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Abstract
Purpose During brain tumor surgery, care must be taken to accurately differentiate between tumorous and healthy tissue,
as inadvertent resection of functional brain areas can cause severe consequences. Since visual assessment can be difficult
during tissue resection, neurosurgeons have to rely on the mechanical perception of tissue, which in itself is inherently
challenging. A commonly used instrument for tumor resection is the ultrasonic aspirator, whose system behavior is already
dependent on tissue properties. Using data recorded during tissue fragmentation, machine learning-based tissue differentiation
is investigated for the first time utilizing ultrasonic aspirators.
Methods Artificial tissue model with two different mechanical properties is synthesized to represent healthy and tumorous
tissue. 40,000 temporal measurement points of electrical data are recorded in a laboratory environment using a CNCmachine.
Three different machine learning approaches are applied: a random forest (RF), a fully connected neural network (NN) and
a 1D convolutional neural network (CNN). Additionally, different preprocessing steps are investigated.
Results Fivefold cross-validation is conducted over the data and evaluated with the metrics F1, accuracy, positive predictive
value, true positive rate and area under the receiver operating characteristic. Results show a generally good performance
with a mean F1 of up to 0.900 ± 0.096 using a NN approach. Temporal information indicates low impact on classification
performance, while a low-pass filter preprocessing step leads to superior results.
Conclusion This work demonstrates the first steps to successfully differentiate healthy brain and tumor tissue using an
ultrasonic aspirator during tissue fragmentation. Evaluation shows that both neural network-based classifiers outperform the
RF. In addition, the effects of temporal dependencies are found to be reduced when adequate data preprocessing is performed.
To ensure subsequent implementation in the clinic, handheld ultrasonic aspirator use needs to be investigated in the future as
well as the addition of data to reflect tissue diversity during neurosurgical operations.
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Introduction

Microsurgical resection is the standard treatment for amajor-
ity of tumors in the central nervous system. Survival rate and
life quality depend, among other factors, on the extent of
resection [1–3]. In modern neurosurgery, tumor localization

1 Institute for Robotics and Cognitive Systems, University of
Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany

2 Söring GmbH, Justus-von-Liebig-Ring 2, 25451 Quickborn,
Germany

3 Department of Neurosurgery, University Hospital
Schleswig–Holstein, Ratzeburger Allee 160, 23538 Lübeck,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-022-02713-0&domain=pdf
http://orcid.org/0000-0002-4309-169X


1592 International Journal of Computer Assisted Radiology and Surgery (2022) 17:1591–1599

is performed using MR- and/or CT-imaging and neuro-
navigation systems. To date, however, tumor margins are
difficult to recognize intraoperatively, since neuro-navigation
systems can lose precision during surgery due to cere-
brospinal fluid loss and partial tumor removal (i.e., brain
shift). Inaccurately identified tumor margins can lead to
tumor remnants or healthy brain tissue being unnecessarily
resected. If the tumor resection is performed near functional
brain areas (i.e., somatosensory cortex, language-relevant
brain areas (Broca/Wernike)), this may result in perma-
nent damage to the patient such as paralysis and speech
disorders. For further intraoperative support, systemically
administered fluorescent dyes can be used to enhance tumor
visibility. For this purpose, dedicated light sources are inte-
grated into the operation microscope. Unfortunately, not all
brain tumor entities can be enrichedwith fluorescent dyes [4–
7]. Alternative applications in neurosurgery include the use
of intraoperative 3D-ultrasound and intraoperative MR-/CT-
imaging, both logistically complex to operate with [8–12].
Further, new methods to visualize brain tumor tissue are,
e.g., optical coherence tomography (OCT) or Raman his-
tology, which are usually associated with a restructuring of
the operating workflow [13–17]. Other studies indicate that
healthy brain and tumor tissue differ fromeach other based on
their mechanical properties, such as elasticity [18–24]. This
difference can often be palpated by a highly trained neurosur-
geon and is subject to the current research in which system
behavior of tactile sensors is used to indicate tissue proper-
ties. To estimate tissue properties quantitatively, Tanaka et al.
[25] utilized a biocompatible balloon-based sensor system,
which is expanded by fluids. The expansion of the balloon
while in contact with tissue allows to draw conclusions about
tissue properties to some extent. Tissue discrimination was
investigated on urethane gels as well as on healthy white and
gray matter of porcine brain tissue. In the work of Johanns-
mann et al. [26], a piezoelectric tactile sensor with torsional
resonators was investigated for tissue differentiation capabil-
ities. Resonance frequency and bandwidth shifts of the sensor
between contact and non-contact states are examined and
correlated with healthy and tumorous brain tissue in in vivo
rat experiments. Similarly, piezoelectric bimorph sensors are
used in Stroop et al. [27] to distinguish ex vivo porcine brain
tissue regions such as cortex surface, white matter, basal
ganglia and thalamus. The tactile sensor is excited usingmul-
tisine for obtaining frequency response functions, which are
processed and clustered subsequently using k-means algo-
rithm. Even though these approaches are showing promising
results, they (among multiple others) are relying on newly
designed instruments that always require a change in the
surgical workflow and are typically intended for robotic or
endoscopic applications only [25–31].

