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Abstract
Purpose 7T time-of-flight (TOF)MRI provides high resolution for the evaluation of cerebrovascular vessels and pathologies.
In combination with 4D flow fields acquired with phase-contrast (PC) MRI, hemodynamic information can be extracted to
enhance the analysis by providing direct measurements in the larger arteries or patient-specific boundary conditions. Hence,
a registration between both modalities is required.
Methods To combine TOF and PC-MRI data, we developed a hybrid registration approach. Vessels and their centerlines are
segmented from the TOF data. The centerline is fit to the intensity ridges of the lower resolved PC-MRI data, which provides
temporal information. We used a metric that utilizes a scaled sum of weighted intensities and gradients on the normal plane.
The registration is then guided by decoupled local affine transformations. It is applied hierarchically following the branching
order of the vessel tree.
Results A landmark validation over Monte Carlo simulations yielded an average mean squared error of 184.73mm and an
average Hausdorff distance of 15.20mm. The hierarchical traversal that transforms child vessels with their parents registers
even small vessels not detectable in the PC-MRI.
Conclusion The presented work combines high-resolution tomographic information from 7T TOF-MRI and measured flow
data from 4D 7T PC-MRI scan for the arteries of the brain. This enables usage of patient-specific flow parameters for realistic
simulations, thus supporting research in areas such as cerebral small vessel disease. Automatization and free deformations
can help address the limiting error measures in the future.
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Introduction

In clinical research and practice, multimodal image data or
different sequences are required for answering diagnostic
and research questions. Depending on the data and artifacts,
co-registration can be error-prone and often requires highly
adapted algorithms.
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One such scenario is the analysis of cerebral blood vessels
based on the co-registration of phase-contrast (PC) mag-
netic resonance imaging (MRI) and time-of-flight (TOF)
MRI. While the first contains valuable information about
blood flow within the scanned volume, it is limited in reso-
lution [1,2]. In contrast, TOF-MRI can be of high resolution
when scanned with a 7 Tesla (T) MR scanner and can yield
a highly detailed 3D vessel model [1,3]. Registering two
such images of a patient enables access to PC-MRI’s hemo-
dynamic information within the high-resolution TOF-MRI
model.

Small vessels only visible in higher resolutions are of
interest for medical research, e.g., in the case of cerebral
small vessel disease (CSVD) or treatment of aneurysms, arte-
riovenous malformations and explorations of neurovascular
implants. CSVD is tied toAlzheimer’s disease, but their exact
connection is an active research field with many open ques-
tions remaining [3,4].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-023-02836-y&domain=pdf
http://orcid.org/0000-0002-4108-6918


838 International Journal of Computer Assisted Radiology and Surgery (2023) 18:837–844

PCI-MRI data provides blood flow measurements that
computational fluid dynamics (CFD) simulations can utilize,
enabling an in-depth analysis of shear stress and pressure
values. In order for these simulations to be as realistic as pos-
sible, patient-specific boundary conditions and a 3D model
of the patient’s vessels are needed [5,6]. PC-MRI scans offer
such patient-specific conditions, but their resolution is not
sufficient to detect small vessels [4]. Although both imaging
techniques rely on MRI, artifacts occur and a sophisticated
co-registration is required [7].

Since vessels make up only a small part of the entire
image, an image-to-image registration approach may focus
on irrelevant information [8]. Thus, many strategies use ves-
sel segmentations for feature-to-feature registration instead,
and for our goal of blood flow simulation, a segmentation of
the detailed TOF-MRI data is provided. However, there is no
fully automatic segmentation for PC-MRI data available or
for co-registering PC-MRI data to TOF-MRI overall.

We present a hybrid approach for registration, meaning
segmented vessels from TOF-MRI shall be registered to the
image values of the preprocessed PC-MRI. In this work,

• We developed a co-registration for high-resolution 7T
TOF-MRI to 7T PC-MRI intracranial vessel data

• We implemented a hybrid hierarchical strategy based on
centerline fit

• Our metric guides the registration with three compo-
nents that consider a weighted sum of scaled intensities,
a penalty based on gradients on the normal plane and
manually placed landmarks

• During optimization, parameters are decoupled for local
affine transformations

• We include a representation of the smallest vessels,
which allows them to be registered despite not being rec-
ognizable within the PC-MRI data.

