ with the
machine epsilon

9: U (n) ← U (n) ∗ Φ 	 Ψ

10: ε1 ← ‖T − ∑R
r=1 u

(1)
r ◦ u(2)

r ◦ u(3)
r ◦ u(4)

r ‖2
11: if |ε2 − ε1| � ε

12: break
13: ε2 ← ε1
Output: a set of matrices {U (n)}4n=1

Feature selection

We integrate the feature-selection process [20] into our
method to capture discriminative features for two-category
classification. For a set of extracted features { f j }Jj=1 of a
training dataset with the condition R < J , we assume each
feature belongs to either the category C1 or C2. Therefore,
features are divided into two sets, { f 1i }N1

i=1 and { f 2i }N2
i=1,

where N1 and N2 represent the number of images in the
first and second categories, respectively. Setting Fl =
[ f l1, f l2, . . . , f lNl

] for l = 1, 2, we have autocorrelation
matrices A1 = 1

N1
F1F�

1 and A2 = 1
N2

F2F�
2 . These two

matrices introduce an autocorrelation matrix of all the fea-
tures by

A = P(C1)A1 + P(C2)A2, (9)

where we set P(C)1 = N1
N1+N2

and P(C2) = N2
N1+N2

. For

A, we have the eigendecomposition A = V�V�, where
� = diag(ξ1, ξ2, . . . , ξR) consists of eigenvalues ξi for i =
1, 2, . . . , R with the condition ξ1 ≥ ξ2 ≥ · · · ≥ ξR > 0.
This eigendecomposition derives a whitening matrix W =
�− 1

2 V�.
From the whitening matrix W and Eq. (9), we have

WAW� = W P(C1)A1W� + W P(C2)A2W�

= Ã1 + Ã2 = I, (10)

where I is an identity matrix. The solutions of the eigenvalue
problems Ãlφl,i = λl,iφl,i and Eq. (10) derive relations
Ã2φ2,i = (I − Ã1)φ2,i and Ã1φ2,i = (1 − λ2,i )φ2,i for
l = 1, 2. These lead to

φ2,i = φ1,R−i+1 (11)

Algorithm 2: NTF for a testing dataset
Input: a fourth-order tensor Q of a testing dataset,

U (1),U (2),U (3) obtained by Algorithm 1,
a sufficient small number ε,
the maximum number of iteration N

1: Initialise Ǔ
(4) = [ǔ(4)

1 , ǔ(4)
2 , . . . , ǔ(4)

R ] ∈ R
I4×R
+

2: ε2 ← ‖Q‖2
3: for i = 1, 2, . . . , N
4: Φ ← Q(4)(U (3) � U (2) � U (1))

5: Ψ ← Ǔ
(4)

(U (1)�U (1) ∗ U (2)�U (2) ∗ U (3)�U (3))

6: replace nonpositive values in Φ and Ψ with the
machine epsilon

7: Ǔ
(4) ← Ǔ

(4) ∗ Φ 	 Ψ

8: ε1 ← ‖Q − ∑R
r=1 u

(1)
r ◦ u(2)

r ◦ u(3)
r ◦ ǔ(4)

r ‖2
9: if |ε2 − ε1| � ε

10: break
11: ε2 ← ε1

Output: a matrix Ǔ
(4)

and

λ2,i = 1 − λ1,R−i+1 (12)

for i = 1, 2, . . . , R and l = 1, 2. These relations imply that
the eigenvectors corresponding to the large eigenvalues of
Ã1 contribute to expressing C1, although they make a minor
contribution to expressing C2.

In this work, setting � = [φ1,1,φ1,2, . . . ,φ1,d ], we
project extracted feature vectors by

g j = �� f j , j = 1, 2, . . . , J , (13)

ǧk = �� f̌ k, k = 1, 2, . . . , K , (14)

to select C1-related features.

Classification and its visual interpretation

We classify a feature-selected vector and reconstruct its
three-dimensional pattern for visual interpretation. For the
classification of g ∈ {g j }Jj=1 ∪ { ǧk}Kk=1, we have a discrim-
inant function

h(g) = w�g + w0, (15)

where w = [w1, w2, . . . , wd ]� and w0 are a weight vec-
tor and thresholding criterion, respectively. We compute w

by Fisher’s linear discriminant analysis (LDA) [21] from
the feature-selected vectors of a training dataset. Setting
means μ1 and μ2 of projected feature vectors in C1 and
C2, respectively, in a projected space given by w, we define
w0 = λμ1 + (1 − λ)μ2 with a hyperparameter λ ∈ [0, 1].
Using Eq. (15), we classify g as follows:
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{

h(g) > 0, g ∈ C1,
otherwise, g ∈ C2.

