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Abstract
Purpose Specular reflections in endoscopic images not only disturb visual perception but also hamper computer vision
algorithm performance. However, the intricate nature and variability of these reflections, coupled with a lack of relevant
datasets, pose ongoing challenges for removal.
Methods We present EndoSRR, a robust method for eliminating specular reflections in endoscopic images. EndoSRR
comprises two stages: reflection detection and reflection region inpainting. In the reflection detection stage, we adapt and
fine-tune the segment anything model (SAM) using a weakly labeled dataset, achieving an accurate reflection mask. For
reflective region inpainting, we employ LaMa, a fast Fourier convolution-based model trained on a 4.5M-image dataset,
enabling effective inpainting of arbitrarily shaped reflection regions. Lastly, we introduce an iterative optimization strategy
for dual pre-trained models to refine the results of specular reflection removal, named DPMIO.
Results Utilizing the SCARED-2019 dataset, our approach surpasses state-of-the-art methods in both qualitative and quan-
titative evaluations. Qualitatively, our method excels in accurately detecting reflective regions, yielding more natural and
realistic inpainting results. Quantitatively, our method demonstrates superior performance in both segmentation evaluation
metrics (IoU, E-measure, etc.) and image inpainting evaluation metrics (PSNR, SSIM, etc.).
Conclusion The experimental results underscore the significance of proficient endoscopic specular reflection removal for
enhancing visual perception and downstream tasks. The methodology and results presented in this study are poised to catalyze
advancements in specular reflection removal, thereby augmenting the accuracy and safety of minimally invasive surgery.
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Introduction

In minimally invasive surgery (MIS), endoscopy serves
as a pivotal visual aid, facilitating precise lesion obser-
vation, diagnosis, and treatment. Nevertheless, the unique
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imaging environment presents a challenge—harsh specu-
lar reflections inevitably occur during the procedure [1].
These reflections not only cause visual disturbances but also
impede the performance of computer vision algorithms [2].
Therefore, effective removal of specular reflections from
endoscopic images is essential and significant.

Specular reflection removal typically involves two stages:
specular reflection detection and specular reflection region
inpainting. In the specular reflection detection stage, tradi-
tional methods primarily depend on conventional image pro-
cessing algorithms, falling into two categories—threshold-
based methods and principal component analysis-based
methods. Thresholding-based approaches often involve con-
verting the image toHSV/YUVcolor space and subsequently
employing double thresholding or adaptive thresholding to
isolate the reflection region [3–6]. For instance, Arnold et al.
[6] employed a detection method founded on a combination
of nonlinear filtering and color thresholding. More recently,
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Li et al. [7] introduced the concept of adaptive robust princi-
pal component analysis (AdaRPCA), and Pan et al. [1] pro-
posed the accelerated adaptive non-convex robust principal
component analysis (AANC-RPCA) for specular reflection
detection. These principal component analysis-based meth-
ods typically execute sparse and low-rank decomposition of
the endoscopic images to derive reflection masks. However,
these conventional algorithms, reliant on fixed thresholds,
often exhibit poor generalization ability, struggling to effec-
tively identify reflection regions. The scarcity of specular
reflection datasets constrains progress in deep learningmeth-
ods. Monkam et al. [8] used a hybrid strategy, combining
transfer learning and weakly supervised learning for train-
ing lightweight U-Net models with inaccurate labels, which,
however, struggled with small reflective regions. Ali et al.
[9] showed improved detection accuracy using RestNet50
with DeepLabv3+. As depicted in Fig. 1, the diverse forms,
shapes, and sizes of specular reflections in endoscopic images
pose unresolved challenges for current detection methods,
leading to two predominant issues: over-segmentation (false
positives) and under-segmentation (false negatives). These
challenges are particularly pronounced when the represen-
tation of the reflective region closely resembles that of the
organ surface tissue.

Furthermore, owing to the substantial variations in tex-
ture and color evident in endoscopic images, an unresolved
issue arises during the reflective region inpainting stage: the
inefficiency in accurately inpainting larger specular reflec-
tive regions using both global and local information from
the image. Arnold et al. [6] proposed an inpainting tech-
nique involving an initial filling of the reflective region based
on neighboring pixels and subsequent nonlinear decay along

the edges. Meanwhile, principal component analysis-based
methods like AdaRPCA [7] and AANC-RPCA [1] utilize the
low-rank image derived from matrix decomposition either
directly or with outward attenuation as the inpainting result.
Additionally, various traditional inpainting methods, includ-
ing stochastic Bayesian estimation [10], specific Sobolev
operators [4], and example-based methods [5], have been
explored for handling reflective regions.

