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Abstract
Purpose In robot-assisted minimally invasive surgery (RMIS), smoke produced by laser ablation and cauterization causes
degradation in the visual quality of the operating field, increasing the difficulty and risk of surgery. Therefore, it is important
and meaningful to remove fog or smoke from the endoscopic video to maintain a clear visual field.
Methods In this paper, we propose a novel method for surgical smoke removal based on the Swin transformer. Our method
firstly uses convolutional neural network to extract shallow features, then uses the Swin transformer block to further extract
deep features and finally generates smoke-free images.
Results We conduct quantitative and qualitative experiments on the proposed method, and we also validate the desmoking
results in the surgical instrument segmentation task. Extensive experiments on synthetic and real dataset show that the proposed
approach has good performance and outperforms the state-of-the-art surgical smoke removal methods.
Conclusion Our method effectively removes surgical smoke, improves image quality and reduces the risk of RMIS. It
provides a clearer visual field for the surgeon, as well as for subsequent visual tasks, such as instrument segmentation, 3D
scene reconstruction and surgery automation.

Keywords Surgical image · Endoscope · Surgical smoke · Desmoking · Transformer

Introduction

In robot-assisted minimally invasive surgery (RMIS), sur-
geons perform surgical operations by endoscope to observe
the tissues and organs. As a result, the clarity of the surgi-
cal image plays an important role in the surgery. However,
the smoke and fog produced by surgical temperature differ-
ence or laser ablation during the surgery seriously obstructs
the field and increases the surgical operating risk as shown
in Fig. 1a. Meanwhile, smoke also affects the processing of
subsequent visual tasks, such as instrument segmentation,
3D scene reconstruction and surgery automation. Therefore,
surgical smoke removal is essential to maintain a clear surgi-
cal field for surgeons to perform endoscopic surgery safely,
accurately and efficiently.
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At present, there are two main types of surgical image
desmoking or dehazingmethods.One is based onmechanical
methods, including endoscope lens warming strategies, anti-
fogging materials and equipment modifications [1]. These
methods are costly and time-consuming with repeated dis-
ruptions, and unsuitable for image-guided surgery. The other
is vision-basedmethods, including traditional algorithms and
deep learning-based algorithms.

Traditional methods are mostly based on the atmospheric
scattering model (ASM) [2] which indicates that regions far-
ther from the camera in a single hazy image have larger haze
concentrations. These methods attempt to estimate transmis-
sion map by physical priors, such as dark channel prior [3]
and color line prior [4], and then restore image by ASM.
These approaches based on handcrafted features are often
sensitive to image variations such as changes in illumination
and viewpoints. More importantly, these physical priors are
not inappropriate for endoscopic image, causing inaccurate
transmission estimates and undesirable desmoking results.

With the development of deep learning techniques, many
methods based on convolutional neural network (CNN) have
been proposed for haze and smoke removal. These meth-
ods do not rely heavily on statistical priors or haze-relevant
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Fig. 1 Examples of smoky image
in endoscopic surgery and our
desmoking result

attributes of the images to extract features. To guide the train-
ing process,most supervised dehazingmodels require several
types of supervision information, such as transmission map,
atmospheric light and haze-free image label. However, most
of them still rely on ASM and should be trained by synthe-
sizing images from depth information. Instead of depending
on ASM,more works have explored a range of effective deep
learning approaches for the direct learning of clear images,
including attention mechanisms [5], knowledge distillation
[6] and contrastive learning [7]. The CNN-based approaches
usually have two major problems. First, CNNs traverse the
entire image with the same convolutional kernel when con-
ducting image feature extraction, so this is not the optimal
solution to restore different image regions. Second, convo-
lution is ineffective for long-range dependency modeling
due to the notion of local processing. As a replacement for
CNN, transformer [8] designs a self-attention mechanism
that records global interactions across contexts and shows
potential in a variety of visual challenges. We explore merg-
ing the above two ideas, employing the transformer as a
feature extractor and incorporating the advantages of CNN
to solve the image desmoking problem.