This can aid further exploration of blood flow even in smaller
vessels that can be critical to analyze for various neurological
pathologies.

Related work

Hybrid co-registration that includes both feature- and image-
based information has been used for co-registration of vessels
for different modalities. This has the benefit of not requiring
as many expensive operations and feature storage as image-
to-image or feature-to-feature registrations [9].

In the area of 3D–2D registration, it has been used by
Rivest-Hénault et al. [10] for cardiac vessel registration. They
extracted the 3D centerlines of the vasculature and registered
them, augmenting the images during intervention in real time.
Preprocessing included segmentation with a vesselness filter.

For registration, a progressively refined affine transformation
and a non-rigidmethodwith thin plate splineswere used [10].

Other studies employ the entire vessel graph. Aylward et
al. [8] performed a centerline segmentation in one image to
rigidly register to another image that requires no segmenta-
tion. This hybrid approach works under the assumption that
vessels in the second image are recognizable as intensity
ridges, i.e., they exhibit a large gradient. When the two sets
of data are registered, all centerline points lie within these
ridges and a weighted sum of scaled intensities metric will
be maximized. Results were found to be accurate and robust
even for non-rigid deformations and only partial overlap of
the images [8].

Other hybrid methods use hierarchical relationships
between the vessels by considering the direction of blood
flow and parent–child relations. Jomier et al. [11] regis-
tered centerlines to intensities hierarchically from root to
leaf vessel segments. Furthermore, they use a coarse-to-fine
approach and first apply a global rigid, then a local rigid and
finally a local non-rigid transformation. To guide the registra-
tion, the normal plane perpendicular to each centerline point
is calculated, and the surrounding gradients within the vessel
radius are projected on it. An iterative optimizer maximizes
the intensity sum metric.

Deep learning (DL) methods are becoming more popular
for the optimization step of registrations [9,12]. However, a
comparison of iterative optimization andDL reveals that they
are highly competitive regarding runtime and accuracy and
that iterative methods perform better w.r.t. robustness and
parameter changes without needing long supervised training
procedures [12].

Powell’s method [13] is a commonly used gradient-free
optimizer. It utilizes the concept of conjugate directions and
is often extended with Brent’s method, a 1D optimization
strategy [14], and performs well in previously mentioned
algorithms [10].

Materials andmethods

Medical image data

A7Twhole-bodyMRI system (SiemensHealthineers, Erlan-
gen, Germany) was utilized to acquire both sets of MRI data
from volunteers. For TOF-MRI, the parameters were set to
obtain high-resolution angiograms, which yielded a resolu-
tion voxel size ranging from 0.26 to 0.39mm, while PC-MRI
scans ranged from0.64 to 0.79mm.Weutilized a spoiled gra-
dient echo sequence that featured quantitative flow encoding
in all three spatial dimensions [15,16]. Each time frame had
three maps as well as one magnitude image. The velocity
encoding value varied among the datasets andwas set accord-
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Fig. 1 Illustration of TOF and
PC-MR images

ingly to match the highest uniquely resolvable velocity that
was assumed by the medical experts [16].

Extraction of vessels

Both sets of data underwent several preprocessing steps. PC-
MRI data were treated according to Bock et al. [17] and
then combined into a single dataset by creating a temporal
maximum intensity projection of the magnitude image. A
vesselness filter, thresholding and masking were applied to
both datasets in MeVisLab 3.4.2 [18] to emphasize the ves-
sels. Due to strong variations in vessel size, we found that a
combination of multiple vesselness filters worked best [19].
TOF-MRI data were segmented according to [19] via thresh-
olding and masking in MeVisLab as well [20]. After editing
in Blender 2.93.4 (The Blender Foundation, Amsterdam,
Netherlands), to account for fusion artifacts from the seg-
mentation, the Vascular Modelling Toolkit VMTK 1.4.0 [21]
was used to generate centerlines.

The co-registrationwas implemented inMATLABR2021a
(The MathWorks Inc., Natick, MA, USA). We split the cen-
terline into segments by its branching points, similar to
previous work [22]. A graph including parent–child relation-
ships was built, representing the vessel as a tree with root
vessels (inlets) that branch out into leaves (outlets). These
inherent hierarchical relations were later used for traversal
in the optimization strategy.

