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Abstract
Purpose Diffeomorphic image registration is essential in many medical imaging applications. Several registration algo-
rithms of such type have been proposed, but primarily for intra-contrast alignment. Currently, efficient inter-modal/contrast
diffeomorphic registration, which is vital in numerous applications, remains a challenging task.
Methods We proposed a novel inter-modal/contrast registration algorithm that leverages Robust PaTch-based cOrrelation
Ratio metric to allow inter-modal/contrast image alignment and bandlimited geodesic shooting demonstrated in Fourier-
Approximated Lie Algebras (FLASH) algorithm for fast diffeomorphic registration.
Results The proposed algorithm, named DiffeoRaptor, was validated with three public databases for the tasks of brain
and abdominal image registration while comparing the results against three state-of-the-art techniques, including FLASH,
NiftyReg, and Symmetric image Normalization (SyN).
Conclusions Our results demonstrated that DiffeoRaptor offered comparable or better registration performance in terms
of registration accuracy. Moreover, DiffeoRaptor produces smoother deformations than SyN in inter-modal and contrast
registration. The code for DiffeoRaptor is publicly available at https://github.com/nimamasoumi/DiffeoRaptor.

Keywords Diffeomorphism · Image registration · Geodesic shooting · RaPTOR · SyN · Inter-modal

Introduction

Diffeomorphic image registration allows the computation of
a smooth and invertible deformation field and thus ensures
that salient image features are not lost after image resam-
pling with the obtained deformation fields. A key step in
many clinical applications, diffeomorphic image registration
can be employed in quantifying inter-subject variability of
brain [1], studying Alzheimer’s disease [2], statistical shape
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analysis [3], brain atlas construction [4], and estimation of
tissue deformation for surgery [5].

Several studies have proposed diffeomorphic algorithms
to perform intra-modal/contrast image registration. Beg et
al. [6] implemented the Large Deformation Diffeomor-
phic Metric Mapping (LDDMM) to register brain MRIs
of Alzheimer’s and Schizophrenia patients, but their com-
putational cost was high. Later, many algorithms were
proposed to make the computation more efficient. Vialard
et al. [7] shortened the computational time by employing
geodesic shooting to register 3D MRI scans of fetus brains.
Zhang et al. [8] proposed Fourier-Approximated Lie Alge-
bras (FLASH) to perform inter-subject registration of 3D
brain MRIs. Similar to [7], they also employed geodesic
shooting and improved the efficiency by performing the cal-
culations in a band-limited space. Wu et al. [9] implemented
cross-correlation (CC)-based LDDMM for fast brain image
registration via GPU acceleration.

In general, performing diffeomorphic image registration
with iterative optimization can be computationally expensive
and time-consuming. Therefore, a number of deep learning
(DL)-based algorithms were designed to tackle this problem
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[10–12]. In [13], the comparison with multiple registration
tasks suggests that compared with DL-based techniques,
classic registration methods still have good performance and
can offer satisfactory speed with the option of parallel com-
puting.

In the last decade, several groups have attempted to
design inter-modal diffeomorphic image registration tech-
niques in various applications. Mitra et al. [14] proposed
an inter-modal diffeomorphic algorithm to register 2D tran-
srectal ultrasound images to MR slices. Kutten et al. [15]
implemented the mutual information (MI)-based LDDMM
on a Hamiltonian framework to register CLARITY images.
Reaungamornrat et al. [16] proposed aMINDDemonswhich
is based on SyN [17], diffeomorphic Demons [18], and
MINDfeatures [19] to performdeformableMRI-CT registra-
tion for image-guided surgery. However, inter-modal image
registration remains a challenging task in medical image
registration. In general, the algorithms should show a cer-
tain degree of robustness against intensity inhomogeneities,
noise, and image artifacts. Moreover, the algorithms should
be time-efficient for real clinical applications. To address
some of these requirements, Rivaz et al. [20] proposed RaP-
TOR to register 3D inter-modal images of the BITE database
[21]. Later in [22], an affine version of RaPTOR was used
to successfully register inter-modal images of RESECT [23]
and BITE [21] databases. Recently in [24], a rigid version
of RaPTOR was employed to register preoperative CT and
intraoperative US images of lumbar vertebrae.

