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Abstract
Purpose Brain shift that occurs during neurosurgery disturbs the brain’s anatomy. Prediction of the brain shift is essential for
accurate localisation of the surgical target. Biomechanical models have been envisaged as a possible tool for such predictions.
In this study, we created a framework to automate the workflow for predicting intra-operative brain deformations.
Methods We created our framework by uniquely combining our meshless total Lagrangian explicit dynamics (MTLED)
algorithm for computing soft tissue deformations, open-source software libraries and built-in functions within 3D Slicer, an
open-source software package widely used for medical research. Our framework generates the biomechanical brain model
from the pre-operative MRI, computes brain deformation using MTLED and outputs results in the form of predicted warped
intra-operative MRI.
Results Our framework is used to solve three different neurosurgical brain shift scenarios: craniotomy, tumour resection and
electrode placement. We evaluated our framework using nine patients. The average time to construct a patient-specific brain
biomechanical model was 3 min, and that to compute deformations ranged from 13 to 23 min. We performed a qualitative
evaluation by comparing our predicted intra-operativeMRIwith the actual intra-operativeMRI. For quantitative evaluation,we
computed Hausdorff distances between predicted and actual intra-operative ventricle surfaces. For patients with craniotomy
and tumour resection, approximately 95% of the nodes on the ventricle surfaces are within two times the original in-plane
resolution of the actual surface determined from the intra-operative MRI.
Conclusion Our framework provides a broader application of existing solution methods not only in research but also in
clinics. We successfully demonstrated the application of our framework by predicting intra-operative deformations in nine
patients undergoing neurosurgical procedures.

Keywords Brain deformation · Biomechanics · Brain shift · Framework

B Saima Safdar
saima.safdar@research.uwa.edu.au

1 Intelligent Systems for Medicine Laboratory, The University
of Western Australia, 35 Stirling Highway, Perth, WA,
Australia

2 Computational Radiology Laboratory, Boston Children’s
Hospital, Boston, MA, USA

3 Brigham and Women’s Hospital, Boston, MA, USA

4 Harvard Medical School, Boston, MA, USA

5 Department of Neurosurgery, KRH Klinikum Nordstadt,
Hannover, Germany

6 Department of Agriculture, University of Patras Nea Ktiria,
30200 Campus Mesologhi, Greece

Introduction

During neurosurgery, the brain undergoes significant defor-
mation known as brain shift, making it challenging to
precisely locate the surgical target, such as a tumour or epilep-
tic seizure onset zone. Intra-operative magnetic resonance
images (MRIs) can provide the location of the surgical tar-
get during neurosurgery. However, the cost of intra-operative
magnetic resonance imaging scanners is high (over $10 mil-
lion) [1] and brain MRI acquisition takes a long time (about
45 to 60 min) [2], which interferes with the surgical oper-
ation. Furthermore, intra-operative MRI cannot be acquired
for patients with electrodes implanted within the brain in
epilepsy surgery.
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Brain shift, which refers to the significant deformation
of the brain during neurosurgery, can be analysed in purely
mechanical terms using established methods of continuum
mechanics [3]. To solve the equations of continuum solid
mechanics, suites of computational biomechanics finite ele-
ment and meshless algorithms [4, 5] exist to predict organ
deformation, including brain deformations. An example
is a suite of meshless total Lagrangian explicit dynamics
(MTLED) algorithms based on the total Lagrangian formu-
lation of nonlinear solid mechanics and explicit time domain
integration [5–7] developed by our research group (Intelli-
gent Systems for Medicine Lab). TheMTLED algorithm has
been extensively evaluated in previous studies for computing
soft tissue deformations [7–9]. However, it is very sophisti-
cated and requires specialised knowledge of computational
biomechanics and numerical methods to set up a simulation.
MTLED uses a cloud of points to discretise the problem
domain. It is comparatively easy to generate a biomechanical
model with a cloud of points rather than a high-quality finite
element mesh but defining boundary conditions and loading
and assigningmaterial properties to intra-cranial constituents
are still required.

In this study, we created a framework to automate the
workflow for generating a patient-specific brain biome-
chanical model and computing the intra-operative defor-
mations using the MTLED algorithm. We implemented
our framework as an extension, SlicerCBM (Computa-
tional Biophysics for Medicine in 3D Slicer), for the 3D
Slicer medical imaging platform [10]. SlicerCBM is freely
available from our GitHub repository (https://github.com/
SlicerCBM/SlicerCBM). The framework computes brain
deformations for three different neurosurgical brain shift sce-
narios: craniotomy-induced brain shift (due to opening of the
skull), tumour resection-induced brain shift (due to removal
of the tumour) and electrode placement-induced brain shift
(due to placement of electrocorticography electrodes on the
brain surface after craniotomy in epilepsy surgery).Weevalu-
ate our framework for predicting brain deformations for nine
patients (Table 1) undergoing three different neurosurgical
brain shift scenarios. The data for this study were obtained
from thedatabases of theSurgical PlanningLaboratory (SPL)
at Brigham and Women’s Hospital, Computational Radiol-
ogy Laboratory (CRL) at Boston Children’s Hospital and
Montreal Neurological Institute’s Brain Images of Tumours
for Evaluation [11].