Since the early 1980s, a commonly used neurosurgical
instrument for tumor removal is the ultrasonic aspirator

[32,33]. This instrument combines three functions simulta-
neously:

1. Ultrasonic-based fragmentation of tissues—mechanical
oscillation of a hollow tube causes tissue ablation

2. Aspiration—generationof negative pressure allows remov-
ing ablated tissue through a hollow tube

3. Irrigation—addition of saline solution regulates the liq-
uid content and enhances tissue aspiration.

Each of these functions can be set by the user of the ultrasonic
aspirator independently to ensure efficient tissue fragmenta-
tion.

Since the electrical system of the ultrasonic aspirator
shows load-dependent behavior, it is expected that informa-
tion regarding tissue properties can be extracted using the
electrical data of the generator from the physical interaction
with tissue [34]. This behavior can be exploited to establish
a relationship between the electrical values and the tissue
properties usingmachine learningmethods.A schematic rep-
resentation of the entire pursued process is shown in Fig. 1:
during the application of the ultrasonic aspirator to remove
malignant brain tissue, the electrical data coming from the
generator are recorded.These electrical data are subsequently
processed by machine learning methods, which allow a clas-
sification of the currently examined tissue. This information
could then be redirected to the surgeons as a support system.
Thus, on the one hand, an increase in patient safety could be
ensured and, on the other hand, the inexperience of new sur-
geons could be compensated. Furthermore, the workflow can
be improved through the combination of therapy and diag-
nostics in one device. In the previous work, we showed that
it was possible to distinguish synthetic tissue models from
another with a non-resection mode of the generator in a first
proof of concept [34]. However, since such a mode does not
reflect the clinical case, the behavior of the electrical values
during tissue fragmentation must be analyzed. For the first
time, this work investigates whether tissue differentiation is
possible during fragmentation of tissue material in a labora-
tory setting.

Materials andmethods

Data acquisition

Acquisition of a large database of tumorous and healthy
brain tissue, utilizable for data analysis and training, is very
time-consuming and difficult. Especially the wide variety of
‘experimental settings’ in a medical context (environmen-
tal variables, surgeons, etc.) make constant and high-quality
data collection difficult and requires data collection overmul-
tiple years. We, therefore, employed artificial tissue models

123



International Journal of Computer Assisted Radiology and Surgery (2022) 17:1591–1599 1593

Fig. 1 Conceptual
representation of tissue
differentiation using an
ultrasonic aspirator. Electrical
data that are recorded during
tissue interaction with an
ultrasonic aspirator are
processed with machine learning
algorithms to infer information
about tissue properties

Fig. 2 Tissue model and data
acquisition process. Example of
artificial tissue model is shown
in a. Schematic representation
of data acquisition process is
shown in b. Tissue ablation and
data acquisition are performed
using a CNC-machine that
traverses the ultrasonic aspirator
in lanes across the artificial
tissue model

(a) (b)

to acquire data in a controlled manner with consistent exper-
imental settings. The data are collected on our tissue models,
which resemble the same mechanical properties as brain tis-
sue and can be synthesized to allow for a wide range of
mechanical properties.

For this study, tissue models are created with two differ-
ent mechanical properties, resembling healthy porcine brain
tissue and human meningioma [35]. Such an artificial tis-
sue model is shown in Fig. 2a. These tissue models are of
homogeneous consistency and provide an initial basis for this
proof-of-concept study. Qualitatively speaking, these can be
categorized in terms of tactile sensation as very soft (menin-
gioma) and soft (healthy brain tissue). These categories very
soft and soft are used as classification target in the subsequent
experiments.