This study intends to design a diffeomorphic algorithm
to perform intra- and inter-modal image registration. In [20,
22,24], it was shown that RaPTOR could successfully align
images with different modalities. In [8], it was shown that
FLASH could perform computationally efficient diffeomor-
phic registrations compared to vector momentum LDDMM
[25]. However, RaPTOR and FLASH have the following
drawbacks. First, RaPTOR uses B-spline as the transfor-
mation model which does not guarantee a smooth inverse
transformation. Second, FLASH uses sum-of-squared dif-
ferences (SSD) that is unable to directly measure the simi-
larity between images of different modalities and contrasts
[26]. Therefore, FLASH cannot be used to perform inter-
modal/contrast image registration. Third, FLASH does not
usemultiresolution image pyramids to tackle larger deforma-
tionswhich is a standard approach inmany inter-modal image
registration methods. Herein, we proposed DiffeoRaptor, a
novel algorithm to bring together the benefits of RaPTOR
and FLASH while mitigating their drawbacks. We decided
to build on this similarity metric by making it diffeomor-
phic. Other excellent choices are normalized Gaussian fields
(NGF) and MIND. FLASH framework was selected in favor
of other diffeomorphic approaches, because it is based on the
well-established LDDMM framework. The performance of
DiffeoRaptorwas demonstrated in three applications, includ-

ing (1) healthy individual MRI-to-template registration; (2)
registration between Alzheimer’s disease (AD) and healthy
brains, as well as brain scans at different stages of AD; (3)
nonlinear registration of MR and CT abdominal data. The
contributions of this work are threefold:

1. Proposing a diffeomorphic image registration framework
using RaPTOR.

2. Devising inter-modal/contrast image registration with
geodesic shooting in the bandlimited space of velocity
fields.

3. Employing gradient descent (GD) with momentum to
improve the convergence in contrast with classical GD
optimization in FLASH and RaPTOR .

Our results show that DiffeoRaptor could achieve (1) bet-
ter alignment of brain and abdominal images compared to
Mattes MI+SyN, NiftyReg [27], and FLASH as assessed by
Dice scores; (2) smoother deformation fields compared to
Mattes MI+SyN and NiftyReg in the alignment of brain MR
images, and (3) comparable computation time with FLASH
while performing more challenging tasks.

Methodology

In this section, backgrounds of bandlimited space of veloc-
ity fields, bandlimited geodesic shooting, and formulation
of RaPTOR metric are presented. Then, the formulation of
DiffeoRaptor objective function is derived. Lastly, the opti-
mization technique to minimize the objective function is
detailed.

Space of bandlimited velocity fields

In pairwise diffeomorphic image registration, the reference
image X ∈ Ω and the source imageY ∈ Ω are given. Ideally,
the objective is to find a mapping φ ∈ Diff(�) such that X ◦
φ ≈ Y andY ◦φ−1 = X . Diffeomorphismsφ : Ω → Ω are a
smoothmapping that has an smooth inverseφ−1. The tangent
vector space at the identity id ∈ Diff(�) over the space of
diffeomorphisms is defined as V = TidDiff(�). Given V ,
the space of bandlimited velocity fields ˜V was constructed
and proper Lie algebra in this space was defined in [8]. Time
series t ∈ [0, 1] of diffeomorphisms φt ∈ Diff(�) is created
in the process of solving an ordinary differential equation
(ODE). The time series of bandlimited velocity fields ṽt ∈ ˜V
are related to φ−1

t by Eq (1).

dφ−1
t

dt
= −Dφ−1

t · ι (ṽt ) (1)
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where D is the derivative operator and ι : ˜V → V is the
inverse Fourier transform from the bandlimited space to the
space of dense velocity fields [8]. The geodesic shooting is
the process of integrating the geodesic path of diffeomor-
phisms forward in time which is uniquely determined with
the velocity ṽ0 in t = 0. The geodesic evolution equation in
the discrete Fourier space is defined in Eq (2).

∂ṽt

∂t
= −˜K

[

(˜Dṽ)T �m̃t + ˜Γ (m̃t ⊗ ṽt )

]

(2)

where K is the smoothing operator which is the inverse of
the differential operator L . There is an in-depth discussion
of possible choices of L in [6,28,29]. In this paper, it is set
L = (−αΔ + I )c similar to [6,8] where Δ is the Lapla-
cian operator. ˜K is the smoothing operator in the bandlimited
space [8], � is the truncated auto-correlation, ˜Γ is the discrete
divergence, m̃t = ˜L ṽt is the momentum, ˜L is the represen-
tation of L in the frequency domain, ⊗ denotes the tensor
product, and ˜D is an operator that computes the spatial gra-
dient in the bandlimited Fourier space [8].

