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Abstract
Purpose Pancreatic cancer is one of themost lethal neoplasms among common cancers worldwide, and PCLs arewell-known
precursors of this type of cancer. Artificial intelligence (AI) could help to improve and speed up the detection and classification
of pancreatic lesions. The aim of this review is to summarize the articles addressing the diagnostic yield of artificial intelligence
applied to medical imaging (computed tomography [CT] and/or magnetic resonance [MR]) for the detection of pancreatic
cancer and pancreatic cystic lesions.
Methods We performed a comprehensive literature search using PubMed, EMBASE, and Scopus (from January 2010 to
April 2021) to identify full articles evaluating the diagnostic accuracy of AI-based methods processing CT or MR images to
detect pancreatic ductal adenocarcinoma (PDAC) or pancreatic cystic lesions (PCLs).
Results We found 20 studies meeting our inclusion criteria. Most of the AI-based systems used were convolutional neural
networks. Ten studies addressed the use of AI to detect PDAC, eight studies aimed to detect and classify PCLs, and 4 aimed
to predict the presence of high-grade dysplasia or cancer.
Conclusion AI techniques have shown to be a promising tool which is expected to be helpful for most radiologists’ tasks.
However, methodologic concerns must be addressed, and prospective clinical studies should be carried out before implemen-
tation in clinical practice.

Keywords Pancreatic cancer · Pancreatic cystic lesions · Artificial intelligence

Introduction

Pancreatic cancer (PC) is one of the most common cancers
in the digestive tract and one of the most lethal malignant
neoplasms worldwide [1], being the pancreatic ductal ade-
nocarcinoma (PDAC), the most common type of PC. Once
diagnosed, the prognosis is poor, with less than a 10% 5-year
survival rate [2, 3]. Some pancreatic cystic lesions (PCLs) are
well-known precursors of PDAC, with different prognosis
depending on their characteristics.
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PCLs are increasingly common incidental findings on
abdominal imaging tests due to the rise of the aging pop-
ulation and an extension in the usage of abdominal imaging
tests and enhanced quality of imaging [4]. The prevalence of
PCL varies extremely with the method of imaging used and
among studies, ranging from 3% of all patients undergoing
routine computed tomography (CT) to 13–20% if the imag-
ing test used isMRI [5, 6]. On the other hand, autopsy studies
have evidenced a much higher prevalence of PCL, revealing
that up to 50% of the elderly population may present at least
one pancreatic cyst.

Discrimination between different cyst types is difficult.
Several studies have reported that there are still no clin-
ically available methods to effectively differentiate PCLs
among benign, premalignant, and malignant lesions. Cystic
lesions withmalignant potential include intraductal papillary
mucinous neoplasms (IPMNs), mucinous cystic neoplasms
(MCNs), and solid-pseudopapillary tumors. On the other
hand, benign cysts such as serous cystic neoplasms (SCNs)
rarely or never progress to cancer [7].
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In the clinical practice, the accuracy for the discrimi-
nation of these cysts ranges from 43 [8] to 70% [9], the
latter reached by physicians with 10 + years of experience
in abdominal imaging. The use of other diagnostic tech-
niques, such as endoscopic ultrasound (EUS), has shown a
high sensitivity ranging from 75 to 95%, although these are
invasive techniques and are not always available [4].Unfortu-
nately, aside from the assessment of morphological changes
on costly and inconvenient serial imaging tests, to date, there
are no reliable biomarkers to predict the progression of these
cysts. Usually, a final diagnosis can only be made based on
follow-up examinations or after a histopathological analysis
of the lesion. Importantly, resection of these PCLs may dra-
matically reduce the quality of life of the patients as these
surgeries come with a 50% chance of complications and a
5%chance of death, and it has been demonstrated that around
60% of them end up having been unnecessary because the
cyst was benign [10–12].

In this challenging scenario, artificial intelligence (AI)
could help to improve and speed up the detection and
classification of PCLs and PC in early stages [13]. Many
publications regarding this topic have been released in
recent years, most of them in an experimental offline setting
and applying different methodologies. Artificial intelligence
(AI) through machine learning allows machines to analyze
extremely large amounts of training images and find patterns
to extract specific clinical features by using an algorithm.
Based on the accumulated clinical features, machines can
diagnose newly acquired clinical images. There are many
different algorithms, that can be classified between super-
vised and unsupervised learning. Supervised learning infers
an answer from labeled training data that come from a set
of training examples [14]. On the contrary, in unsupervised
learning the training data are not labeled. Most of the ML
algorithms used in radiology are random forest (RF), sup-
port vector machine (SVM) and CNN which fall into the
supervised learning category. Convolutional neural networks
(CNNs) are one of the most used systems for this purpose
[14] as they present a great capacity to automate the analysis
and process a large number of images. AI has been shown as
a promising tool to help radiologists to detect neoplastic and
pre-neoplastic lesions in the pancreas [15, 16]. The aim of
this manuscript is to review the articles addressing the diag-
nostic capacity of AI-based algorithms processing CT orMR
images for the detection of PC and PCLs.

Data sources and search strategy

We performed a comprehensive literature search using
PubMed, EMBASE, and Scopus (from January 2010 toApril
2021) to identify full articles evaluating the diagnostic accu-
racy of AI-based methods processing CT or MR images to

detect PDAC or PCLs. Electronic searches were supple-
mented bymanual searches of references of included studies.