To further ensure a controlled environmental setting, we
employed a CNC machine (three degrees of freedom: trans-
lational movement in x-, y- and z-axes) for tissue ablation and
subsequent data acquisition: Typically, an ultrasonic aspira-
tor is used as a handheld device. However, manual usage
is naturally associated with multiple sources of uncertainty
(e.g., movement speed), which makes experiments difficult
to replicate. Therefore, we performed data acquisition using
a CNC machine, which is programmed to traverse in lanes
over the tissue model, while ablation is performed. For this
process, the ultrasonic aspirator is mountedwith a clamp sys-
tem in the CNCmachine, which then guides the device. Care
is taken when traversing the lanes to maintain sufficient dis-
tance from the edge of the tissue samples so as not to provoke
edge effects that could result in stiffness changes. This data
acquisition procedure (schematically depicted in Fig. 2b)

allows to determine exactly when contact is established with
the tissue.While data acquisition of handheld ultrasonic aspi-
rators will be part of further studies, this experimental setup
serves as a first step in understanding the recorded data as
well as classification possibilities and thus provides a defined,
reproducible framework, well suited for this feasibility study.

The traversing lane pattern of theCNCmachine consists of
three phases: (1) the ultrasonic aspirator is positioned above
the tissue model and is brought into contact with the tissue
by descending; (2) when contact is established, the ultrasonic
aspirator traverses back and forth once along a predefined
path length; (3) the ultrasonic aspirator detaches from the
tissue and returns to its starting position. These three phases
are referred to as the initial idle phase, contact phase and final
idle phases. A total of five paths are traversed for each tissue
model. In order to avoid loss of contact during ablation, the
CNCmachine continuouslymoves into the depth of the tissue
until a maximum depth of 1.4 mm is reached at the end of the
process.One data recording entails the fragmentation process
on one lane of the tissue model. In all three phases of one
data recording, electrical data are recorded with a sampling
frequency of 1000 Hz. A total of nine different electrical
features are recorded, which include standard features like,
e.g., voltage, current and frequency.

For this feasibility study, we chose a generator setting
(ultrasound: 11%, aspiration: 160mbar, irrigation: 7ml/min),
which is typically used and well suited for very soft and
soft materials. In total, four tissue models are used per stiff-
ness class, which leads to 40 recordings that are conducted
with a contact phase duration of 4.5 s. Since a recording is
performed on the same homogeneous tissue model, no sig-
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Fig. 3 Distribution of measurement points over two classes very soft
and soft. Each differently colored box indicates data from one recording

nificant changes of the signals are to be expected during a
recording. Additionally, we want to have direct feedback in
later clinical use and therefore want to train the system so
that only a small amount of time is required to allow clas-
sification. Thus, only the first second of the contact phase
is used, leading to 1000 measurement points per record-
ing. This results in a total of 40,000 measurement points
that are processed and classified individually (hereinafter
referred to as sample-based classification) with respect to
their tissue stiffness classes very soft and soft. In Fig. 3, the
distribution of the measurement points is shown over the two
classes. It can be seen that the data are well distributed with
20,000 measurement points per class, each consisting of 20
recordings—indicated by the differently colored boxes. All
data are sampled with a sampling frequency of 1000 Hz.

Classificationmodels

Classification of the different tissuemodels based on the elec-
trical features of the ultrasonic aspirator is performed with
three different classification algorithms. Firstly, a random
forest (tree size: 100, feature importance: Gini index) is used
a baseline model [36]. This algorithm is chosen because it
provides a robust baseline with its simple and comprehensi-
ble design.

The second algorithm is implementing a neural network
(NN) structure with a combination of an autoencoder and a
classifier network. The autoencoder is used for regularization
purposes to enforce the NN to only learn useful properties
of the data in the latent space. Finally, to classify the data,
a classification network is used, whose input is based on the
latent space. Both the autoencoder and classification network
are trained simultaneously end to end with a combined loss
inspired by Santilli et al. [37]. The combined loss is defined
as:

loss = lossclf + α × lossae

with lossclf as the cross-entropy loss of the classification
network and lossae as the mean-squared error loss of the
autoencoder. The effect of the lossae on the combined loss is
controlled by the weight parameter α. Throughout the exper-
iments, α is set to 0.3, which was empirically determined
by us to be a good general fit. The autoencoder consists of
one fully connected hidden layer of size 32 in the encoder
and decoder parts with one latent space layer of size nine
in between. The classification network features one hidden
layer of size four as well as one output layer. A visual repre-
sentation of the network can be found in Fig. 4a,while Table 3
provides a more detailed overview of the used parameters.