Geodesic shooting in the bandlimited space

By setting the geodesic shooting as the constraint of the cost
function, it does not require calculating the velocity fields ṽt
and diffeomorphisms φt in a dense time grid and it suffices
to calculate the initial velocity ṽ0 ∈ ˜V . The cost function for
FLASH was defined as Eq. (3).

E(ṽ0) = 1

2σ 2

∥

∥Y ◦φ−1
1 − X

∥

∥

2 +〈˜L ṽ0, ṽ0〉, s.t.Eq.(2) (3)

where σ is the noise variance, ‖·‖ is the norm operator in the
space Ω , ˜L is the inverse of ˜K , and 〈, 〉 is the inner-product
in the space ˜V [8]. Gradient of the energy function E can be
calculated as in Eq. (4) for the minimization of cost.

∇ṽ1E = ν

(

− K

(

1

σ 2 (Y ◦ φ−1
t − X) · ∇(Y ◦ φ−1

1 )

))

(4)

where ν : V → ˜V is the projection mapping to the bandlim-
ited space of velocity fields and K is the smoothing operator.

RaPTOR

One possible choice for the similarity metric is the Corre-
lation Ratio (CR) [30]. For challenging inter-modal image
registration tasks, calculation of CR needs to be robust and
possibly time-efficient. RaPTOR is a dissimilarity metric
that is based on CR [20] and addresses the shortcomings
of CR [30]. RaPTOR and its derivative can be calculated as
in Eq. (5). It calculates CR in local patches Θ . Instead of
calculating the iso-sets of X , the histogram of X over Nb

bins is calculated, and then, Parzen windowing was applied
to make the bins continuous and differentiable.

1 − η(Y |X) = 1

Nσ 2

( N
∑

i=1

y2i −
Nb
∑

j=1

N jμ
2
j

)

(5a)

μ j =
∑N

i=1 λi j yi
N j

, N j =
∑

i

λi j (5b)

RaPTOR(Y , X) = Ψ (Y , X) = 1

Np

Np
∑

i=1

(1 − η(Y |X; Θi )) (5c)

∇ϕΨ = ∂Ψ

∂ϕ
= ∂φ

∂ϕ
· ∂Y

∂φ
· ∂Ψ

∂Y
(5d)

∂(1 − η)

∂ yi
= 2

Nσ 2

(

yi − λi, j−1μ j−1 − λi jμ j

− 1

(N − 1)σ 2 (yi − μ)

( N
∑

a=1

y2a −
Nb
∑

c=1

Ncμ
2
c

))

(5e)

where N is the number of pixels in a image patch Θi ,
σ 2 = Var[Y ;Θi ] is the variance of a patch i in Y , yi is
the intensity of sample i in image Y , let j and j − 1 be the
closest bins to sample xi (intensity of sample i in X ); then,
according to its distance to these bins centers, λi j is the linear
contribution of xi to the bin j , Np is the number of patches,
ϕ is the parameter of transformation φ, and μ = E[Y ] is
the average value of Y . η(Y |X) can measure the functional
dependence between the input images. When there is no
functional dependence η(Y |X) = 0 and when η(Y |X) = 1
there is a deterministic relationship between X and Y. Cal-
culating gradient of RaPTOR analytically enables efficient
minimization of the dissimilaritymetric using gradient-based
optimization and employing the outlier suppression tech-
nique elaborated in [20].

DiffeoRaptor

The energy function in Eq. (3) can be generalized to the form
in Eq. (6).

E(ṽ0) = dist
(

Y ◦ φ−1
1 , X

) + 〈˜L ṽ0, ṽ0〉, s.t.Eq.(2) (6)

where dist(, ) is a normalized distance function or a dissimi-
larity function. DiffeoRaptor is the cost function in the form
of Eq. (6) with the RaPTOR defined in Eq. (5) as the dissim-
ilarity function. So it takes the form in Eq. 7.