In this paper, we propose a surgical image desmoking
model based on Swin transformer [9]. Our method first
utilizes convolutional layers to capture shallow features,
then employs Swin transformer block (STB) to extract deep
features and ultimately outputs smoke-free images. The con-
tributions of this work are summarized as follows:

• We propose a novel transformer-basedmethod for surgical
image desmoking which provides promising results.

• We introduce additional perceptual and structural losses
on the basis of the pixel-to-pixel reconstruction loss of
the Swin transformer framework to make the desmoking
results more realistic.

• We adopt a rich set of objective and subjective evalua-
tion criteria. To further validate the experimental results,
we also employed a task-based evaluation method to

demonstrate the desmoking performance by improving the
computer vision task.

Related work

In recent years, many approaches have been explored to
investigate general image dehazing and desmoking tasks to
restore outdoor scenes affected by weather conditions. Typ-
ically, methods for smoke removal are either prior-based or
learning-based.

Prior-basedmethods

Single image desmoking is an extremely ill-posed problem,
and a variety of handcrafted and prior-based algorithms have
been proposed to solve it. According to ASM, the hazing
process is usually formulated as:

I (x) = J (x)t(x) + A(1 − t(x)) (1)

where I (x) is the observed hazy or smoky image, J (x) is the
scene radiance to be recovered, t(x) is the transmission map
and A is the global atmospheric light.

Prior-based dehazing and desmoking approaches leverage
statistical features of clean images to estimate transmission
maps, which are requisite by Eq. (1). He et al. [3] adopted
dark channel prior (DCP), which posits that there exists at
least one channel for every pixel whose value is close to zero.
Berman et al. [10] assumed that a large number of distinct
colors can accurately approximate the colors of a clear image,
and introduce a non-local method for single image dehazing
based on this prior. These methods have been demonstrated
to be effective for image dehazing and desmoking, but their
performance is intrinsically limited since the assumed priors
are not appropriate for surgical images.
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Learning-basedmethods

The most commonly used learning-based methods rely on
training the synthetic images to obtain dehazing results. The
supervised dehazing methods are classified into two cate-
gories, depending on whether ASM is used or not. The first is
to estimate the parameters for dehazingprocess by combining
ASM with CNN. These dehazing methods based on physi-
cal prior typically utilize depth information and atmospheric
light values. The second is to directly learn themapping from
a hazy image to a haze-free image by data pairs.

Ren et al. [11] utilized an end-to-end approach to design
a dehazing network via multi-scale convolutional neural net-
works with holistic edges by learning the mapping between
hazy images and their transmission maps. Li et al. [12] pro-
posed an all-in-one dehazing network (AOD-Net) to integrate
the process of parameter estimation into a simple framework
through the reformulated ASM. Instead of estimating the
transmission map and atmospheric light, several end-to-end
approaches have been presented to recover the clean image
directly. Qin et al. [5] designed a feature attention (FA) mod-
ule that included the channel attention and pixel attention
when using CNN for feature extraction. Hong et al. [6] set
the teacher network (T ) as the image reconstruction task and
made the student network (S) imitate this process. Reiter [13]
proposed an image classifier based on CNNswith a recurrent
architecture to provide temporal context in smoke recogni-
tion task.

CNN completes the image feature extraction from local
to global information by continuously stacking convolutional
layers, which gradually expand the perceptual field until the
entire image is covered. Many studies have shown that its
actual perceptual field is much smaller than the theoretical
one that is not conducive to fully exploiting contextual infor-
mation for feature extraction. CNNs perform better with low
data volumes because of its inductive bias. Conversely, when
a large amount of data is available, the inductive bias ofCNNs
limits the overall capability of the model. As a replacement
for CNN, transformer [8] adopts the self-attention mecha-
nism that allows to embed information globally across the
overall image. Transformer performs self-attention across
pixel patches to entirely provide the convolutional induc-
tive bias. Transformer has the advantage of capturing global
contextual information using attention mechanism, allowing
it to create a long-range reliance on the image and extract
features. Furthermore, Shikhar et al. [14] discovered that the
transformer network not only outperforms CNN in image
classification tasks, but also has a stronger shape bias and is
more consistent with human perception after comparing with
CNN. Recently, Swin transformer [9], which combines the
advantages of CNN and transformer, has showed significant
potential. Liang et al. [15] proposed a strong baseline model
for image restoration which showed impressive performance