While the data used included a full Circle ofWillis (CoW),
it was split at posterior and anterior communicating arteries
into three separate vessel trees to eliminate cycles [23].

Co-registrationmethod

A hierarchical hybrid model–image approach inspired by
Aylward et al. [8] was developed for registration, meaning
the TOF-MRI centerline was fit to the intensity ridges repre-

senting the vessels within the PC-MRI volume (illustrated in
Fig. 1, right). We added a hierarchical vessel tree traversal,
additional aspects to the metric and a higher-degree defor-
mation.

The registrationmetric hadmultiple components. The first
component was a scaled sum of weighted intensities, which
sums up the intensities of the voxels of the PC-MRI volume
in which the TOF-MRI centerline points lie after a trans-
formation step. This sum shall be maximized, so that all
centerline points lie within the intensity ridges (Fig. 2, right).
The intensities are weighted according to the corresponding
vessel radius, derived from the maximum inscribed sphere at
the current centerline point. The sum of intensities is scaled
based on the weight and amount of centerline points cur-
rently considered (see “Coarse-to-fine hierarchical strategy”
section). This first part of themetricm1(T ) is thus calculated:

m1(T ) = 1
∑n

i=1 w(ri )

n∑

i=1

w(ri )Iκσi (xi T ) (1)

where xi is a centerline point, T the transformation, I the
interpolated intensity value in which the centerline point lies,
n the number of centerline points and w(ri ) a given point’s
weight depending on radius ri of a given point.

The second component of the metric is a penalty that
ensures the centerline points are fit to the middle of the inten-
sity ridge, inspired by Jomier et al. [11]. We extended their
approach to prevent that a centerline point is registered to a
wrong vessel with a larger or smaller radius by first calcu-
lating the perpendicular normal plane at current centerline
points within the PC-MRI data. Then, the directions of the
gradients on the normal planewithin the current vessel radius
were examined to see how they correspond to the centerline
point position, which ideally would lay within the highest
intensity value.
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Fig. 2 Alignment of red dashed centerline within the intensity ridges. Right picture maximizes the scaled sum of weighted intensities, thus resulting
in a good metric, while left picture does not

The last component uses landmarks set at vessel branching
points to provide additional guidance for vessel start and end
points.

Coarse-to-fine hierarchical strategy

Tree hierarchy When finding the right fit of the centerlines
to the intensity ridges, the registration strategy made use of a
coarse-to-fine approach by utilizing the treelike hierarchy
of the vessels [11]. The inlets and outlets are considered
roots and leaves, respectively. Vessel bifurcations represent
the nodes of the tree. Registration is executed from the roots
to the leaves.

Then, the roots’ immediate children are considered the
new roots, but remain anchored to their parent vessels during
transformation. This keeps the tree together, as well as regis-
tering the smallest vessels, which are visible in the TOF-MRI
data, but not recognizable in the lower-resolution PC-MRI
data. The assumption is that the alignment of children ves-
sels benefits from the alignment of parent vessels.
Representation concept In a Boolean variable called repre-
sentation, we record which vessel segments are recognizable
in PC-MRI data. This was determined via a vessel segment’s
radius, as visibility is determined by vessel size. Thus, rep-
resented segments are considered for metric calculation and
will eventually become roots for the hierarchical tree traver-
sal. Non-represented vessel segments do not count toward
metric calculation and will only be transformed with their
parent vessels.
Multi-start decoupling of parameters Another aspect of the
coarse-to-fine strategy was a multi-start implementation and
decoupling of transformation parameters.

Affine transformations were chosen for the bulk of the
registration, though a rigid registration is carried out for ini-
tialization. The registration steps are based on the observation
that rigid transformations are heavily dependent on rotation,
which are therefore resolved first [24]. Each registration step
goes as follows:

1. Starting with only rotations, a rotation grid is spanned
over a set of rotation angles ranging from0° to 30° in steps
of 3° to suit our data. Each point on the grid represents a
possible start for the optimization progress.