E(ṽ0) = Ψ
(

Y ◦ φ−1
1 , X

) + 〈˜L ṽ0, ṽ0〉, s.t.Eq.(2) (7)

Equation. (4) is no longer valid for Eq. (7) and the gradient
of cost function needs to be calculated for the optimization. A
similar approach to [6] is taken to calculate ∂uΨ , the variation
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in cost inEq. (7)with respect to the velocityu = Dφ−1
1 which

is obtained by taking the derivative of φ−1
1 .

Given the fact that we are working with image intensities
in a grid according to Eq. (5), the variation in energy ∂u E
takes the form ∂u E = 〈∇u E, u〉Vg , and therefore, ∂uΨ =
〈∇uΨ , u〉Vg . The inner-product 〈, 〉Vg calculation is over a
finite grid (Vg is the space of velocities where the inner-
product 〈, 〉Vg is taken). To calculate the Gateaux derivative
of cost in Eq. (7), one is required to derive ∂uΨ first as in
Eq. (8).

∂uΨ =
〈

∂Ψ

∂Y
· ∇(Y ◦ φ−1

1 ), u

〉

Vg

(8)

Detailed derivation of Eq. (8) is presented in Sect. S5 of
Supplementary Material. Equation (8) indicates that ∇uΨ =
∂Ψ
∂Y ·∇(Y ◦φ−1

1 )which is known and can be calculated using
Eq. (5e). By similar calculations to [6] and [8], the gradient
of cost can be written as Eq. (9).

∇ṽ1E = ν

(

− K

(

∂Ψ

∂Y
· ∇(Y ◦ φ−1

1 )

))

(9)

the gradient in Eq. (9) for the velocity in t = 1 can be
used to find the gradient ∇ṽ0E in t = 0 with the reduced
adjoint Jacobi field in bandlimited velocity fields elaborated
in [8]. This process is called backward integration. To min-
imize the cost in Eq. 7, forward integration of Eq. 2 is used
to find the velocity in t = 1. Then, ∇ṽ0E is used in GD
with momentum optimization to update the velocity. Finally,
Eq. 1 is used to calculate diffeomorphisms. Since similar
process was used in [8] to calculate diffeomorphisms, the
diffeomorphic registration is guaranteed. The employment of
multi-resolution pyramid, gradient descent with momentum,
and implementation details of DiffeoRaptor can be found in
the Supplementary Materials.

Experiments and results

DiffeoRaptor was validated on three public datasets: IXI
(http://brain-development.org/ixi-dataset),OASIS3 [31], and
The Cancer Imaging Archive (TCIA) MR-CT abdominal
data [32]. It is compared against Mattes MI+SyN, which
is available in Advanced Normalization Tools (ANTs) [33]
and NiftyReg [27] (using the normalized mutual information
(NMI) as the similarity metric), as well as in several tasks
with FLASH. Dice scores of overlapping regions are used
as evaluation metrics. The default parameters for NiftyReg
with the GD optimization produced the best results for us.
Mattes MI+SyN is a diffeomorphic algorithm which uses
Mattes MI as the similarity metric and models the deforma-
tion fields with SyN, and is suitable for inter-modal/contrast

Table 1 Abbreviation of subcortical structures which were automati-
cally labeled in the segmentation of brain volumes using volBrain [34]

Subcortical structure Abbreviation

Left/Right Ventricle LV/RV

Left/Right Caudate LC/RC

Left/Right Putamen LP/RP

Left/Right Thalamus LT/RP

Left/Right Globus Pallidus LGP/RGP

Left/Right Hippocampus LH/RH

Left/Right Amygdala LA/RA

Left/Right Accumbens LAC/RAC

image registration. The parameters forMattesMI+SyNwere
tuned such that it produced the optimal results. The number
of bins for MI was set to 32 and the gradient step, the update
field variance, and total field variance were set to 0.5, 3, and
0.5 for SyN, respectively.

Pre-processing of brain MRI

Brain MR images of the IXI and OASIS3 datasets were
first skull-stripped using nonlocal intracranial cavity extrac-
tion [35]. For each case, the extracted brain was carefully
inspected. Then, two types of segmentations were generated
for each volume using the volBrain algorithm [34] so that
Dice scores can be used to evaluate registration accuracy.
Here, in the first one, brain tissues are classified into Cere-
brospinal Fluid (CSF), GrayMatter (GM), andWhite Matter
(WM). The second type of segmentation consists of 16 sub-
cortical structures which are abbreviated in Table1. Lastly,
the volumeswere affinely registered usingANTswithMattes
MI as the metric (see Fig. 1).