Methods

Figure 1 describes the workflow of our framework for
craniotomy-induced and electrode placement-induced brain
shift, whereas Fig. 2 describes the workflow for tumour
resection-induced brain shift. The developed framework

Table 1 Pre-operative (pre-op), intra-operative (intra-op) and post-
operative (post-op) patient data analysed in this study

Case Application 3D image data
type

Slice thickness
(mm)

1 Craniotomy Pre-op MRI and
intra-op MRI

2.5

2 Craniotomy Pre-op MRI and
intra-op MRI

2.5

3 Craniotomy Pre-op MRI and
intra-op MRI

2.5

4 Tumour
resection

Pre-op MRI and
intra-op MRI

2.2

5 Tumour
resection

Pre-op MRI and
post-op MRI

4.0

6 Tumour
resection

Pre-op MRI and
post-op MRI

2.0

7 Tumour
resection

Pre-op MRI and
post-op MRI

2.0

8 Electrode
placement

Pre-op MRI and
post-op CT with
electrodes
implanted

0.7

9 Electrode
placement

Pre-op MRI and
post-op CT with
electrodes
implanted

1.0

modules corresponding to each component of the frame-
work are discussed in Sects. "Patient-specific biomechanical
model generation" to "Image warping ".

Image pre-processing

We used the rigid registration algorithm [12] in the “General-
Registration”module of 3D Slicer to obtain the pre-operative
brain anatomy in the intra-operative brain orientation. We
automatically extracted the brain parenchyma (known as
skull stripping) from the high-quality rigidly registered pre-
operative MRI using the watershed algorithm of FreeSurfer
(http://surfer.nmr.mgh.harvard.ed), an open-source software
suite for analysing medical resonance images (MRIs) [13].
Following skull stripping, the cropped pre-operative MRI
contains only the brain tissues, tumour and ventricles. To
segment the tumours, we used the “GrowfromSeeds” fea-
ture of 3D Slicer’s built-in module “SegmentEditor”, which
utilises the “FastGrowCut” algorithm to generate a tumour
mask [10]. Generation of this tumour mask is automatic but
may require corrections by an analyst. We used the tumour
mask to locate the nodes and integration cells that represent
a tumour within the brain (see Sect. "Computational grid
generator").
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Fig. 1 Workflow of our framework for generating and solving a patient-
specific model of craniotomy and electrode placement-induced brain
shift scenarios, a craniotomy and electrode placement-induced brain

shift, b patient-specific computational grid generation, cmodel solution
using meshless total Lagrangian explicit dynamic (MTLED) algorithm
and d image warping

Patient-specific biomechanical model generation

Computational grid generator

To discretise the problem domain, which is the brain
parenchyma extracted from the pre-operative MRI, we used
a cloud of points.We developed a patient-specific tetrahedral
integration grid using our "ComputationalGridGenerator"
module, which takes the cropped pre-operative MRI as
input and automatically generates the integration grid (Figs. 2
and 3).

The procedure implemented in our "ComputationalGrid-
Generator" module involves the following steps: first, it takes
the pre-operative MRI after skull stripping and generates a
brain mask using Kittler-Illingworth [14] thresholding algo-
rithm. Next, it generates a brain surface model using the
marching cubes algorithm [15]. Then, it generates a uni-
formly triangulated brain surface using the Voronoi cluster-
ing algorithm [16] of PyACVD (https://github.com/pyvista/
pyacvd). Finally, it generates a tetrahedral grid using the 3D

Delaunay algorithm of Gmsh [17]. To smooth the brain sur-
face, we used the Laplacian filter [18] (Fig. 2). It is crucial
to understand that the tetrahedral integration cells are not
finite elements and do not have to adhere to the strict qual-
ity requirements of a finite element mesh. Table 2 lists the
number of nodes, integration cells and integration points gen-
erated using our “ComputationalGridGenerator” module for
all nine patients.

Topredict the tumour resection-inducedbrain shift, a com-
putational grid of the brain with a tumour cavity is required.
This grid is used to apply traction forces at the boundary of
the tumour cavity, as described in our previous study [9]. To
automate the construction of a brain computational grid with
a tumour cavity, we developed the "TumourResectionAnd-
BrainRemodelling" module (shown in Fig. 4). This module
takes the brain computational grid and the tumour mask as
inputs, and identifies the nodes within the tumour mask to
generate a brain computational grid with a tumour cavity.
The coordinates of these identified nodes are saved and used
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Fig. 2 Workflow of our framework for generating and solving a patient-
specific model of tumour resection-induced brain shift scenarios,
a tumour resection-induced brain shift, b patient-specific computa-
tional grid generation, c patient-specific computational grid generation

(with tumour cavity), dmodel solution using meshless total Lagrangian
explicit dynamic (MTLED) algorithm and e image warping

123



International Journal of Computer Assisted Radiology and Surgery (2023) 18:1925–1940 1929

Fig. 3 Workflow for automatic patient-specific brain integration grid
generation within our 3D Slicer module a pre-operative MRI after
skull stripping, b brain mask generation using threshold, c brain sur-
face model generation using marching cubes algorithm, d brain surface

model triangulation (yellow) using Voronoi clustering algorithm (yel-
low line around brain surface model (green) represents the brain
triangulation) and e 3D tetrahedral integration grid (yellow) generation
using 3D Delaunay algorithm

Table 2 Summary of computational grids generated with respect to the
patient-specific brain

Case No. of
nodes

No. of integration
cells

No. of integration
points

1 33,273 141,935 567,740

2 40,767 169,026 676,104

3 49,195 210,196 840,784

4 22,507 119,170 119,170

5 24,675 129,486 129,486

6 26,189 136,825 136,825

7 23,961 126,417 126,417

8 33,363 136,477 545,908

9 21,788 55,470 221,880

Fig. 4 Procedure for generating a brain computational grid with tumour
cavity as implemented in our module “TumourResectionAndBrainRe-
modelling”

to construct the newbrain computational gridwith the tumour
cavity.