on low-level vision tasks. Therefore, by combining the ben-
efits of CNN and transformer, our proposed method has the
advantage of CNN in processing images of huge size due to
the local attention mechanism and the advantage of trans-
former in modeling long-range dependencies leveraging the
shifted window.

Method

The architecture of our proposed method is shown in Fig. 2a.
The network is comprised of three modules which is simi-
lar to [15]: feature extraction, further feature extraction and
smoke-free image restoration modules.

Feature extraction

To extract the shallow feature, the first module Hs(·) con-
sists of three convolutional layers. Given the input image
x ∈ R3×H×W (H and W are the image height and width,
respectively, and 3 means the R,G and B channels), the mod-
ule generates a feature map Fs ∈ RC×H×W with C channels
as

Fs = Hs(x) (2)

Further feature extraction

Then, the further feature extraction module Hf(·) consists of
N Swin transformer blocks (as shown in Fig. 2b) [9] and a 3
× 3 convolutional layer. We extract deep feature Fd from Fs
as

Fd = Hf(Fs) (3)

The Swin transformer block consists of a shifted window-
based multi-head self-attention (MSA) module, followed by
a two-layer multilayer perceptron (MLP) with GELU non-
linearity in between. Before each MSA and MLP module,
a LayerNorm (LN) layer is applied, followed by a residual
connection. Using a convolutional layer at the end of fea-
ture extraction can establish a better foundation for the later
aggregation of shallow and deep features.

Image restoration

Similar to the first module, the image restoration module
restores the smoke-free image using convolutional layers.
The calculation is formulated as

Ir = Hr(Fs + Fd) (4)
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Fig. 2 Architecture of our proposed network for image desmoking

where Hr(·) is the function of the reconstruction module.
We provide skip connections which connect the shallow and
deep feature maps to enhance feature fusion.

Loss function

We propose a supervised surgical image desmoking method
to achieve the smoky-to-clear translation by introducing three
loss functions, namely reconstruction loss, perceptual loss
and SSIM loss. We employ the reconstruction loss which
measures the pixel-wise difference between the desmoked
and the ground truth images. The perceptual loss allows to
assess the semantic difference between two images and mea-
sures visual similarity by comparing feature-level content.
SSIM loss provides a measure of similarity by comparing
the luminance, contrast and structural similarity information
of two images.We optimize the parameters by a combination
of the three losses, and the total loss function is defined as

L total = λcLChar + λpLPrec + λs LSSIM (5)

where LChar, LPrec and LSSIM indicate reconstruction loss,
perceptual loss and SSIM loss, respectively, and λc, λp and
λs are trade-off weights.

Reconstruction loss

Instead of using the L2 loss function, we propose to train
the network with the robust Charbonnier loss [16] to better
handle outliers and improve the performance. As previously
mentioned, Ir denotes the smoke-free image of input image
x, and Igt denotes the clean image. The Charbonnier loss is
defined as

LChar =
√

||Ir − Igt ||2 + ε2 (6)

where ε is a constant that is empirically set to 10−3.

Perceptual loss

To evaluate the visual difference between the estimated
image and the ground truth, the perceptual loss uses multi-
scale features obtained from a pre-trained deep neural
network. The definition of the perceptual loss is

LPrec =
3∑

i=1

1
Ci HiWi

||�i
(
Igt

) − �i (Ir)||22 (7)

where �(·) is the 16-layer VGG network pre-trained on the
ImageNet dataset,�i (·) denote the i th VGG16 feature maps,
and Ci , Hi and Wi indicate the dimension of �i (·).