IXI dataset: inter-subject registration

Twenty young adult subjects (age < 30yo) of the IXI dataset
were selected randomly. Given the fact that the IXI dataset
offers T1w, T2w, and PDw for each subject, three different
tasks were designed, including T1-T1, T1-T2, and T1-PD
registrations. T1w MRI scans of three subjects (Subjects
15, 17, and 21) were randomly selected as the reference
volume, and the rest are set as the source volumes for inter-
subject registration (in total 3 × 19 = 57 registrations).
The results of Dice score evaluation are summarized in
Table2, which shows that DiffeoRaptor, Mattes MI+SyN,
and NiftyReg could successfully align volumes in each task,
whereas FLASH underperformed in terms of Dice scores
in intra-contrast tasks and failed in inter-contrast tasks as
expected. It can also be seen that DiffeoRaptor in general did
better than Mattes MI+SyN.
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Fig. 1 Coronal view of two slices (rows) of four different IXI dataset subjects (columns). The images are overlaid by the segmentation of CSF,
GM, and WM. The large variability of structures across subjects requires a deformable registration

Table 2 Dice score (mean± sd) evaluation of T1-T1, T1-T2, and T1-PD registrations of IXI dataset for DiffeoRaptor, Mattes MI+SyN, FLASH,
and NiftyReg in overlapping regions of brain tissues and sixteen subcortical structures

Task and evaluation region Affine only DiffeoRaptor Mattes MI+SyN FLASH NiftyReg

T1-T1 brain tissues 0.62 ± 0.03 0.72 ± 0.04 0.72 ± 0.04 0.64 ± 0.04 0.67 ± 0.03

T1-T1 subcortical structures 0.67 ± 0.06 0.78 ± 0.03 0.78 ± 0.04 0.67 ± 0.06 0.74 ± 0.05

T1-T2 brain tissues 0.62 ± 0.03 0.67 ± 0.04 0.67 ± 0.04 0.64 ± 0.03 0.64 ± 0.04

T1-T2 subcortical structures 0.67 ± 0.06 0.71 ± 0.06 0.71 ± 0.06 0.66 ± 0.05 0.65 ± 0.05

T1-PD brain tissues 0.62 ± 0.03 0.67 ± 0.04 0.67 ± 0.04 0.64 ± 0.03 0.64 ± 0.04

T1-PD subcortical structures 0.67 ± 0.06 0.71 ± 0.05 0.69 ± 0.06 0.67 ± 0.06 0.68 ± 0.06

Table 3 Dice score (mean± sd) evaluation of ICBM152-T1, ICBM152-T2, and ICBM152-PD registrations of IXI dataset for DiffeoRaptor, Mattes
MI+SyN, FLASH, and NiftyReg in overlapping regions of brain tissues and sixteen subcortical structures

Task and Evaluation Regions Affine only DiffeoRaptor Mattes MI+SyN FLASH NiftyReg

ICBM152-T1 brain tissues 0.62 ± 0.04 0.68 ± 0.04 0.70 ± 0.04 0.63 ± 0.04 0.71 ± 0.05

ICBM152-T1 subcortical structures 0.70 ± 0.06 0.80 ± 0.02 0.78 ± 0.04 0.71 ± 0.04 0.74 ± 0.07

ICBM152-T2 brain tissues 0.62 ± 0.04 0.65 ± 0.05 0.67 ± 0.06 0.62 ± 0.04 0.65 ± 0.05

ICBM152-T2 subcortical structures 0.70 ± 0.06 0.76 ± 0.04 0.76 ± 0.08 0.67 ± 0.06) 0.73 ± 0.08

ICBM152-PD brain tissues 0.62 ± 0.04 0.66 ± 0.04 0.66 ± 0.05 0.63 ± 0.04 0.64 ± 0.05

ICBM152-PD subcortical structures 0.70 ± 0.06 0.75 ± 0.05 0.73 ± 0.07 0.70 ± 0.05 0.73 ± 0.07

IXI dataset: subject-to-template registration

Given the IXI subjects in Section “IXI dataset: inter-subject
registration”, the volumes are set as the source volumes and
they were registered to the T1w ICBM152 template [36].
Here, the template is set as the reference volume and similar
taskswere performed as in Section “IXI dataset: inter-subject
registration” for subject-to-template registration. The results

are summarized in Table3, which shows that DiffeoRaptor,
Mattes MI+SyN, and NiftyReg could successfully align vol-
umes in each task while DiffeoRaptor in general did better
than Mattes MI+SyN and NiftyReg, especially in alignment
of subcortical structures.