Brain–skull contact interface

To account for the difference in stiffness between the skull
and brain tissues, a frictionless sliding contact interface is
defined between the rigid skull surface and the deformable
brain model in neurosurgical brain shift scenarios. This
approach prevents brain nodes from penetrating the skull
while allowing the brain to slide along the inner surface of
the skull [19].

To define the contacts automatically, we developed our
module “SkullGenerator” to construct a skull surface model
using the triangulated brain surface model generated in
Sect. "Computational grid generator"; and to extract the brain
surface nodes in contact with the skull surface model.

Loading

In craniotomy-induced and electrode placement-induced
brain shift, loading is defined as prescribed displacements
on the exposed part of the brain due to neurosurgical pro-
cedures. In tumour resection-induced brain shift, loading is
defined as gravity forces. To define the load, information
about the deformation of the exposed brain surface can be
obtained using cameras or the pointing tool of a neurosurgi-
cal station [20]. In this study, we acquire such information
using sparse intra-operative MRI. To define the prescribed
loading, selection of the exposed surface area of the brain is
an essential step.Our automatedprocedure for selecting brain
surface nodes exposed due to craniotomy is implemented in
the modules “CranGenerator” and “NodeSelector”, which
streamlines the process of identifying loaded nodes. It com-
prises the following steps (Fig. 5): (1) auto-thresholding is
used to select the patient’s head in pre-/intra-operative MRIs
to create a pre-/intra-operative head mask, (2) wrap solidify
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Fig. 5 Procedure for
automatically creating a
craniotomy region and selecting
brain surface nodes exposed due
to craniotomy

effect is used to shrink wrap [10] and remove any gaps in pre-
/intra-operative head masks generated in step 1, (3) Gaussian
smoothing (3 mm) is used to smooth the created head masks,
and Island filter [10] is used to remove small islands (1000
voxels), (4) logical operator (subtract) is used to create a
craniotomy region mask, (5) marching cubes algorithm [15]
is used to generate the craniotomy surface model, and (6)
brain surface cells exposed due to craniotomy are selected
using the craniotomy surface model from step 5, and finally,
the brain surface nodes are selected.

To compute the prescribed displacements for the selected
brain surface nodes, we use a procedure that involves several
steps. Firstly, we extract sparse pre-operative and intra-
operative MRI information, which we then use to compute
the B-Spline transform using a rigid registration algorithm
[12]. Secondly, we apply the B-Spline transform to the
selected brain surface nodes that are exposed due to cran-
iotomy, resulting in the position of the brain surface nodes in
an intra-operative (deformed) brain configuration. Finally,
we compute the prescribed displacements by calculating
the difference between the coordinates of the brain sur-
face nodes in the deformed brain configuration and those in
the undeformed configuration. This procedure enables us to
accurately determine the necessary displacement values for
the nodes on the brain surface, which is crucial for simulating
the deformation of the brain during neurosurgery.

For electrode placement-induced brain shift, we extracted
the electrode locations (coordinates) from the computed
tomography (CT) imageusingour electrode extractionproce-
dure implemented as “ElectrodesToMarkups” module. The
steps involved in our electrode extraction procedure are: (1)
creating a binary label volume from binary CT image using
PolySeg software library, (2) splitting the binary label vol-
ume into segments corresponding to each electrode using the
“SplitIsland” filter and (3) adding a point (3D space) at the
centroid of each segmented electrode using “SegmentStatis-
tics” [10]. After extracting electrode locations from the CT
image, prescribed displacements are computed using our
automated procedure, which comprises the following steps
(Fig. 6): (1) projection of electrodes on the undeformed brain
surface extracted from pre-operative MRI, (2) creating the
electrode sheet model (representing the silastic substrate of
the electrocorticography electrode grid placed on the brain
surface in epilepsy surgery) using the projected electrodes,
(3) selecting brain surface nodes (known as loaded nodes)
under the electrode sheetmodel and (4) computingprescribed
displacements.

In step 1, we projected the extracted electrodes onto
the surface of the brain extracted from the pre-operative
MRI using our “MarkUpsToDistance” module. This mod-
ule determines the points corresponding to the location of
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Fig. 6 Procedure for selecting
brain surface nodes under
electrode sheet and computing
the prescribed displacements

electrodes (referred to as projected electrodes) in the unde-
formed (pre-operative) brain configuration. The module uses
the “ImplicitPolyDataDistance” method of the Visualization
Toolkit (VTK) [21] to compute the distance for each of the
electrodes identified in the post-operative CT to its corre-
sponding nearest triangle on the undeformed brain surface.
We created projected electrode locations at the centroids
of the identified nearest triangles on the undeformed brain
surface (extracted from pre-operative MRI). In step 2, we
used these projected electrode locations to create an elec-
trode sheet model by means of the PolyData algorithm [22],
implemented in our “SheetFromPoints” module. We uni-
formly triangulated the electrode surface sheet model using
the PyACVD software library (https://github.com/pyvista/
pyacvd) implemented in ourmodule “SurfaceTriangulation”.
In step 3, we used the vertices of each triangle of the electrode
sheet model to select the corresponding brain surface cells
(triangles) in the undeformed brain surface model using our
“NodeSelector” module. We used the selected brain surface
cells to select the corresponding nodes (vertices) of these
selected brain surface cells. We applied prescribed displace-
ments on the selected nodes of the selected triangles. In step 4,
to compute prescribed displacements, the original and pro-
jected electrode coordinates were used as an input to the
“ScatteredTransform” [23] module to compute a B-Spline
transform. We applied the computed B-Spline transform to

the undeformed brain surface nodes located under the elec-
trode sheet to determine the position of the corresponding
nodes in the deformed (due to electrode implantation) brain
geometry. We computed the prescribed displacements as
the difference between the coordinates of the correspond-
ing brain surface nodes in undeformed and deformed brain
geometry. The prescribed displacements were applied using
a smooth (3-4-5 polynomial) loading curve [24].