Recent studies explored deep learning techniques for
reflective region inpainting. Funke et al. [2], Ali et al.
[9], and Daher et al. [11] employed a generative adversar-
ial network-based approach. Monkam et al. [8] proposed
the GatedResU-Net architecture, achieving more reasonable
inpainting results. However, these approaches are marred by
issues such as blurriness, a noticeable lack of texture, and an
inability to seamlessly integratewith the surrounding texture.
Such limitations compromise the meaningfulness of inpaint-
ing results for downstream computer vision applications.
Consequently, developing a specular reflection removal sys-
tem capable of accurately detecting reflective regions and
realistically inpainting them concurrently poses a formidable
challenge.

In this paper, we tackle three key challenges: (1) the
scarcity of datasets; (2) the issues of over- and under-
segmentation in specular reflection detection; and (3) the
suboptimal inpainting results for specular reflection regions.
While dataset labeling is a time-consuming and laborious
task, we present a method for semi-automatic labeling of
endoscopic specular reflection regions, resulting in a weakly
labeled dataset. The proposed EndoSRR endoscope specu-
lar reflection removal framework, depicted in Fig. 2, utilizes
this created dataset to fine-tune the adapted segment any-

Fig. 1 Different types of
endoscopic specular reflections:
a different reflection intensities;
b different reflection halos; and
c different reflection shapes and
sizes

Fig. 2 EndoSRR: Overview of
the proposed endoscopic
specular reflection removal
framework

123



International Journal of Computer Assisted Radiology and Surgery (2024) 19:1203–1211 1205

thing model (SAM). The ensuing specular reflection masks
serve as input for the resolution-robust large mask inpaint-
ing model (LaMa) to effectively inpaint specular reflection
regions. Finally,we introduce a simple yet effective optimiza-
tion strategy to further refine the specular reflection removal
results. Through both qualitative and quantitative analysis
and comparison, the outcomes of our proposed methods are
optimal, excelling in both specular reflection detection and
reflection region inpainting. Additionally, we directly apply
the inpainting results to segment anything model, as well
as visualize the inpainting results in 3D using the depth
information provided by the SCARED-2019 dataset. The
experimental results highlight that effective endoscopic spec-
ular reflection removal not only enhances downstream tasks
but also alleviates the visual fatigue experienced by surgeons
during prolonged surgical procedures.
The code is available at https://github.com/Tobyzai/EndoSRR.

Method

Creation of endoscopic specular reflection dataset

To fine-tune the SAM-adapter and acquire precise reflec-
tionmasks, an endoscopic specular reflection weakly labeled
datasetwasmeticulously crafted. Illustrated inFig. 3, the pro-
cess entails threemain steps: (a) global k-means clustering of
the image for initial coarse filtering of reflective regions, (b)
local k-means clustering of the image to further refine reflec-
tive regions and encompass more regular halos via a dilation
operation, and (c) manual outlining to meticulously refine
irregular halos. The envisioned contribution of this dataset is
to advance the field of reflection removal.

SAM-adapter for reflection detection

Capitalizing on SAM’s capabilities derived from massive
corpora for the specific task of specular reflection detection
prompts the question of how to effectively leverage them
[12]. An efficient solution is to integrate Explicit Visual
Prompts into the SAM model [13, 14]. In this study, we
employ SAM-adapter to segment reflection regions based on
a purpose-created, small dataset. Illustrated in Fig. 4, SAM-
adapter comprises four modules.
Module-1: High-frequency components tune (First Col-
umn on the Top Left). Utilizing fast Fourier transform, the
high-frequency component Ihfc is extracted from the image,
resulting in a small patch I phfc with the same format as SAM.
To align with SAM’s dimensions, the patch undergoes pro-
jection to yield features Fhfc using a linear layer Lhfc. The
primary objective of this module is to instill invariance in the
pre-trained model to endoscopic image features through data

augmentation. The process is defined as follows:

Fhfc = Lhfc(I
p
hfc). (1)

Module-2: Patch embedding tune (Second Column on the
Top Left). This module is tailored to adjust the pre-trained
patch embedding, aiming to shift its distribution from the pre-
trained dataset to the endoscopic specular reflection dataset.
I p represents the frozen patch embedding output of SAM,
traversing through a linear layer Lpe and projecting onto the
features Fpe. The operational equation is defined as:

Fpe = Lpe(I
p). (2)

Module-3: Adapter (Top Right). The purpose of each
adapter is to dynamically integrate the features Fhfc and Fpe

using their respective multilayer perceptron MLPitune, acti-
vation functions GELU [15], and globally shared multilayer
perceptron MLPup, and attach the resulting output visual
prompts Pi to their corresponding transformer layers. For
the i-th adapter, the process is defined as follows:

Pi = MLPup(GELU(MLPitune(Fhfc + Fpe))). (3)

Module-4: SAM (Bottom). SAM [13] serves as the back-
bone for the endoscopic specular reflection segmentation
network, comprising an encoder and decoder. The encoder
remains frozen, with each of its layers embedded with visual
prompts Pi from adapters. Contrarily, the decoder does not
intake any form of prompt information.