Figure2 demonstrates two coronal views of registration
results. The subcortical structures are shown in the figure
as colored outlines. DiffeoRaptor shows better alignment of

123



372 International Journal of Computer Assisted Radiology and Surgery (2023) 18:367–377

Fig. 2 From the left to right: coronal slices of the ICBM152 (reference
volume), the PDw source volume of the IXI dataset, result of NiftyReg,
FLASH, Mattes MI+SyN, and DiffeoRaptor, respectively. Rows show

different coronal views. Subcortical structural segmentations are shown
in colored contours. Arrows are pointing to the regions where the image
alignments are more visible

slices and anatomical structures compared to other methods.
The cerebrum shape with DiffeoRaptor registration looks
closer to the ICBM152 template than other methods.

OASIS3 dataset: intra- and inter-subject registration

The OASIS3 dataset consists of subjects intended for inves-
tigating Alzheimer’s disease (AD) [31]. Twenty AD patients
from this dataset were randomly selected withmatching T1w
and T2w MRIs. In the first sub-task, intra-contrast intra-
subject registration was performed for brain scans obtained
at different stages of AD progression, where the T1w volume
at the baseline was set as the reference and the T1w image
from the latest session (> 6 months apart) with visible atro-
phy was registered to the reference. This sub-task represents
the need in neuroimage analysis for tracking disease-related
anatomical changes. The results are included in TableS1 of
the Supplementary materials.

In the second sub-task, T1w MRIs of four young healthy
adults of the IXI dataset in Section “IXI dataset: inter-
subject registration” were used as the references and the T2w
MRI scans of the latest session for each subject from the
OASIS3 dataset were set as the source volumes, resulting in
4×20 = 80 registrations. This way, we defined a more chal-
lenging, inter-contrast, inter-subject, and inter-dataset task
to better compare DiffeoRaptor with Mattes MI+SyN and
NiftyReg. The results of T1-T2 registrations are summa-
rized in Table4, where DiffeoRaptor outperformed Mattes
MI+SyNandNiftyReg.Note that FLASHwasnot included in
these experiments because it continuously failed to perform
inter-contrast registration. In Fig. 3, it can be seen that Diffe-
oRaptor has improved the alignment of subcortical structures
and ventricles better than Mattes MI+SyN and NiftyReg.

TCIA abdominal MR-CT intra-subject registration

The TCIA dataset contains eight subjects. Each subject has
a T1w MRI scan and CT scan (with deformation) of the
abdomens. The manual segmentations of the liver, spleen,
left kidney, and right kidney are provided by the Learn2Reg
organizers (https://learn2reg.grand-challenge.org). By set-
ting the MRI scan for each subject as the reference volume,
CT scans were aligned to perform intra-subject registrations.
The deformable registration for MR-CT of these subjects
is required because the images were taken in different time
points, with different modalities, and misalignments due to
patient movement, respiration, and etc. The results are sum-
marized in Table5.

Given the fact that the initial affine registration achieved
meanDice score of 0.72± 0.10, Table5 showsDiffeoRaptor,
RaPTOR [20],MattesMI+SyN, andNiftyReg could success-
fully improve the image alignment. Besides, DiffeoRaptor
outperformedMattes MI+SyN and NiftyReg in alignment of
all the targeted regions. Note that two subjects didn’t have
the segmentation of the right kidney, and thus, they were
excluded from theMeanDice calculation of Table5. In Fig. 4,
it can be seen that compared to the affine registration, Mattes
MI+SyN and DiffeoRaptor show improvement in alignment
of segmented organs. However, DiffeoRaptor shows bet-
ter alignment of organs compared to Mattes MI+SyN and
NiftyReg.