In tumour resection-induced brain shift scenarios, we con-
sider the load as a gravity force and calculate the internal
forces acting at the interface nodes between the tumour and
nearby healthy brain tissues. Once the tumour is removed
from the biomechanical model, the reaction forces are
applied in the opposite direction to the interface nodes. This
approach allows us to simulate the deformation of the brain
tissue caused by the tumour and its subsequent removal dur-
ing surgery.

Assignment of material properties using fuzzy tissue
classification

In patient-specific computational biomechanics modelling,
the material properties are typically assigned using image
segmentation [25, 26], where each image voxel is assigned to
a specific brain tissue class using semi-automatic procedures.
However, this process is time-consuming and clinically
incompatible [25].We used fuzzy tissue classification [27] to
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Table 3 Neo-Hookean material model parameters for each tissue type
in the biomechanical brain model used for computing craniotomy and
electrode placement-induced brain shift

Tissue type ρ (kg/m3) E (Pa) ν

Parenchyma 1000 3000 0.49

Tumour 1000 9000 0.49

Ventricle 1000 10 0.1

automatically assign material properties of intra-cranial con-
stituents to integration points within the problem domain.
To assign material properties to brain tissues, we used our
“FuzzyClassification” module that takes a brain mask (see
generated brain mask in Sect. "Computational grid gener-
ator"), pre-operative MRI and tumour mask (if present) as
inputs and produces fuzzy classified brain tissue classes,
which are usedbyour “MaterialPropertiesAssignment”mod-
ule to automatically assign material properties to integration
points corresponding to brain constituents.

For all nine case studies, we used a mass density of
1000 kg/m3 for all tissue types. Craniotomy and electrode
placement-induced brain shift simulations correspond to a
subclass of problems known as “displacement–zero traction”
problems, where the load is defined by prescribing the dis-
placement on the boundary, and we do not know anything
about the deformation field within the analysed continuum.
Problems of this type depend very weakly on the material
properties and material model. Therefore, we used a neo-
Hookean constitutive model, with initial Young’s modulus
E, and initial Poisson’s ratio ν, listed in Table 3 [26].

Poisson’s ratio is a mechanical property that describes
the compressibility of a material. A low Poisson’s ratio sug-
gests strong compressibility, whereas a high Poisson’s ratio
of 0.5 indicates that the material is fully incompressible. We
consider the parenchyma of the brain to be a nearly incom-
pressible structure [28]. In the tumour resection-induced
brain shift, since the load is due to gravity and traction forces,
the computed deformations depend on the tissue “stiffness”
as determined by the material properties and material model.
Therefore, an Ogden constitutive model is used, with shear
modulusμ, initial Poisson’s ratio ν andmaterial parameterα,
listed in Table 4 [29], because it adequately accounts for the
brain tissue material properties under both tension and com-
pression. The shear modulus for the tumour was assigned a
value three times larger than that of healthy brain tissue [28].

Model solution

To compute brain deformations using MTLED, we devel-
oped the “MTLEDSolver” module that uses the meshless
total Lagrangian explicit dynamics (MTLED) algorithms [5].

Table 4 Ogden material model parameters for different tissue types
(CSF, parenchyma, tumour) in the biomechanical brain model used for
computing brain shift due to tumour resection. Note that for α = 2 the
Ogden model is similar to the neo-Hookean model

Tissue type μ (Pa) ν α

Parenchyma 842 0.49 − 4.7

Tumour 2526 0.49 − 4.7

CSF (case 4) 4.54 0.1 2

CSF (cases 5, 6, 7) 4.54 0.49 2

Themodule predicts intra-operative deformations and gener-
ates a solution in the form of a deformed brain biomechanical
model. TheMTLED solution algorithm is described in detail
in our previous studies [5, 7]. MTLED solves the weak form
of the elasticity equations and can be used with different
shape functions, including moving least squares (MLS) [5],
modifiedmoving least squares (MMLS) [7] and interpolating
modified moving least squares (IMMLS) [30]. The method-
ology for computing brain deformations has been extensively
validated in our previous studies [7, 8, 31]. We use IMMLS
shape functions [30] as they accurately enforce the essen-
tial boundary conditions and provide robust computations
for large deformations and strains.

Image warping

To perform image warping, we extracted undeformed and
predicted deformed brain model nodal coordinates and used
the “ScatteredTransform”module [23] to compute aB-Spline
transform which is used to warp the pre-operative MRI to
obtain the predicted intra-operative MRI.

Results

In this section, we apply our framework to solve three neuro-
surgical brain shift scenarios: craniotomy, tumour resection
and electrode placement-induced brain shift.