By complementing each other with the four modules of
the SAM-adapter, task-specific knowledge is integrated with
the general knowledge gained during the training process,
thereby enhancing the utility of SAM for specular reflection
detection task. The results of specular reflection segmenta-
tion are detailed in “Reflection detection” section.

LaMa for reflective region inpainting

After the detection of endoscopic specular reflections, the
subsequent step involves inpainting the reflected region using
LaMa, a state-of-the-art inpainting technique [16]. Illustrated
in Fig. 5, the LaMa process comprises the following equa-
tions:

i ′ = stack(i,m), (4)

î = fθ (i
′), (5)

Lfinal = κLAdv + αLHRFPL + βLDiscPL + γ R1. (6)

Initially, a 3-channel endoscopic image i and a 1-channel
reflection mask m are stacked to form a 4-channel input
i ′. Subsequently, the feed-forward inpainting network fθ (·),
which encompasses downscale, fast Fourier convolution
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Fig. 3 Process for creating
endoscopic specular reflection
weakly labeled dataset

Fig. 4 SAM-adapter
architecture consists of 4
modules: high-frequency
components tune, patch
embedding tune, adapter and
SAM

Fig. 5 LaMa architecture: mask
and original image stacked as
input to get reflection-free image

(FFC) [17], and upscale, processes the input i ′ in a fully con-
volutional manner, yielding the inpainted 3-channel image î .
Finally, the network parameters are inferred and optimized
based on the Lfinal loss. Here, LAdv and LDiscPL contribute
to generating natural-looking local details, LHRFPL oversees
the global structure and supervised signal consistency, R1 is
the gradient penalty, and κ , α, β, γ are the weight values.
Additional details about the LaMa inpainting model can be
found in [16].

Given the absence of reflection-free endoscopic images,
we address this challenge using a technique grounded in full
transfer learning. Experimental findings reveal that the pre-
trained model adeptly inpaints reflections in large regions
effectively. The detailed inpainting results are presented in
“Reflective region inpainting” section.

Optimization strategy

To address the limitations associated with weakly labeled
datasets, we introduce an innovative dual pre-trained models
iterative optimization strategy (DPMIO). The optimization
process, detailed in Fig. 6’s pseudo-code, begins with the
original image. SAM-adapter produces the reflection mask,

and, with the original, LaMa generates an inpainted image.
This inpainted image is then iteratively fed back into SAM-
adapter formask refinement andLaMa for updated inpainting
until specified criteria are met. The optimization strategy
employs parameters μ (1.5e−4) and iter (5).

Despite its simplicity, this optimization strategy proves
highly effective in refining inpainting results. Illustrated in
Fig. 6, this strategy progressively enables the detection of
challenging reflection regions, such as smaller or lighter
reflections, leading to a more natural and plausible inpaint-
ing outcome. Ablation experiment is presented in “Reflective
region inpainting” section.

Experiments

Implementation

The proposed method, EndoSRR, was implemented using
PyTorch on an NVIDIA RTX 3090 GPU. The algorithm
by Arnold et al. [6] was implemented in MATLAB R2021b
on a system equipped with an AMD Ryzen 7 6800H 3.20
GHz processor, while the AdaRPCA [7] and AANC-RPCA
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Fig. 6 Optimization process for reflection removal result

[1] algorithms were implemented using C++ on QT Creator
10.0.2. It is noteworthy that, apart from the aforementioned
three endoscopic specular reflection removal algorithms,
none of the other algorithms has released or shared their
available implementations.

In the reflection detection stage, all modules of SAM-
adapter are tunable, excluding the SAM encoder, which
remains frozen, as illustrated in Fig. 4. ViT-B served as
the pre-training parameter, AdamW as the optimizer, binary
cross-entropy (BCE) and IoU loss as the loss functions,with a
learning rate of 2e-4, and themodel underwent fine-tuning for
300 epochs. The Big-LaMa pre-trainedmodel was employed
for inpainting the reflection region, and κ , α, β, and γ were
set to 10, 30, 100, and 0.001, respectively.