2. After applying the rotation of one grid point to the data,
a 4-degree-of-freedom (4-DOF) optimization is run to
find the isotropic scaling and translation parameters. The
resulting metric of each point is saved.

3. The grid is then refined through interpolation, inserting
a grid point between each two existing ones.

4. From the refined grid, the three best sets of parame-
ters are chosen and every transformation parameter is
adjusted using perturbations based on brain radius and
voxel size [24], yielding further starting points for a
higher 7-DOF optimization.

5. The best set is chosen and will be the starting point for
the final 12-DOFoptimization featuring three translation,
three rotation, three scaling and six shearing parameters
(see scheme in Fig. 3).

All steps are repeated for each subtree within the hierarchi-
cal vessel tree traversal. For optimization, we used Powell’s
method [13] with a step size of 0.1 and a maximum number
of iterations of 1000.

Evaluation

For validation, we considered metric results that shall be
maximized, as well as error measures based on landmarks
placed at branching points of the vessel trees. Landmark
placement was conducted on natural peculiarities (e.g., bifur-
cations) that could be identified in both sets of data (see
Fig. 4). Different sets of landmarks were used for training
and validation.

Mean squared error (MSE) and Hausdorff distance (HD)
served as error measures, both of which shall be minimized
and were recorded before and after registration.
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Fig. 3 2D illustration of hierarchical top-down strategy and decoupling
of parameters: The vessel tree is traversed top-down from root to leaves,
each segment becoming the new root and being iteratively registered.

Each subtree finds the local affine transformation parameters bottom-up.
Rotation angles are resolved via multi-start initialization. Best metric
results are taken and refined up to a 12-DOF transformation

Fig. 4 Examples of landmark placement. Orange are PC-MRI land-
marks, blue TOF-PC-MRI landmarks

Since 7TMRI is not part of the clinical routine anddatasets
are rare, we could only use seven paired TOF and PC-MRI
scans from healthy volunteers. In order to get a meaningful
validation, we artificially transformed them to increase the
data size. We opted for Monte Carlo simulations (MCS), i.e.,
we randomly transformed the TOF-MRI data and registered
each of those transformations to their respective (untrans-
formed) PC-MRI data [8,14].

Strength and number of transformations were adjusted
such that the results simulate differences between the original
TOF- and PC-MRI data. We chose both rigid and non-rigid
transformations to observe our method’s performance for
both sets of transformation and due to the discussion of affine
transformations being able to solve non-rigid deformations
in particular [8].

Results and discussion

Registration and validation was carried out on a device with
an Intel core i7-10850H CPU@2.70GHz 2.71GHz proces-
sor, 32GBworking RAMand aNVIDIAGeForce RTX2080
Super graphics card. A single registration took between 20
and 40 min based on size and image quality of the data and
complexity of the vessel tree.

Before registration, the centerline is scaled too large and
does not align with the vessels of the PC-MRI segmenta-
tion. After registration, the vessels in the center of the CoW
minimize error measures and maximize the metric, though
vessels in the periphery seem to be more skewed (see Fig. 5).

Every MCS led to a maximization of the metric, meaning
the metric was larger than 0 and had a valid final value. On
average, the MSE was reduced from 774.16 to 184.73mm.
There are outliers in the upper ranges, as the median final
MSE is 79.21mm (see Table 1).

MSE was minimized in 99.93% and HD was minimized
in 99.91% of MCS, meaning that only a very small num-
ber of outlier cases registration lead to the error measures,
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Fig. 5 Fit of centerline fromTOF-MRI segmentation (orange) to a PC-MRI segmentation done by a clinical expert (black). Left shows preregistration
and right post-registration

Table 1 Overall results for
MCS

Metric Initial MSE Final MSE Initial HD Final HD

Average 3.14 774.16 184.73 31.21 15.20

Median 2.71 664.48 79.21 30.51 13.51

Std. Deviation 2.02 397.88 314.83 9.64 13.68

MSE and HD are given in mm

specifically distances between landmarks, worsening rather
than improving.

HDwas reduced from 31.21 to 15.20mmon average, with
the gap to median values not being as high with an average
reduction from 30.51 to 13.51mm. Standard deviation, how-
ever, was 13.68mm.