Methods for evaluating predicted intra-operative
deformations by our framework

We evaluated our framework qualitatively and quantitatively
by analysing the predicted intra-operativeMRI and the actual
intra-operative MRI of nine patients. For qualitative evalua-
tion, we visually compared the predicted brain contour with
the actual intra-operative brain contour. For quantitative eval-
uation, following [26, 32], we use the Hausdorff distance
(HD) to objectivelymeasure the differences between the ven-
tricle surfaces of the brain predicted by our framework using
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theMTLED algorithm and the ventricle surfaces obtained by
segmentation of the actual intra-operative MRI.

The purpose of this study is to create a framework for
automating the workflow for predicting intra-operative brain
deformations rather than to conduct evaluation of the frame-
work performance using patient cohort sufficiently large for
comprehensive statistical analysis. We have made our open-
source framework freely available through GitHub, which
opens avenues for other research groups to use the frame-
work and conduct its independent evaluation. In this study,
we demonstrate the application of the framework by predict-
ing intra-operative deformations in nine patients undergoing
neurosurgical procedures. Given this relatively small cohort
size, we conduct only rudimentary statistical analysis of the
results by reporting the average and standard deviation of
the percentage of successfully registered points/nodes (i.e.
the nodes for which the registration error is lower than twice
the in-plane resolution of the intra-operative image).

Craniotomy-induced brain shift

Qualitative evaluation

The pre-operative MRI was warped to obtain the pre-
dicted intra-operativeMRIusing theB-Spline transformation
described in Sect. "Image warping" such that it corresponds
to the actual intra-operative anatomy of the brain. We visu-
ally compared the brain contour predicted by our framework
(from a warped pre-operative MRI) with the actual intra-
operative MRI. The ventricle contours predicted by our
automated framework (Fig. 7) for case studies 1, 2 and 3 are
very close to the actual intra-operative ventricle contours.

Quantitative evaluation

We used the 95th, 75th, 50th and 25th percentile HD to mea-
sure the similarities between the actual ventricle surfaces
(obtained from segmentation of actual pre-/post-operative
MRIs) and the predicted ventricle surfaces (obtained from
the segmentation of the predicted MRIs, see Table 5). The
image resolution limits the precision of neurosurgical image
guidance. Therefore, registration is considered successful if
the 95% HD is lower than twice the actual in-plane resolu-
tion of the intra-operative MRI (2.5 mm, 1 mm and 2.5 mm
for case studies 1, 2 and 3, respectively). For case stud-
ies 1, 2 and 3, about 96%, 98% and 99% of the nodes on
the ventricle surfaces, respectively, were successfully reg-
istered (Fig. 8). The results obtained using our automated
framework are very close to those reported in our previous
studies [8, 26] (see Table 5). The mean 95th percentile Haus-
dorff distance between the ventricle surfaces for the three
craniotomy-induced brain shift case studies is 1.9 mm with
a standard deviation (SD) of 0.464 mm. This means that the

overall agreement between the ventricles is reasonably good,
with most of the points falling within one standard deviation
of the mean.

Tumour resection-induced brain shift

Qualitative evaluation

For case study 4, the predicted intra-operative brain con-
tour extracted from the predicted intra-operative MRIs was
compared to the actual intra-operative MRI brain contour
(Fig. 9). Likewise, we qualitatively evaluated our frame-
work’s predicted contours of the brain parenchyma extracted
from predicted post-operative MRIs for case studies 5, 6
and 7 to the actual brain contours extracted from the actual
post-operative MRI (Fig. 9). The predicted maximum dis-
placement observed in case studies 4, 5, 6 and 7, was 11 mm,
7 mm, 7.2 mm and 6.5 mm, respectively.

Quantitative evaluation

We used the 95th, 75th, 50th and 25th percentile HD to
measure the similarities between the actual ventricle and
the predicted ventricle surfaces (Table 6). Registration is
considered successful if the 95% HD is lower than twice
the actual in-plane resolution of the intra-operative MRI
(2.4 mm, 2 mm, 4 mm and 2 mm for case studies 4, 5, 6 and
7, respectively). For case study 4, about 77% of the nodes on
the ventricle surfaces were successfully registered. For case
studies 5, 6 and 7, about 92%, 99% and 89% of the nodes on
the ventricle surfaces, respectively, were successfully regis-
tered (Fig. 10). The mean 95th percentile Hausdorff distance
between the ventricle surfaces for the four tumour resection-
induced brain shift case studies is 3.1 mm (SD= 0.842 mm).
This shows that the overall agreement between the ven-
tricles is reasonably good, with most points falling within
one standard deviation of the mean. However, the slightly
higher values of mean HD indicate that the tumour resection-
induced brain shift is more difficult to compensate for than
craniotomy-induced brain shift.

Electrode placement-induced brain shift

The predicted maximum displacement in case studies 8 and
9 was 11.7 mm and 21.5 mm, respectively. Using the defor-
mation field predicted by our framework, we warped the
pre-operative MRI to obtain the corresponding brain con-
figuration with electrodes implanted. We used the “Scattered
Transform” module [23] to obtain the transform for image
warping. Figure 11 shows the computed deformation field
of case 8 (Fig. 11a) and case 9 (Fig. 11b). Figure 11 shows
the transforms used to warp the pre-operative MRI of case 8
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Fig. 7 Intra-operativeMRI overlaid with contours (red) of the deformed
ventricle and brain extracted from the predicted intra-operative MRI
which is obtained by warping the pre-operativeMRI with the computed
transform. Comparison of the brain contours (red) from the predicted

intra-operative MRI along with the brain contours (green) extracted
from the pre-operative MRI. Predicted red ventricle contours and intra-
operative ventricle contours in yellow