Datasets

Utilizing all the keyframes from the SCARED-2019 [18]
dataset, we annotated the specular reflection dataset. Datasets
1 to 7 constitute the training setwith 70 images,while datasets
8 and 9 form the testing set comprising 20 images. In the
reflection detection stage, images are resized from 1280 ×
1024 to 1024× 1024 to match the SAM model, while in the
inpainting stage, the original image size is retained.

Results and comparisons

Reflection detection

Quantitative comparison

Table 1 demonstrates that our proposed reflection detec-
tion method surpasses other methods in segmentation eval-
uation metrics, including accuracy, IoU, precision, and
E-measure. The E-measure is defined as E-measure =
1

w×h

∑w
x=1

∑h
y=1 φFM (x, y), where φFM is the enhanced

alignment matrix, and h andw are the height andwidth of the
map, respectively. Additional information on the E-measure
can be found in [19]. In comparison to the state-of-the-art
method AANC-RPCA [1], the proposed method achieves a
higher IoU of 0.5888 compared to 0.5223. IoU’s advantage
lies in its ability to penalize both false negatives and false

positives, indicating that the proposed method effectively
addresses the challenges of over- and under-segmentation,
resulting in more accurate segmentation outcomes.

Qualitative comparison

As depicted in Fig. 7, the method proposed by Arnold et
al. [6] excels in detecting smaller reflection regions but
struggles with larger reflection regions, contributing to an
under-segmentation problem. Conversely, AdaRPCA [7] and
AANC-RPCA [1] tend to misclassify lighter-colored organ
tissues as reflections, resulting in an over-segmentation
problem. In contrast, the proposed method demonstrates a
balanced approach, mitigating the challenges of both under-
and over-segmentation.

Reflective region inpainting

Quantitative comparison

For a meaningful quantitative comparison, each method con-
ducts inpainting on identical non-reflective regions, and the
inpainting results are assessed using peak signal-to-noise
ratio (PSNR), structured similarity indexingmethod (SSIM),
andmean square error (MSE)metrics with the original image
as a reference. Table 2 illustrates that the proposed method
outperforms othermethods significantly across all evaluation
metrics. This superiority is attributed to the robust generaliza-
tion ability of the model, enabling the combination of local
and global information for optimal restoration of missing
information in the image.

We further evaluated reflective region inpainting using the
blind image inpainting quality assessment metric (BIIQA)
[20], emphasizing local feature continuity. BIIQA is defined
as BIIQA = α Q̄e+β Q̄t+γ Q̄s, whereα, β, and γ represent
the percentage of edge patches, texture patches, and smooth
patches, respectively. Additionally, Q̄e, Q̄t , and Q̄s denote
the mean values of the edge, texture, and smooth scores,
respectively. Table 3 confirms our method’s superior perfor-
mance. In the ablation experiments, our optimization strategy
(DPMIO) improves inpainting (BIIQA: 0.686 to 0.693) but
extends runtime (0.92s to 2.61s). While real-time capability
is a limitation, our method remains the quickest.
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Table 1 Quantitative comparison of reflection detection

Method Accuracy IoU Precision E-measure

Arnold et al. [6] 0.974 ± 0.019 0.401 ± 0.148∗∗∗ 0.836 ± 0.147 0.788 ± 0.147∗∗∗

AdaRPCA [7] 0.958 ± 0.021∗∗∗ 0.403 ± 0.098∗∗∗ 0.497 ± 0.151∗∗∗ 0.857 ± 0.122∗∗

AANC-RPCA [1] 0.976 ± 0.010 0.522 ± 0.069∗ 0.699 ± 0.111∗∗∗ 0.945 ± 0.044

Proposed 0.981 ± 0.012 0.589 ± 0.085 0.836 ± 0.061 0.947 ± 0.051

Bold values indicates the best performance among different metric
*, **, and *** indicate p value less than 0.05, 0.01, and 0.001, respectively

Fig. 7 Qualitative comparison of reflection detection between the proposed method with Arnold et al [6], AdaRPCA [7] and AANC-RPCA [1]

Table 2 Quantitative
comparison of inpainting results
with reference assessment
metrics

Method PSNR SSIM MSE

Arnold et al. [6] 33.18 ± 2.64∗∗∗ 0.965 ± 0.023∗∗∗ 39.02 ± 31.95∗∗∗

AdaRPCA [7] 26.33 ± 2.91∗∗∗ 0.944 ± 0.038∗∗∗ 200.11 ± 186.93∗∗∗

AANC-RPCA [1] 31.79 ± 3.23∗∗∗ 0.951 ± 0.036∗∗∗ 61.88 ± 70.35∗∗

Proposed 42.47 ± 4.00 0.990 ± 0.008 6.06 ± 7.22

Bold values indicates the best performance among different metric
** and *** indicate p value less than 0.01 and 0.001, respectively