There is a trend of non-rigid transformations yielding bet-
ter registration results, with an average final HD and MSE
of 16.91mm and 221.96mm for rigid and 13.49mm and
147.50mm for non-rigid MCS transformations, respectively
(see Tables 2, 3). This is likely due to the rigid transfor-
mations leading to a stronger deformation of the data, as the
initial HD andMSE is higher for rigidMCS transformations,
too.

However, rigid MCS on average minimized their HD to
50.32% and their MSE to 27.03%, while non-rigid MCS
reduced their HD to 46.81% and their MSE to 20.28%. This
supports our hypothesis that local affine transformations can
approximate the non-rigid deformations in the data that shall
be co-registered.

While HD is the maximum distance across all minimum
distances of landmark pairs, an average result of 1.5cm
is large for cranial structures. However, the error depends
strongly on landmark placement, which was done manually.

Even small displacements in landmark placement can lead
to higher errors, especially with a measure like MSE.

In comparison, [10] achieved amaximum 3D replacement
of 7.416mm, while [11]’s algorithm registers 87% of the
centerline within two voxels of each other, and [8] reached a
0.1–0.2 voxel standard deviation. This shows that while our
method reduces the error significantly we have further work
to do in our method’s accuracy, for which ideas are presented
below. It shall be noted that none of these related works use
the exact same data or method.

Registration of non-rigid transformations MCS leads to
better results than rigid transformations MCS (see Tables 2,
3). We used local affine transformations for the registration
itself, which can only approximate non-rigid deformations.
Therefore, replacing them with free deformable transforma-
tions could lead to better results.

Since we used MCS by applying transformations to the
TOF data, which already has changes to its correspond-
ing PC-MRI scans, we added further transformations and
thus made the registration problem harder. However, when
registering the seven real-world scans from volunteers, no
significant differences are present, other than lower standard
deviation (see Table 4).
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Table 2 Results for rigid MCS Metric Initial MSE Final MSE Initial HD Final HD

Average 3.46 820.88 221.96 33.61 16.91

Median 2.93 780.17 109.22 32.59 15.25

Std. deviation 2.12 438.42 330.16 11.72 13.31

MSE and HD are given in mm

Table 3 Results for non-rigid
MCS

Metric Initial MSE Final MSE Initial HD Final HD

Average 2.83 727.43 147.50 28.82 13.49

Median 2.30 630.20 51.33 28.70 10.84

Std. deviation 1.86 346.46 294.04 6.08 13.83

MSE and HD are given in mm

Table 4 Results for original
data

Metric Initial MSE Final MSE Initial HD Final HD

Average 4.75 563.83 104.67 27.98 16.34

Median 4.21 529.03 97.74 29.78 16.61

Std. deviation 1.84 304.61 57.67 6.41 5.79

MSE and HD are given in mm

The above runtime was measured after acceleration by
vectorization. This relates to a preprocessing step, not a
step in an interactive process. Nevertheless, additional run-
time benefits may be gained by GPU acceleration. Another
approach to accelerated runtimes could be a deep learning
strategy.

Conclusion

We presented a hybrid approach to register TOF-MRI data to
PC-MRI scanswith thegoal of combining thehigh-resolution
TOF-MRI segmentation with the blood flow information
available in the PC-MRI data. Our registration fits the cen-
terlines of the TOF-MRI data to the intensity ridges of the
PC-MRI volume via a weighted sum of scaled intensities
metric dependent on radius and vessel normal, and further
guidance via landmarks.

We employ information on the recognizability of vessel
segments in the TOF data but not in the PC-MRI, yielding
a representation status. Thus, non-represented segments are
treated differently in the registration strategy and are aligned
via their parent vessels rather than on their own. Separate
landmarks from the ones used to guide registration served
for validation purposes.

With an average HD of 15.20mm and a MSE of
184.73mm, there is room for improvement. Future work will
include the addition of deformable transformations and pos-
sibly a non-iterative optimizer. Similarly, we aim to improve
the runtime byGPUacceleration. Furthermore,we see poten-
tial for improvements through optimizing preprocessing by

including motion correction in scan and by utilizing the
PC-MRI phase data. An automatization of the segmentation
could address concerns for user variability.
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