Table 5 Quantitative evaluation
for craniotomy-induced brain
shift. 95th, 75th, 50th and 25th
percentile (millimetres) of HD
between the predicted and actual
ventricle surfaces. The 95% HD
was utilised as the measure of
registration error. The results are
compared to finite element and
MTLED results from our
previous studies [8, 26]

Case H95 (mm) H75 (mm) H50 (mm) H25 (mm)

1 1.7 0.9 0.5 0.2

1 [32] 1.3 0.6 0.4 0.3

2 1.5 0.9 0.5 0.2

2 [32] 2.8 1.2 0.8 0.4

2 [10] 1.4 N/A N/A N/A

3 2.5 0.6 0.3 0.2

3 [32] 1.9 1.1 0.6 0.4
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Fig. 8 Hausdorff distance between predicted and actual intra-
operative ventricles at different percentiles. The in-plane resolution
of the intra-operative image for all patients is indicated by the red
line. a For patient 1, the acceptable registration error is 2.5 mm, which

corresponds to 96-percentile HD, b for patient 2, the acceptable regis-
tration error is 1 mm, which corresponds to 98-percentile HD, and c for
patient 3, the acceptable registration error is 2.5 mm, corresponds to
99-percentile HD

(Fig. 12a) and case 9 (Fig. 12b). The results of the registra-
tion are shown in Fig. 13a for case 8 and in Fig. 13b for case
9.

Computational efficiency

The simulations were performed on an HP Pro-Book laptop
with an Intel Core i7 (2.7 GHz) processor and 8 GB physi-
cal memory. The time required to automatically generate a
patient-specific brain biomechanical model using our frame-
work was less than 3 min for each case. However, in tumour
resection, there is an additional step of the construction of
a brain model with a tumour cavity, which takes approxi-
mately 20 min. The solution to the biomechanical models
ranged from 13 to 23 min.

Discussion and conclusion

We developed a framework to automatically generate a brain
biomechanical model and compute intra-operative brain
deformations. Our framework, SlicerCBM, is implemented
as an extension in 3DSlicer, freely open-source software, and
contains modules that can be used in combination to solve

three neurosurgical brain shift scenarios: craniotomy, tumour
resection and electrode placement-induced brain shift. The
main modules of the framework are “ComputationalGrid-
Generator” to generate a patient-specific computational grid,
“CranGenerator” to create a craniotomy model, “Surface-
Triangulation” to generate a uniformly triangulated surface
(craniotomy and electrode sheet), “ElectrodeToMarkups” to
extract the original electrode locations from CT, “MarkUp-
sToDistance” to create the projected electrode locations on
the undeformed brain surface, “SheetFromPoints” to gen-
erate an electrode sheet model, “NodeSelector” to select the
exposed brain surface due to a neurosurgical procedure, “Dis-
placementLoading” to compute loading, “SkullGenerator” to
define the boundary conditions, “FuzzyClassification” and
“MaterialPropertiesAssignment” to assign material proper-
ties to intra-cranial constituents and “MTLEDSolver” to
compute brain deformations. These modules uniquely com-
bine various algorithms working behind 3D Slicer modules
and open-source software libraries. The “MTLEDSolver”
module integrates ourMTLED algorithm to provide an inter-
face to this robust and efficient solution algorithm.

We evaluated the accuracy of our framework by perform-
ing nine simulations belonging to three neurosurgical brain
shift scenarios. For craniotomy and tumour resection, the

123



1936 International Journal of Computer Assisted Radiology and Surgery (2023) 18:1925–1940

Fig. 9 Intra-operative (case 4) and post-operative (cases 5, 6 and 7)
MRIs overlaid with brain and tumour contours. The yellow in the
tumour region denotes the pre-operative tumour cavity, whereas the
green denotes the true intra-operative tumour cavity in case 4 and

the post-operative tumour cavity in cases 5, 6 and 7. For the brain
contours, yellow denotes pre-operative brain contour, green represents
intra-operative brain contour for case 4 and post-operative brain contour
for cases 5, 6 and 7, and red denotes predicted brain contour

Table 6 Quantitative evaluation
for tumour resection-induced
brain shift. 95th, 75th, 50th and
25th percentile (millimetres) of
HD between the predicted and
actual ventricle surfaces

Case H95 (mm) H75 (mm) H50 (mm) H25 (mm)

4 4.10 2.29 1.27 0.58

5 2.67 1.15 0.62 0.27

6 2.34 1.26 0.68 0.33

7 3.44 1.01 0.54 0.25
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Fig. 10 Hausdorff distance between predicted and actual intra-operative
ventricles at different percentiles. The in-plane resolution of the intra-
operative image for all patients is indicated by the red line. a For patient
4, the acceptable registration error is 2.4 mm, corresponding to 78-
percentile HD, b for patient 5, the acceptable registration error is 2 mm,

corresponding to 92-percentile HD, c for patient 6, the acceptable reg-
istration error is 4 mm, corresponding to 99-percentile HD, and d for
patient 7, the acceptable registration error is 2 mm, corresponding to
89-percentile HD

Fig. 11 Visualisation of deformation field computed using our automated framework for cases 8 and 9

123



1938 International Journal of Computer Assisted Radiology and Surgery (2023) 18:1925–1940

Fig. 12 Visualisation of pre-operative image transformation for cases 8 and 9 using deformation field from Fig. 10a and b, respectively, and predicted
deformed brain model surface (red line) overlaid with predicted image

actual ventricle contours (yellow) and the ventricle con-
tours predicted by our framework (red) show good similarity
(Figs. 7 and 9). The 95% HD for ventricles surfaces for all
case studies is less than two times the original in-plane reso-
lution of the intra-operative MRI, which confirms successful
registration. The 95% HD of the ventricle surfaces between
the predicted and actual intra-operative MRIs for case study
2, between the results produced by our automated frame-
work and the results obtained in our previous studies [8, 26],
is less than 0.1mm. The results obtained using our automated
framework are very close to those reported in our previous
studies [8, 26].