Cumulative results

Given the inter-contrast registration results (total 291) in
Sections “IXI dataset: inter-subject registration, IXI dataset:
subject-to-template registration and OASIS3 dataset: intra-
and inter-subject registration” for brain structures, the mean
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Table 4 Dice score evaluation
(mean± sd) of T1-T2
inter-subject registration of IXI
data with OASIS3 data for
DiffeoRaptor, Mattes MI+SyN,
and NiftyReg in overlapping
regions of brain tissues and
sixteen subcortical structures

Task and evaluation regions Affine only DiffeoRaptor Mattes MI+SyN NiftyReg

T1-T2 brain tissues mean 0.51 ± 0.13 0.61 ± 0.07 0.54 ± 0.16 0.56 ± 0.16

T1-T2 subcortical structures 0.56 ± 0.17 0.71 ± 0.11 0.63 ± 0.21 0.59 ± 0.18

Fig. 3 From the left to right: axial slices of the T1w reference volume from the IXI dataset, the T2w MRI source volume of the OASIS3 dataset,
result of NiftyReg, Mattes MI+SyN, and DiffeoRaptor, respectively. Rows show different axial views. Subcortical segmentations are shown in
colored contours

Table 5 Dice score (mean± sd)
evaluation of MR-CT
intra-subject registration for
TCIA abdominal data using
DiffeoRaptor, RaPTOR [20],
Mattes MI+SyN, and NiftyReg

Evaluation regions DiffeoRaptor RaPTOR Mattes MI+SyN NiftyReg

Liver 0.81 ± 0.07 0.81 ± 0.09 0.80 ± 0.10 0.79 ± 0.11

Spleen 0.71 ± 0.13 0.71 ± 0.16 0.69 ± 0.10 0.71 ± 0.13

Left kidney 0.70 ± 0.15 0.71 ± 0.15 0.68 ± 0.17 0.65 ± 0.22

Right kidney 0.70 ± 0.19 0.69 ± 0.19 0.67 ± 0.17 0.65 ± 0.22

Average 0.78 ± 0.10 0.77 ± 0.10 0.77 ± 0.11 0.76 ± 0.13

Dice scores and the associated p-values from comparing
the three methods using the one-way analysis of variance
(ANOVA)were listed for the sixteen subcortical structures in
Table6. Furthermore, post hoc multiple comparison (Tukey–
Kramer) tests were performed to reveal the performance of
the methods (Table7). With the statistical tests, we confirm

thatDiffeoRaptor outperforms the rest in termsofDice scores
for aligning each subcortical region, as well as themeanDice
score (p < 0.05). It is worth mentioning that the average
mean Dice is 0.63 ± 0.12 for the affine registration. To bet-
ter visualize the results for the last row of Table6, the box
plots of average Dice scores over all evaluation regions are
demonstrated in Fig. 5.
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Fig. 4 From left to right: coronal slices of Subject 7’s MRI (reference
volume), the corresponding CT source volume, results of NiftyReg,
Mattes MI+SyN, DiffeoRaptor, and NiftyReg, respectively. Rows show

different slices of volumes. Segmentations of key organs are shownwith
colored contours. Arrows are pointing to the regions where the image
alignments are more visible

Table 6 Dice scores
(mean± sd) of cumulative
results for DiffeoRaptor, Mattes
MI+SyN, and NiftyReg in
overlapping subcortical
structures. The p-values from
ANOVA are shown for each
anatomical structure