Both classifiers, the RF and NN, work on a sample-based
level; thus, no temporal influences of the signals are lever-
aged. In order to incorporate temporal information into the
training process, a deep convolutional neural network (CNN)
with a sliding-window approach is used as a third classi-
fication algorithm. The CNN uses a 1D residual network
architecture that allows an ease of training due to resid-
ual blocks with identity skip-connections [38,39]. A total of
seven convolutional layers are used, formed by three residual
blocks. With the beginning of every residual block, the num-
bers of feature channels are doubled,while a stride size of two
is applied—with an exception for the second residual block
in which the feature channel number is not doubled. The ker-
nel size is fixed to seven on all layers, and the number of the
first feature channels is set to 16. Every convolutional layer
is followed by a 1D batch normalization layer. After the last
convolutional layer, an average global pooling is performed
to enable a transition to the fully connected output layer. The
input length to the CNN is based on the window that is slide
over the signal with a size of 64. Prediction is always per-
formed on the last value in the window and only done if 63
previous values are available. Cross-entropy loss is chosen
as the loss function for this architecture. An overview of the
architectural design is provided in Fig. 4b with its accompa-
nied parameter depiction in appendix in Table 4.

Training for both neural network approaches is done with
Adam optimization [40] using an initial learning rate of 0.01,
which is multiplied by a factor of 0.1 upon reaching a plateau
on the training data. Early stopping is implemented based
on validation data performance with an otherwise maximum
epoch count of 2000. The batch size is set to 16,384, and a
weight decay of 0.001 is applied. Input data are normalized
with zero mean and unit variance. In order to manage overfit-
ting, dropout is used in case of NN in the hidden layers of the
encoder and classification networks, as well as after every
convolutional layer in the CNN. In both cases, the dropout
value is set to 0.3. Furthermore, for the NN a Gaussian noise
of 0.1 is added to the input features of the training data to
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Fig. 4 Network architectures.
Detailed information about
hyperparameters can be found in
appendix in Tables 3 and 4. AE
autoencoder, Conv convolution,
Clf classifier, ResBlock residual
block

(a) (b)

prevent overfitting. During inference on the NN, the decoder
part of the autoencoder is omitted and only the classification
output is used.

Experiments

The experiments are carried out in two steps: Firstly,
the performance of the aforementioned machine learning
approaches is evaluated; secondly, the influence of data pre-
processing on classification is analyzed:

All experiments are conducted and analyzed over a five-
fold cross-validation. It is ensured that the splits do not divide
the recording data, such that data from the same recording
are not found in training and test sets. For the neural network-
based classifiers, an additional split of 87.5% and 12.5% is
performed for training and validation data, respectively, to
prevent overfitting. Different metrics are recorded on the test
data for evaluation purposes: the F1-score (F1), accuracy
(ACC), positive predictive value (PPV), true-positive rate
(TPR) and the area under the receiver operating characteristic
(AUROC).

As a first experiment, the performance of the three pre-
sented classification methods, RF, NN and CNN is evaluated
without any prior signal processing. All methods are pro-
vided with the same electrical input signals, from which a
differentiation of the tissue models between very soft and
soft is then to be carried out.

The second experiment concerns possible data prepro-
cessing: During data analysis, a significant portion of record-
ings show a superimposed noise signal with a frequency
of around 1.2 Hz, possibly caused by periodic behavior
of the irrigation function of the instrument, which could
impede classification performance. Two different prepro-
cessing approaches are applied to filter this noise: a low-pass
filter using a Butterworth filter, leading to a smooth signal,
and band-stop filter that uses a notch filter allowing the data
to keep high-frequency components. The contact phase of
one recording is shown in Fig. 5a, which illustrates the influ-
ence of the two preprocessing approaches on the raw signal
with periodic noise. The design choices of the two filters

were determined empirically to reduce the occurrence of
noise at 1.2 Hz. The low-pass Butterworth filter was set to
a third-order filter using a cut-off frequency of 0.75 Hz and
a sampling frequency of 1000 Hz. The band-stop notch fil-
ter’s setting showed an overall sufficient result using a quality
factor of 0.4 with the frequency to remove set to 1.2 Hz at a
sampling frequency of 1000 Hz. A visual representation of
the filters can be found as frequency response plots in Fig. 5b.
The influence of the two preprocessing filters is evaluated
with regard to the classification performance of RF, NN and
CNN.