SSIM loss

SSIM loss preserves the contrast in high-frequency regions
(edge and details) better than the other loss functions. Includ-
ing the SSIM factor in the loss function can retain the rich
structural information of the restored image. The loss func-
tion is formulated as

SSIM = (2μrμgt+C1)(2σr , gt+C2)(
μ2
r+μ2

gt+C1
)(

σ 2
r +σ 2

gt+C2
) (8)

LSSIM = 1 − SSIM (9)

where μr and μgt represent the mean values of the Ir and
Igt , σr and σgt represent the standard deviations of the Ir and
Igt , σr , gt represents the covariance of the Ir and Igt , and C1

and C2 are constants set to avoid the denominator being 0.

Experiment

We use a vast scope of objective and subjective evaluation
metrics. We conduct comprehensive tests on both synthetic
and real-world smoke data sets, and our method outperform

123



International Journal of Computer Assisted Radiology and Surgery (2023) 18:1417–1427 1421

the most advanced algorithms in both subjective visual and
quantitative comparisons.

Implementation details

We implement our algorithm on the Pytorch framework. All
the experiments are conducted on two NVIDIA 3080 GPUs.
The entire training process is optimized by the ADAM solver
with default parameters that β1 and β2 take the default values
of 0.9 and 0.999, respectively. The learning rate is set to 10−4

with a decay rate of 0.5 for every 10 epochs with a batch size
of 8. The patch size is 64 × 64, and the window size is set to
8 by default. The channel number and attention head number
are generally set to 180 and 6, respectively. The trade-off
weights in loss function are set to λc = 1, λp = 0.01, and λs
= 0.5.

Datasets

Because of suffering from limited data in the surgical scenes,
we use a large-scale synthetic dataset named RESIDE:
V0 [17] for pre-training. We adopt all of the synthesized
hazy/clean image pairs of indoor training set (ITS) and out-
door training set (OTS) in RESIDE: V0 dataset. In addition,
we employ a 3D graphics rendering engine [18] to render
smoke onto surgical images from 2017 EndoVis challenge
dataset [19] as additional training data. We repurpose the
weights of the pre-trained models to these images via fine-
tuning to further improve performance. The physically based
haze formationmodel to generate smoke as in [20] is not used
since various spatial domains of the image might be influ-
enced by different levels of smoke in surgical scenes. We
generate different smoky images by using random param-
eters of position, density and intensity. In the fine-tuning
phase, we unfreeze the base model and train the entire model
end to end with a low learning rate and obtain incremental
improvements for surgical scene by adjusting the weights
appropriately.

Finally, we sample 120 non-smoky images and 120
real smoky images from the Hamlyn center laparo-
scopic/endoscopic video datasets [21] for testing. The non-
smoky images are rendered using the same method to obtain
the synthetic test dataset, and the real smoky images are used
as the real test dataset.

Comparisonmethods

We employ two widely used metrics to evaluate each method
for synthetic images with ground truth, i.e., peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM).

PSNR is a full-reference image quality evaluation metric
which computes the differences between processed images
and ground truths and is often employed in low-level image

restoration. Given a desmoked image Ir and a clean image
Igt , the PSNR is defined as:

PSNR = 10 · log10
(
2552
MSE

)
(10)

where

MSE = 1
WH

W∑
i=1

H∑
j=1

(
Igt (i , j) − Ir (i , j)

)2
(11)

whereW and H are thewidth and height of the desmoked and
ground truth images, Igt (i , j) is the value of the clean image
at location (i , j) and Ir (i , j) corresponds to the value of
the generated smoke-free image. A better quality desmoked
image equates to a larger value of PSNR.

The SSIM metric [22] is a well-known quality evaluation
method to measure the similarity between two images and
defined as Eq. (8). A good desmoking method has a high
value of SSIM.