Evaluation regions DiffeoRaptor Mattes MI+SyN NiftyReg p-value

LV 0.65 ± 0.14 0.60 ± 0.18 0.58 ± 0.18 1.21 × 10−5

RV 0.64 ± 0.13 0.59 ± 0.17 0.57 ± 0.16 1.60 × 10−6

LC 0.73 ± 0.11 0.70 ± 0.17 0.66 ± 0.16 4.30 × 10−6

RC 0.72 ± 0.11 0.68 ± 0.19 0.64 ± 0.17 1.15 × 10−5

LP 0.79 ± 0.08 0.75 ± 0.14 0.73 ± 0.14 4.90 × 10−7

RP 0.78 ± 0.08 0.73 ± 0.15 0.70 ± 0.16 2.33 × 10−11

LT 0.80 ± 0.09 0.78 ± 0.16 0.73 ± 0.15 1.58 × 10−7

RT 0.78 ± 0.09 0.77 ± 0.15 0.71 ± 0.15 6.56 × 10−8

LGP 0.70 ± 0.10 0.65 ± 0.14 0.60 ± 0.17 1.04 × 10−13

RGP 0.68 ± 0.10 0.64 ± 0.14 0.57 ± 0.17 2.44 × 10−15

LH 0.69 ± 0.09 0.65 ± 0.14 0.64 ± 0.14 7.31 × 10−5

RH 0.73 ± 0.09 0.69 ± 0.14 0.67 ± 0.14 8.56 × 10−8

LA 0.60 ± 0.15 0.55 ± 0.18 0.53 ± 0.18 3.37 × 10−5

RA 0.60 ± 0.14 0.57 ± 0.17 0.53 ± 0.17 7.06 × 10−6

LAC 0.50 ± 0.17 0.43 ± 0.21 0.37 ± 0.22 1.22 × 10−11

RAC 0.46 ± (0.18 0.45 ± 0.20 0.36 ± 0.21 7.70 × 10−9

Average 0.72 ± 0.08 0.68 ± 0.14 0.65 ± 0.13 1.14 × 10−8

Table 7 Post hoc multiple comparison (Tukey-Kramer) tests of Diffe-
oRaptor against Mattes MI+SyN and NiftyReg for the average Dice in
overlapping subcortical structures

Methods p-value

DiffeoRaptor versus Mattes MI+SyN 1.92 × 10−2

DiffeoRaptor versus NiftyReg 3.62 × 10−6

DiffeoRaptor results are better thanMattesMI+SyN andNiftyReg (p <

0.05)

Deformation smoothness analysis

With the cumulative results in Section “Cumulative results”,
in each registration, the determinant of Jacobian J was calcu-

lated for each voxel of the deformation field. Figure6 shows
log10(det(Jφ)) for each voxel that they were accumulated in
bins for DiffeoRaptor andMattes MI+SyN. For example, the
bin centered at the origin means no deformation, bins with
the negative centers show contraction, and bins with positive
center show expansion. The further the bin from the center,
the more deformation the bin represents. From the experi-
ments, we observed that the number of nonzero samples is
similar across DiffeoRaptor, Mattes MI+SyN, and NiftyReg.
However, DiffeoRaptor has fewer samples far from the cen-
tral bin (Fig. 6) and generates smoother deformations than
Mattes MI+SyN and NiftyReg, as shown in TableS2 of the
Supplementary Materials. The determinants of Jacobians for
DiffeoRaptor, Mattes MI+SyN, and NiftyReg are visualized
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Fig. 5 The box plots of average Dice score for the total of 291 brain
image registrations. DiffeoRaptor has a higher mean and lower std with
fewer outliers

in Fig.S2 of Supplementary Material. For the ablation study,
the deformation smoothness of DiffeoRaptor, RaPTOR [20],
Mattes MI+SyN, and NiftyReg is compared in the TCIA
abdominal dataset and the results are summarized in TableS3
of the Supplementary Materials.

Discussions

When RaPTOR is employed as the similarity metric, it may
require additional parameter tuning. This motivates more

advanced optimization technique rather than the classical
GD to minimize the cost function. This was shown and
explored in [22] and [24]. For DiffeoRaptor, the parame-
ter settings were mostly the default values from RaPTOR
and FLASH as elaborated previously. However, for the cases
where affine registration fails to perform good initial align-
ments, we should be careful in choosing the step size for the
gradient update and the maximum number of iterations. The
average computational times were calculated for DiffeoRap-
tor andFLASHon a single core of a 6 coreLinuxMint system
for 10 T1-T1 brain MRI registrations with the image size of
176 × 256 × 256 voxels. The mean computational time per
registration of DiffeoRaptor (384.50±0.01s) is comparable
to that of FLASH (416.14 ± 0.01s). It should be noted that
there are issues with using surrogates such as tissue overlap
to evaluate the performance of registration methods [37], as
outlined in more detail in the Supplementary Materials.

Conclusion

WepresentDiffeoRaptor, a diffeomorphic inter-modal/contrast
image registration algorithm based onRaPTORand geodesic
shooting in bandlimited space. The algorithm is validated on
several different applications. Compared with FLASH, Mat-
tes MI+SyN, and NiftyReg, it achieves comparable or better
results. In addition, DiffeoRaptor offers smoother deforma-
tion fields than Mattes MI+SyN and NiftyReg.

Fig. 6 Logarithm of determinant of Jacobian log10(det(J )) was calculated for each voxel of the deformation field. Then, they were accumulated
in bins for Mattes MI+SyN and DiffeoRaptor
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Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-022-02749-
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