Our framework needs further verification against large
cohort patient studies. Furthermore , the quantitative evalua-

tion of displacements for electrode placement-induced brain
shift was not possible due to the lack of intra-operative MRI
data, asMRIswith electrodes implantedwithin the brain can-
not be obtained for patient safety reasons. Our framework
has significant potential for clinical applications. Qualitative
and quantitative comparisons of ventricle surfaces in pre-
dicted and intra-operative MRIs for craniotomy and tumour
resection-induced brain shift, and qualitative comparisons of
brain contours for electrode placement-induced brain shift,
lead us to conclude that the results are accurate enough to
be useful in clinical applications because the accuracy of the
results that we obtained for all case studies is within the limits
typically required in image-guided surgery [33].
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Fig. 13 Visualisation of predicted intra-operative MRIs for case 8 and case 9 registered on CT with implanted intra-cranial electrodes along with
predicted deformed brain model surface (red line)

Acknowledgments This work was supported in part by the National
Health and Medical Research Council (NHMRC) Project Grants
APP1144519 and APP1162030, Australian Research Council (ARC)
Discovery Project Grants DP230100949 and DP160100714, National
Institutes of Health (NIH) Grants R01EB027134, P41EB028741,
R01EB032387, P41EB015902 (NAC), P41EB028741 (AT-NCIGT)
and R01CA235589 (LNQ), and National Cancer Data Ecosys-
tem, Task Order No. 413 HHSN26110071 under Contract No.
HHSN261201500003I. The first author is a recipient of the University
Post-graduate Award (UPA) at The University of Western Australia.

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions.

Codeavailability The software developed as part of this study is bundled
as the SlicerCBM extension for 3D Slicer and is freely available from
our GitHub repository (https://github.com/SlicerCBM/SlicerCBM).

Declarations

Conflict of interest All the authors declare that they have no conflict of
interest.

Informed consent Therewas no informed consent required for thework
reported in this manuscript.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Shah MN, Leonard JR, Inder G, Gao F, Geske M, Haydon DH,
OmodonME, Evans J,Morales D, Dacey RG (2012) Intraoperative
magnetic resonance imaging to reduce the rate of early reoperation
for lesion resection in pediatric neurosurgery. J Neurosurg Pediatr
9(3):259–264

2. Giordano M, Samii A, McLean ACL, Bertalanffy H, Fahlbusch R,
Samii M, Di Rocco C (2017) Intraoperative magnetic resonance
imaging in pediatric neurosurgery: safety and utility. J Neurosurg
Pediatr 19(1):77–84

3. Miller K, Wittek A, Joldes G (2010) Biomechanics of the brain for
computer-integrated surgery. Acta Bioeng Biomech 12(2):25–37

123

https://github.com/SlicerCBM/SlicerCBM
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1940 International Journal of Computer Assisted Radiology and Surgery (2023) 18:1925–1940

4. Joldes GR, Wittek A, Miller K (2009) Suite of finite element algo-
rithms for accurate computation of soft tissue deformation for
surgical simulation. Med Image Anal 13(6):912–919

5. Horton A, Wittek A, Joldes GR, Miller K (2010) A meshless Total
Lagrangian explicit dynamics algorithm for surgical simulation.
Int J Numer Methods Biomed Eng 26(8):977–998

6. Zhang GY, Wittek A, Joldes GR, Jin X, Miller K (2014) A three-
dimensional nonlinear meshfree algorithm for simulating mechan-
ical responses of soft tissue. Eng Anal Bound Elem 42:60–66

7. JoldesG,BourantasG, ZwickB,ChowdhuryH,WittekA,Agrawal
S, Mountris K, Hyde D, Warfield SK, Miller K (2019) Suite of
meshless algorithms for accurate computation of soft tissue defor-
mation for surgical simulation. Med Image Anal 56:152–171

8. Miller K, Horton A, Joldes GR,Wittek A (2012) Beyond finite ele-
ments: a comprehensive, patient-specific neurosurgical simulation
utilizing a meshless method. J Biomech 45(15):2698–2701

9. Yu Y, Bourantas G, Zwick B, Joldes G, Kapur T, Frisken S,
Kikinis R, Nabavi A, Golby A, Wittek A (2022) Computer simula-
tion of tumour resection-induced brain deformation by a meshless
approach. Int J Numer Methods Biomed Eng 38(1):e3539

10. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin
J-C, Pujol S, Bauer C, Jennings D, Fennessy F, SonkaM (2012) 3D
slicer as an image computing platform for the quantitative imaging
network. Magn Reson Imaging 30(9):1323–1341

11. Mercier L, Del Maestro RF, Petrecca K, Araujo D, Haegelen C,
Collins DL (2012) Online database of clinical MR and ultrasound
images of brain tumors. Med Phys 39:3253–3261

12. Mattes D, Haynor DR, Vesselle H, Lewellen TK, EubankW (2003)
PET-CT image registration in the chest using free-form deforma-
tions. IEEE Trans Med Imaging 22(1):120–128

13. Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK,
Fischl B (2004) A hybrid approach to the skull stripping problem
in MRI. Neuroimage 22(3):1060–1075. https://doi.org/10.1016/j.
neuroimage.2004.03.032

14. Kittler J, Illingworth J (1986)Minimum error thresholding. Pattern
Recogn 19(1):41–47

15. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution
3D surface construction algorithm. ACM Siggraph Comput Graph
21(4):163–169

16. Valette S, Chassery JM, Prost R (2008) Generic remeshing of
3D triangular meshes with metric-dependent discrete Voronoi dia-
grams. IEEE Trans Visual Comput Graph 14(2):369–381

17. Geuzaine C, Remacle JF (2009) Gmsh: a 3-D finite element mesh
generator with built-in pre-and post-processing facilities. Int J
Numer Meth Eng 79(11):1309–1331

18. Sorkine O, Cohen-Or D, Lipman Y, Alexa M, Rössl C, Seidel
HP (Eds) (2004) Laplacian surface editing. In: Proceedings of the
2004 Eurographics/ACM SIGGRAPH symposium on Geometry
processing

19. Joldes GR, Wittek A, Miller K, Morriss L (Eds) (2008) Realistic
and efficient brain-skull interaction model for brain shift compu-
tation. Computational Biomechanics for Medicine III Workshop,
MICCAI

20. Miga MI, Sun K, Chen I, Clements LW, Pheiffer TS, Simpson
AL, Thompson RC (2016) Clinical evaluation of a model-updated
image-guidance approach to brain shift compensation: experience
in 16 cases. Int J Comput Assist Radiol Surg 11(8):1467–1474

21. Schroeder W, Martin KM, Lorensen WE (1998) The visualization
toolkit an object-oriented approach to 3D graphics. Prentice-Hall
Inc

22. Sullivan C, Kaszynski A (2019) PyVista: 3D plotting and mesh
analysis through a streamlined interface for the Visualization
Toolkit (VTK). J Open Source Softw 4(37):1450

23. JoldesGR,WittekA,Miller K (2012) Stable time step estimates for
mesh-free particle methods. Int J Numer Meth Eng 91(4):450–456

24. Waldron KJ, Kinzel GL, Agrawal SK (2016) Kinematics, dynam-
ics, and design of machinery. Wiley

25. Drakopoulos F, Tsolakis C, Angelopoulos A, Liu Y, Yao C,
Kavazidi KR, Foroglou N, Fedorov A, Frisken S, Kikinis R
(2021) Adaptive physics-based non-rigid registration for immer-
sive image-guided neuronavigation systems. Front Digit Health
2:613608

26. Wittek A, Joldes G, Couton M, Warfield SK, Miller K (2010)
Patient-specific non-linear finite element modelling for predicting
soft organ deformation in real-time; application to non-rigid neu-
roimage registration. Prog Biophys Mol Biol 103(2–3):292–303

27. Zhang JY, Joldes GR, Wittek A, Miller K (2013) Patient-specific
computational biomechanics of the brainwithout segmentation and
meshing. Int J Numer Methods Biomed Eng 29(2):293–308

28. Miller K, Joldes GR, Bourantas G, Warfield SK, Hyde DE, Kiki-
nis R, Wittek A (2019) Biomechanical modeling and computer
simulation of the brain during neurosurgery. Int J Numer Methods
Biomed Eng 35(10):e3250

29. Miller K, Chinzei K (2002) Mechanical properties of brain tissue
in tension. J Biomech 35(4):483–490

30. Bourantas G, Zwick BF, Joldes GR, Wittek A, Miller K (2021)
Simple and robust element-free Galerkinmethodwith almost inter-
polating shape functions for finite deformation elasticity. Appl
Math Model 96:284–303

31. Garlapati RR, Roy A, Joldes GR, Wittek A, Mostayed A, Doyle B,
Warfield SK, Kikinis R, Knuckey N, Bunt S (2014) More accurate
neuronavigation data provided by biomechanical modeling instead
of rigid registration. J Neurosurg 120(6):1477–1483

32. Oguro S, Tuncali K, Elhawary H, Morrison PR, Hata N, Silverman
SG (2011) Image registration of pre-procedural MRI and intra-
procedural CT images to aid CT-guided percutaneous cryoablation
of renal tumors. Int J Comput Assist Radiol Surg 6(1):111–117

33. Warfield SK, Haker SJ, Talos I-F, Kemper CA, Weisenfeld N,
Mewes AUJ, Goldberg-Zimring D, Zou KH, Westin C-F, Wells
WM (2005) Capturing intraoperative deformations: research expe-
rience at Brigham and Women’s Hospital. Med Image Anal
9(2):145–162

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.neuroimage.2004.03.032

	SlicerCBM: automatic framework for biomechanical analysis of the brain
	Abstract
	Introduction
	Methods
	Image pre-processing
	Patient-specific biomechanical model generation
	Computational grid generator
	Brain–skull contact interface
	Loading
	Assignment of material properties using fuzzy tissue classification

	Model solution
	Image warping

	Results
	Methods for evaluating predicted intra-operative deformations by our framework
	Craniotomy-induced brain shift
	Qualitative evaluation
	Quantitative evaluation

	Tumour resection-induced brain shift
	Qualitative evaluation
	Quantitative evaluation

	Electrode placement-induced brain shift
	Computational efficiency

	Discussion and conclusion
	Acknowledgments
	References