(16)

We set g̃p with an index p = 1, 2, . . . , d to the pth ele-
ment of g̃ = w � g. Since positive elements of g̃ show the
selected features’ relevance to C1, we have g+ = (g+

p ) by
filtering

g+
p =

{

gp, g̃p > 0,

0, otherwise.
(17)

Using an element f +
r of f+ = �g+, we can reconstruct C1-

related three-dimensional patterns inX ∈ {X j }Jj=1∪{X̌k}Kk=1
from its feature-selected vector g by

X+ = ReLU

(
R

∑

r=1

f +
r (u(1)

r ◦ u(2)
r ◦ u(3)

r )

)

, (18)

where ReLU replaces negative values in an input tensor with
zero.

Experiments

Datasets

Patients diagnosed with PD based on the UK PD Society
Brain Bank clinical criteria and healthy subjects without any
neurological diseases [22], who visited Juntendo Hospital
between 2019 and 2022, were recruited with IRB approval.
Using a 3T scanner (MAGNETOMPrisma, Siemens Health-
care), we collected neuromelanin images of 263 patients: 124
PD and 139 non-PD patients with additional spectral presatu-
ration inversion-recoverypulses [2].General scanparameters
were as follows: 600/12 ms repetition time/echo time; echo
train length of 14; 2.5 mm slice thickness; 0.5 mm slice
gap; 3.0 mm spacing between slices; 512 × 359 acquisition
matrix; 220 × 220mm field of view (0.43 ×0.43 mm pixel
size); 175 Hz/pixel bandwidth, three-averages; 7:15 min of
total scan time.

In this collection, first, we obtained T1-weighted images
by setting AC-PC lines to be parallel against axial slices in
each patient. The size of a T1-weighted image is 224×300×
320 voxels, each of which is 0.80 mm × 0.80 mm × 0.80
mm. Second, we obtained neuromelanin images for all the
patients. The size of a neuromelanin image is 512×512×14
voxels, each of which is 0.43 mm × 0.43 mm × 3.00 mm.
Third, for each patient, we registered a neuromelanin image
to a T1-weighted image by rigid transform, where we used
the FMRIB software library’s linear registration tool [23].

For these neuromelanin images, a board-certified radiol-
ogist with ten years of experience specialising in neurora-

Table 1 Details of training and testing datasets

� of Non-PD � of PD � of All

Training 73 82 155

Testing 66 42 108

Total 139 124 263

Fig. 3 Age distribution of our datasets. The range of patients’ ages is
45–87. The averages of ages in training, testing and all datasets are
68.5, 70.5 and 69.3, respectively. The ratios of males and females in
training, testing and all datasets are 1.00:0.90, 1.00:1.25 and 1.00:1.03,
respectively

diology annotated regions of the substantia nigra by using
MRIcron [24]. Based on the annotations, we cropped the
VOIs of the substantia nigra from the neuromelanin images.
Setting the centre of a VOI to be the centre of gravity in a
region of the substantia nigra, we expressed a VOI of each
sequence as third-order tensors of 64 × 64 × 64 voxels. In
each third-order tensor, after setting elements of the outer
region of substantia nigra to be zero, we normalised all the
elements of each third-order tensor in the range of [0, 1].
We randomly divided these images into training and testing
datasets, as summarised in Table 1. Figure3 summarises the
age distributions in our datasets.

Evaluation of substantia nigra classification

To evaluate the proposed feature-extraction method, we clas-
sify extracted feature vectors by a linear function g( f ) =
w� f+w0,where f ∈ { f j }Jj=1∪{ f̌ k}Kk=1.Weextract feature
vectors from training and testing datasets by Algorithms 1
and 2, respectively, for R = 64, 155, 250, 500, 1000, 2000,
4000. Figure4a shows CP-rank and mean relative recon-
struction error E(‖X − ∑R

r=1 frYr‖/‖X‖) for each CP
rank. Using extracted features for the training dataset, we
computed w and w0 in the same manner described in
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Fig. 4 Characteristics of NTF
and eigendecomposition. Mean
reconstruction errors in NTF.
We set R = 64,155, 250, 500,
1000, 2000, 4000 b Eigenvalues
of normalised autocorrelation
matrix of 64-dimensional
feature vectors for PD’s training
dataset. Characteristics of NTF
and eigendecomposition

Fig. 5 ROC curves of substantia
nigra classification. a Training
dataset. b Testing dataset. In a
and b, we set R = 64,155, 250,
500, 1000, 2000, 4000 and
λ =0.00, 0.05, 0.10, . . . , 1.00

Sect. Methods. As the evaluation metric of classification
accuracy, we set sensitivity and specificity to the ratios of
correctly classified images in PD and non-PD categories,
respectively. Figure5 summarises classification accuracy for
training and testing datasets for different λ.