Since there is no ground truth in real-world cases,we adopt
the Fog Aware Density Evaluator (FADE) [23] to evaluate
the haze density of images. FADE is a non-reference method
that does not require the original foggy or smoky image.
A lower value of FADE implies better desmoking perfor-
mance. Additionally, we use threewell-known non-reference
image quality evaluation metrics: natural image quality
evaluator (NIQE), blind/referenceless image spatial quality
evaluator (BRISQUE) [24] and spatial spectral entropy-
based quality (SSEQ). For all metrics NIQE, BRISQUE and
SSEQ, the lower value indicates better result. Finally, we
assess the visual quality on both synthetic and real smoky
images.

Table 1 Comparison with the different methods using the PSNR and
SSIM. The best and suboptimal performances are indicated by bold
and italics, respectively

Metrics PSNR ↑ SSIM ↑

DCP 16.42 0.6709

NLD 18.25 0.6793

DehazeNet 19.71 0.6918

AOD-net 18.11 0.6667

FFA-net 19.77 0.6515

4KDehazing 18.43 0.7913

PSD 10.59 0.5733

D4 17.08 0.5600

Ours (pre-trained) 21.15 0.7875

Ours 23.55 0.8567

Bold and italics to indicate the best and suboptimal performance, respec-
tively
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Fig. 3 Visual comparisons of desmoking results on synthetic images

We compare the proposed method with eight state-of-
the-art desmoking and dehazing methods including both
traditional image processing approaches (DCP [3], NLD
[10]) and the most recent deep learning-based methods
(DehazeNet [20], AOD-Net [12], FFA-Net [5], 4KDehazing
[25], PSD [26] and D4 [27]).

Experiments on synthetic dataset

The effectiveness of our approach for smoke removal is
assessed using both performance metrics and visual qual-
ity with our generated synthetic test dataset. Table 1 shows
the quantitative results of our synthetic datasets with other
approaches. First, our pre-trained model as well as the
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Fig. 4 Visual comparisons of desmoking results on real smoky images

final model obtains the highest PSNR and SSIM values
and outperforms all of the other dehazing and desmoking
methods, which demonstrates the robustness in terms of
smoke removal task. Secondly, the handcrafted feature-based
approaches [3, 10] do not perform effectively as expected.
The performance of PSD is also unsatisfactory because it is
based on a large number of physical priors. As a result, it is

obvious that the physical priors of ASM are not applicable to
surgical smoke removal. Moreover, compared to other indi-
rect approaches, those methods [25, 27] that directly predict
clear images based on end-to-end trainable networks achieve
better results. FFA-Net also achieved better results, probably
due to the use of the attention mechanism.
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We also give the subjective comparison of desmoking
results in Fig. 3. We observe that DCP and D4 often produce
images with lower brightness than the original scene. The
results of NLD and PSD suffer from some color distortion
and seem unrealistic. DehazeNet, AOD-Net and FFA-Net
do not remove the smoke completely and tend to output
low-brightness images. Compared with these methods, our
results are cleaner and visually pleasing with brighter details
and sharper edges. Although optimizing SSIM loss directly
makes our results ideal in SSIMmetric, our proposedmethod
also have better results on PSNRmetric as well as subjective
evaluation.

Experiments on real smoky dataset

We further evaluate our algorithm on real smoky images.
Figure 4 illustrates the real smoky images and the desmoking
results from state-of-the-artmethods.Overall, the desmoking
results are less effective than the synthetic dataset as shown.
NLD and D4 suffers from serious color distortions. Images
recovered using AOD-Net and 4KDehazing are still a little
hazy, particularly in area at the edge.Although the desmoking
results of DehazeNet are generally satisfactory, color distor-
tion does occasionally occur.

For quantitative comparison, we observe that our method
does not have the lowest FADE score as shown in Table 2. It
is mainly because FADE is a patch-based evaluator to assess
the fog density for an entire hazy image. However, it is based
on statistical regularities observed on natural foggy and fog-
free images, which always consider sharpness, contrast and
saturation of the image. The fog aware features are derived
from a reliable space domain natural scene statistics (NSS)
model, so theFADEscore is basedon anatural scenario rather
than a surgical scenario. Therefore, it is likewise acceptable
that our experiment result is higher than NLD by only a small
margin in terms of FADE. However, Fig. 4 shows that NLD
has significant color distortion, while our method has a better
visual result.