Qualitative comparison

For qualitative comparison, all methods perform inpainting
on the specified reflection regions. As shown in Fig. 8, the
interpolation-based method [6] and the low-rank decom-
position method [1, 7] exhibit ineffective inpainting of the
reflection region. The inpainting traces of these methods are

conspicuous, and the results appear blurred. In contrast, the
proposed method yields results that seamlessly blend with
the background texture, presenting a more natural appear-
ance while effectively minimizing the loss of organ texture
information. As depicted in the final row of Fig. 8, our
method exhibits a limitation in effectively addressing subtle

Table 3 Quantitative comparison of inpainting results with non-reference assessment metric

Method Arnold et al. [6] AdaRPCA [7] AANC-RPCA [1] wo/DPMIO w/DPMIO

BIIQA 0.664 ± 0.081 0.60 ± 0.153∗ 0.630 ± 0.134 0.686 ± 0.067 0.693 ± 0.065

Time(s) 25.84 ± 26.09∗∗∗ 9.48 ± 9.10∗∗ 5.99 ± 0.58∗∗∗ 0.92± 1.23*** 2.61 ± 1.34

Bold values indicates the best performance among different metric
*, **, and *** indicate p value less than 0.05, 0.01, and 0.001, respectively
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Fig. 8 Qualitative comparison
of reflective region inpainting
between the proposed method
with Arnold et al [6], AdaRPCA
[7] and AANC-RPCA [1]

Fig. 9 Endoscopic specular
reflection removal for
Segmentation and
3D-Visualization

and faintly reflective regions, presenting a notable challenge
for future improvements.

Application of specular reflection removal

Reasonable and natural specular reflection removal results
are more helpful for downstream tasks. As shown in Fig. 9, it
helps to enhance the segmentation accuracy of SAM across
diverse tissue regions, as well as to improve the 3D visualiza-
tion effect for better application in VR or AR based surgical
navigation systems.

Discussion and conclusion

In this paper, we introduce EndoSRR, a novel algorithm
for endoscopic specular reflection removal empowered by
a large-scale model. Our approach begins with the creation
of a weakly labeled dataset using a semi-automatic labeling
tool. Subsequently, fine-tuning of the SAM-adapter accu-
rately detects reflective regions. The reflective areas are
then inpainted and optimized through a combination of the

state-of-the-art inpainting technique LaMa and a proposed
optimization strategy. We validate the significant benefits of
effective reflection removal for advancing downstream tasks
and mitigating intraoperative visual fatigue in segmentation
applications and 3D visualization applications. Our contri-
butions include:

• Creation of weakly labeled dataset: We introduce a
weakly labeled dataset, addressing the scarcity of endo-
scopic specular reflection datasets. This contribution is
poised to advance the deep learning domain in the spec-
ular reflection removal task.

• Optimization strategy: We propose a simple yet effec-
tive optimization strategy, enhancing the naturalness and
texture realism of the reflection removal results. This
strategy, with its potential for application to similar tasks,
serves as a valuable contribution.

• Big model and transfer learning: Our work pioneers
specular reflection removal on a small-scale dataset by
leveraging big models and transfer learning, resulting
in significantly improved removal results. This approach
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is particularly informative for the data-starved medical
field.

Despite achieving superior results in both reflection detec-
tion and reflection region inpainting compared to state-of-
the-art methods, our proposed EndoSRR method has certain
limitations:

• Color and texture restoration: The algorithm struggles
to fully restore the real color and texture information of
the image, a challenge shared by existing methods in the
field.

• Limitedweakly labeleddatasets: Due to the complexity
and distribution scattering of endoscopic specular reflec-
tions, our weakly labeled datasets are limited in number.
Further improvements in segmentation results and rigor-
ous quantitative evaluation are necessary.

• Real-timeperformance: The algorithmdoes not achieve
real-time performance, necessitating optimization and
enhancements for practical use.

In conclusion, endoscopic specular reflection removal
remains a formidable challenge. Thiswork aims to contribute
to the ongoing development of this field, ultimately enhanc-
ing the performance of computer vision downstream tasks
and advancing the safety of surgical procedures. In forthcom-
ing research endeavors, our aim is to expand the dataset of
reflection masks, enabling precise localization of reflection
regions in every frame of the video. This augmentation will
facilitate the utilization of temporal information across vari-
ous frames within the video sequence, enhancing the ability
to restore the authentic texture and color details of the reflec-
tion regions.
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