To evaluate the validity of our feature selection, we com-
puted classification accuracy for the selected features with
the procedure described in Sect. Methods. Figure6 shows
the classification accuracy with feature selection for R = 64
and d = 7, 15, 18. Figure5b illustrates the eigenvalue distri-
bution of the normalised autocorrelation matrix for the PD
category. Figure7 presents examples of reconstructed vol-
umetric images before and after feature selection. For the
reconstruction from selected features, we used Eq. (18).

For a comparative evaluation, we computed the classifi-
cation accuracy of a support vector machine (SVM) [25].
We trained a linear SVM model using the extracted feature
vectors of the training dataset without the feature selec-
tion. For training a linear SVM model, we set the weight
of the regularisation to one and used the balanced weight
(N1+N2)/2Nl for the lth category. To enable SVM to output

estimated probability for each category, we adopted Platt’s
likelihood [26]. If an SVM’s output probability for the PD
category exceeds a criterion, we classify input as C1. Using
the criterion from 0.00 to 1.00 with the step size of 0.05, we
plotted the ROC curves of training and testing datasets for the
linear-SVM model. For the computation of SVM, we used
scikit-learn. Figure8 summarises the comparative evaluation
between LDAwith feature selection (ours) and SVMwithout
feature selection.

To further explore our approach, we performed fivefold
cross-validation by splitting all the data into training and
testing datasets. In training steps in each fold, we selected
features and computedw for d =8, 12, 16, 20, 24, 28, 32, 48,
64. Figure9 shows the results of the fivefold cross-validation.

Discussion

Figure5 indicates that increasing the CP rank results in the
extraction of indiscriminative features for unseen images in
the substantia nigra classification, even though Fig. 4a shows
that increasing the CP rank contributes to decreasing the
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Fig. 6 Classification accuracy after feature selections. a d = 7. b d = 15. c d = 18

Fig. 7 Qualitative evaluation of
reconstructed images. The top,
middle and bottom rows show
slices of the original,
reconstruction from NTF and
reconstruction from selected
features for R = 64. PD4 is
selected from the testing dataset,
and the others are selected from
the training dataset

reconstruction error. For the given 155 images in the training
dataset, Fig. 5 shows that CP ranks from 64 to 500 are accept-
able for the classification. For these CP ranks, Fig. 5b shows
insufficient sensitivities and specificities of approximately
0.60. NTF was originally designed only for analysis, not for
classification. Therefore, these results imply the necessity of
feature selection to capture category-specific discriminative
features.

Figure4b shows that fewer than 18 eigenvectors express
essential patterns for the PD category. As shown in Fig. 6,
our feature selection using the appropriate eigenvectors
improved the sensitivity and specificity of the testing dataset.
Figure8 illustrates the higher generalisation ability of our
approach than the linear SVM. Even though there is a gap in

classification accuracy between training and testing datasets
for the linear SVM, our proposed method achieved the small
one. The proposed method achieved a sensitivity of 0.72 and
a specificity of 0.64 for training and testing datasets.

We also presented the reconstruction of the selected fea-
tures in Fig. 7. Generally, the pars compacta of the substantia
nigra is divided into ventral and dorsal tiers, and each tier
is further subdivided into medial to lateral regions. In PD,
the ventrolateral tier of the substantia nigra loses first, and
then the ventromedial tier also loses. Typically, the cells of
70–90% in the ventrolateral tier have been lost by the time a
PD patient dies [27]. In Fig. 7, our feature selection captures
three-dimensional patterns related to the ventrolateral tiers.
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Fig. 8 Comparison with support vector machine

In Fig. 9, the three of fivefold show the feature selection’s
improvement of sensitivity and specificity. These indicate
the validity of the proposed method. However, the optimal
number of the feature selection for those folds differs. Fur-
thermore, for the other folds, the feature selection does not
work. These results imply thatmore data collection is needed.
In the case of a sufficiently large dataset, after randomly
removing 10–25% of the dataset, we can have approximately
the same distribution shape as the original dataset. If we ran-
domly remove 10–25% of a small dataset, we might have
a different distribution shape from the original dataset. To
achieve expert-level precise classification [28, 29] of the sub-
stantia nigra between PD and non-PD, we are required to
capture more discriminative features from a large dataset.

Conclusions

This paper proposed a tensorial feature-extraction method
for substantia nigra analysis towards PD diagnosis. Since
category-specific features should be discriminative, we eval-

Fig. 9 Results of fivefold cross-validation for LDA with the feature selection. a-e show classification accuracy for the testing datasets in folds from
1 to 5. For each fold, we set d = 8, 12, 16, 20, 24, 28, 32, 48, 64 and λ = 0.00, 0.05, 0.10, . . . , 1.00
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uated the accuracy of classifying the substantia nigra between
PD and non-PD cases. The experimental evaluations demon-
strated the method’s validity, where the classification accu-
racy is acceptable as a preliminary study. Unlike deep
learning approaches, our proposed method directly recon-
structs important patterns to interpret classification results
visually.
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