Results and discussion

Classification performance

Table 1 presents the results on the classification perfor-
mance of the three proposed methods. The sample-based
approaches RF and NN both show equivalent performance
with a mean F1 of about 0.68. A slightly higher mean F1-
score of 0.72 is obtained with the CNN approach. However,
reviewing the standard deviations for all five metrics indi-
cates that differences in metrics might be negligible. This
is unexpected, as the additional information of the temporal
data in the CNN could provide an advantage.

The loss curves of an exemplary fold for the two neural
network approaches are shown in Fig. 6. It can clearly be seen
that overfitting on the training data presents an issue in both
applied methods and can be observed throughout all exper-
iments. This is why multiple countermeasures—mentioned
in the classification models in Sect. 2.2—are implemented
to keep the effects at a minimum. This high variance can
be improved in the future with an increase in the size of
the database. The spikes in the validation loss of the CNN
are most likely caused by mini-batch gradient descend, a
relatively small validation set size and the usage of batch
normalization layers. In case of the NN validation loss, this
is not observable since the loss is further regularized by the
autoencoder part.
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Fig. 5 Preprocessing filters.
Effect of preprocessing on
voltage signal during contact
phase is shown in a. Frequency
response of preprocessing filters
is shown in b. Raw signal with
noise in blue, band-stop filtered
signal and frequency response in
orange, low-pass filtered signal
and frequency response in green

(a) Preprocessing effect (b) Frequency response

Table 1 Results of different
classifiers using raw input
without preprocessing

Classifier F1 ACC PPV TPR AUROC

RF 0.688 (0.206) 0.692 (0.203) 0.700 (0.212) 0.692 (0.203) 0.790 (0.220)

NN 0.682 (0.181) 0.687 (0.175) 0.689 (0.182) 0.687 (0.175) 0.735 (0.211)

CNN 0.720 (0.122) 0.735 (0.104) 0.773 (0.097) 0.735 (0.104) 0.778 (0.224)

Metrics provided as mean (standard deviation)

Fig. 6 Training and validation
loss of NN and CNN on raw
data for an exemplary fold

(a) NN loss (b) CNN loss

Preprocessing

Two preprocessing filters (Fig. 5a) are applied to handle
occurring periodic noise by smoothing the signal with a
low-pass filter or by explicitly filtering the corresponding fre-
quency using a band-stop filter. The results are provided in
Table 2. In general, the use of both preprocessing approaches
leads to an improvement of the classification results. In the
best case, the performance of the NN is increased from 0.682
± 0.181 mean F1 on raw data to a mean F1 of 0.900± 0.096

using a low-pass filter. The noise apparent in the raw data
thus seems to have an influence on the quality of the classifi-
cation, which could be attributed to the wide range of signal
values, as exemplified in the noise in Fig. 5a.

With regard to the two filters, we can clearly observe
that low-pass preprocessing leads to superior results in direct
comparison with band-stop preprocessing. This could be due
to the reduced complexity of the data space by smoothing
out signals through which the learning of the classification
models is simplified and more robust. Concerning only the

Table 2 Results on different preprocessing filters

Classifier Filter F1 ACC PPV TPR AUROC

RF Low-pass 0.788 (0.238) 0.795 (0.229) 0.805 (0.232) 0.795 (0.229) 0.881 (0.170)

RF Band-stop 0.658 (0.201) 0.664 (0.199) 0.681 (0.214) 0.664 (0.199) 0.748 (0.245)

NN Low-pass 0.900 (0.096) 0.902 (0.092) 0.918 (0.070) 0.902 (0.092) 0.935 (0.090)

NN Band-stop 0.703 (0.199) 0.710 (0.190) 0.714 (0.197) 0.710 (0.190) 0.754 (0.232)

CNN Low-pass 0.828 (0.192) 0.838 (0.173) 0.849 (0.159) 0.838 (0.173) 0.838 (0.291)

CNN Band-stop 0.799 (0.146) 0.801 (0.144) 0.816 (0.147) 0.801 (0.144) 0.844 (0.227)

Metrics provided as mean (standard deviation)
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low-pass filter, the metric is boosted by at least 10 percentage
points across all methods with respect to the results based on
raw data input. In the case of band-stop filtering, a maximum
increase of 5 percentage points can be observed, with a slight
deterioration of the metrics for RF.