Our method acquires relatively good results in terms
of NIQE, BRISQUE and SSEQ which are general non-
reference image quality evaluation indicators based on
natural scene statistics. DCP has the best and suboptimal
performance in terms of NIQE and BRISQUE, respectively,
while PSD has the best results in terms of SSEQ. However,
there is no clear conclusion that which one of these general
non-reference metrics can better evaluate the image quality.
Figure 4 shows that PSD has serious color shifting and DCP
has lower brightness than the original scene. Our intuition is
that these metrics do not reflect the desmoking quality from
the human vision. We find that Guo et al. [28] also had the
same idea that the existing non-referencemetrics are not fully
suitable to assess the desmoking performance. As a result, Ta
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Fig. 5 Task-based comparisons of segmentation and desmoking results on real smoky images

developing more effective non-reference metrics is the most
challenging and crucial work.

Tobetter assess real smokydataset,we evaluate task-based
performance as an indirect indicator of the desmoking per-
formance. Such a task-driven evaluation approach has still
not received attention, but it has great potential for surgical
applications. Therefore, we validate our desmoking results

based on instrument segmentation tasks [29]. Since there is
no ground truth for the segmentation results in the real smoky
dataset, we only show the qualitative comparison results in
Fig. 5. It is seen that most of the desmoking algorithms
improve the segmentation effect. Traditional desmoking
methods are generally more effective. Compared to other
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deep learning-based algorithms, we obtain better segmen-
tation results for the surgical instruments in our desmoked
images. The segmentation results indirectly demonstrate the
effectiveness of our proposedmethod and the future potential
for other vision tasks.

Discussion and conclusion

In this paper, we propose a novel deep learning-based
method which combines transformer with traditional CNN
for surgical image desmoking. We utilize the self-attention
mechanism for deep feature extraction. Compared to other
desmoking algorithms which are based on various priors,
our method conducts end-to-end feature extraction and gen-
erates clean images. The desmoking method augments the
surgical field to clearly display surgical instruments and their
environment duringRMIS.Moreover,with task-based exper-
imental validation, our proposed method could also be used
as a preprocessing step for other high-level visual tasks, such
as instrument segmentation, 3D scene reconstruction and
surgery automation.

In order to evaluate the performance of our method,
extensive experiments are conducted on synthetic and real
smoky surgical images. The results of our method are sat-
isfactory when assessed by both the subjective evaluation
and the full-reference metrics. The major reason is that our
method utilizes the transformer network to make sure that
the desmoking output is identical to the clear image rather
than focusing on designing a suitable prior.

We also observe that for the real smoky dataset, the
four non-reference metrics do not reach a consensus and
our method does not achieve the best results. Firstly, many
factors, such as sharpness, contrast and saturation, are consid-
ered in the image quality metrics. Our method is trained and
focused on restoring the realistic and natural surgical images
without putting special emphasis on qualities like sharpness,
contrast and saturation. Secondly, these image quality indi-
cators are indeed inconsistent with human visual perception.
Although many desmoking methods use these indicators to
assess their results, there are some inaccuracies in the quanti-
tative evaluation of desmoking. Furthermore, the desmoking
results around the instrument are more important for the
surgeon or other visual tasks. Therefore, the global non-
reference metrics are not adequate to evaluate the desmoking
results and task-based evaluation methods are more appro-
priate. In future work, we plan to find more accurate and
reliable quantitative metrics for surgical smoke removal.

For real smoky dataset, we find that for thick smoke (as
the third image in Fig. 4), all the desmoking methods do not
work very well, especially around the instrument tip. The
main reason is that the context information is missing for
single image desmoking. We are going to extend our method

to multi-frame desmoking because the temporal information
between consecutive images in the videos is important.
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