With respect to the CNN results that include temporal
information into the predictions, it can be seen that a slightly
increased performance can be achieved with the low-pass-
filtered data, although it does not contain high frequencies
compared to the band-stop-filtered data. Even though with
data being sequential in its recording, the results indicate
that the temporal information is not a relevant factor for the
classification task at hand and can be improved with adjusted
data filtering using a sample-based method such as the NN
by a large margin.

Using preprocessing, RF performance is inferior to both
neural network-based approaches. Since filtering has sim-
plified the data space, it is arguably easier for the neural
network-based approaches to train and perform an improved
feature extraction. This feature extraction may be the reason
for the difference between the approaches, as theRF classifier
is limited to the fixed hand-selected features.

Overall, we can conclude that data preprocessing is essen-
tial for improving classification performance. Otherwise, the
observed noise impairs results of the different applied meth-
ods. Nevertheless, we note that the currently used filtering
methods are applied on an entire signal after acquisition and
cannot be applied in a real-time setting. Future work will
need to address those specific limitations.

Conclusion and outlook

In this paper, first steps toward intraoperative differentia-
tion of brain tissue using an ultrasonic aspirator were taken:
We demonstrated in a laboratory setting that electrical sig-
nals, which were acquired during tissue fragmentation, can
be used to successfully distinguish tissue models with brain
typical stiffnesses, reflecting healthy and tumorous brain tis-
sue. Three different classification methods were evaluated
on fivefold cross-validation, yielding a mean F1-score of
up to 0.900 ± 0.096 with a sample-based neural network
classifier. Different preprocessingmethodswere investigated
and were shown to improve the performance by at least
10 percentage points using low-pass filters. Temporal and
high-frequency component features were not found to have
substantial impact on the classification performance if ade-
quate data preprocessing is conducted. Additionally, the
results highlighted the advantage of using the feature extrac-

tion capabilities of a neural network in comparison with
predefined features in random forest classifiers for this spe-
cific classification task.

In order to move further toward clinical real-world data,
the problem scenarios will be addressed in smaller steps:
In a first step, we already showed the possibility to differ-
entiate synthetic tissues without tissue fragmentation [34].
The second step, considered in this study, deals with the
investigation of the feasibility of tissue differentiation under
ablation conditions. Future next steps will include the intro-
duction of inhomogeneities in terms of tissue properties and
the examination of clinical tissue samples. Additionally, fur-
ther investigations must be conducted regarding real-time
capable signal filtering as well as the effects in handheld
ultrasonic aspirator use. Furthermore, a larger database of
different tissue properties needs to be created to reflect the
variation of tumor entities that are found in clinical practice.
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Appendix A: Hyperparameter

The hyperparameter used to design the NN and CNN archi-
tecture shown in Fig. 4 is provided in Tables 3 and 4,
respectively.
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Table 4 Hyperparameters of
convolutional neural network
architecture

Layer type # Kernel Kernel size Stride Nonlinearity

Conv In Conv 16 7 1 ReLU

ResBlock 1 Conv 32 7 2 ReLU

Conv 32 1 2 ReLU after addition

Conv 32 7 1 ReLU after addition

ResBlock 2 Conv 32 7 2 ReLU

Conv 32 1 2 ReLU after addition

Conv 32 7 1 ReLU after addition

ResBlock 3 Conv 64 7 2 ReLU

Conv 64 1 2 ReLU after addition

Conv 64 7 1 ReLU after addition

Pooling Adaptive Avg. Pool – – – –

Classifier FC 2 – – None

Every Conv layer is followed by a batch normalization. The outputs of the last two Conv layers within a
ResBlock are added and subsequently processed by ReLU
Conv convolution, FC fully connected, ResBlock residual block

Table 3 Hyperparameters of neural network architecture

Layer type Size Nonlinearity

AE—hidden encoder FC 32 ReLU

AE—latent space FC 9 None

AE—hidden decoder FC 32 ReLU

AE—output FC n None

Clf—hidden FC 4 ReLU

Clf—output FC 1 None

n number of input features, AE autoencoder, Clf classifier, FC fully
connected
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