We excluded studies addressing neuroendocrine lesions,
pseudocysts, or lesions arising from non-pancreatic tis-
sue. We also excluded studies aimed to classify histologic
subtypes ofPC, prognostic studies, and studies only assessing
pancreatic segmentation. Two review authors (JA and JR-
C) independently screened the titles and abstracts obtained
by the search using the inclusion criteria.

Artificial intelligence: design of studies

Throughout the last decade, there have been many studies
published that have proven the great step forward that the
use of the artificial intelligence applied to medical imaging
analysis has meant in the detection and treatment of breast
nodules or lesions in the liver, e.g., [17, 18]. Such technology
has reached a level of maturity in which it is able to assist
radiologists in a straightforward, robust, and trustworthyway
locating lesions and image biomarkers for several diseases
in an early stage, with a direct impact on the management of
the workload of the radiologists and the life’s quality of the
patients.

We found 20 studies meeting our inclusion criteria.
Amid the 20 studies, 7 had a multicenter design [19–25]
and 13 came from a single center [20, 24–35].

The most used radiological technique was contrast CT
for both PC and PCLs detection. Two studies used ML-
assisted techniques for MRI processing [26, 36]. Most of
the AI-based systems used were convolutional neural net-
works (CNNs). Two studies [21, 37] used a combination of
random forest (RF), which classifies a set of predefined fea-
tures (e.g., demographic features), and a convolutional neural
network (CNN), which analyses the radiological features of
the lesions. In other 4 studies, the models used to develop
the system were RF [20, 24, 38], and the study from Shen
et al. [30] compared the performance of several systems: sup-
port vector machine (SVM), RF, and artificial neural network
(ANN). The reference standards in all detection studies were
expert radiologists manually delineating neoplasia in radi-
ological images. The gold standard was histology obtained
from surgery except from 2 articles including autoimmune
pancreatitis (AP) in which image and analytical data were
also used to diagnoseAP [20, 26]. Characteristics of included
studies are detailed in Tables 1 and 2.

Pancreatic ductal adenocarcinoma (PDAC)
detection

Ten studies addressed the use of AI to detect PDAC [20,
22, 23, 26, 31, 34–36, 38, 39]. Two of these studies aimed
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to detect PC and differentiate it from AP [20, 26]. Only
4 studies used external validation [22, 34, 36, 37]. From
these 4, all used an offline, image-based validation, and
none were validated in a clinical setting. Six studies reported
the number of patients included in the training and testing set
[20, 22, 23, 36, 38]. Accuracy for the detection of pancreatic
cancer ranged from 83 to 98%. S, Sp, and accuracy of all
studies are reported in Table 3.

Almost all AI studies used contrast CT, which is generally
the preferred and most accessible tool for the first approach
to diagnosis [41]. Pancreatic cancer often carries a poor prog-
nosis due to the diagnosis in advanced stages. This usually
occurs because of the lack of specific symptoms and due
to the subtle changes in the parenchyma in its early phases
[42–44]. For that reason, an early diagnosis of PC requires
expertise in reading radiological images [45]. Indeed, it has
been reported that in a tertiary medical center, radiologists
missed 7.1% of the PCs finally diagnosed [24].

Zhu et al. [35] initially described a system using DL to
detect and segment PC tissue and to differentiate it from
normal tissue, with a sensitivity and specificity above 90%.
Ziegelmayer [26] and Park et al. [20] investigated the per-
formance of a RF algorithm and a CNN, respectively, to
differentiate between PC and AP. For defining AP, they used
both clinical and histopathological criteria. In the study from
Park, 95% of the 62 test patients were correctly classified
as either having PC or AP. Noticeably, all patients with PC
were correctly classified. Indeed, the highest accuracy was
obtained in the study from Park et al. [20]. Ma et al. [31]
also obtained one of the highest accuracy for detecting PC.
They developed a CNN base model using a dataset of 3494
CT images and then evaluated an approach based in binary
and ternary classifiers, with the purposes of detecting and
localizing masses, respectively. In the binary classifier, the
performance of plain, arterial and venous phase had no dif-
ference, and the accuracy was 95%. However, in the ternary
classifier, the arterial phase had the highest sensitivity in
detecting cancer in the head of the pancreas among the three
phases (85%) andwasmuch lower than that of the tail (52%).
For this reason, they recall that the model is suitable mainly
for screening purposes in pancreatic cancer detection.

However, these studies were using images of carcinoma
and normal tissue to detect pancreatic cancer, whereas in
clinical practice the differentiation of different pancreatic
diseases is of key importance [46].

Gao et al. [36] designed a CNN to differentiate pancre-
atic diseases in MR images, including cancerous and normal
tissue and also images of various kinds of tumors. They
used a generative adversarial network (GAN) to augment
and balance the dataset with synthetic images to overcome
the shortage of images. Most of the images used for the train-
ing and testing setwere carcinomas. In the external validation

Table 3 Sensitivity (S), specificity (Sp), and accuracy for the detec-
tion of PC, classification of PCL and detection of HGD/cancer, -: Not
reported

Author Sensitivity
(S)

Specificity
(Sp)

Accuracy

Detection of PC

Si et al. [18] 0.87 0.69 0.83 (all)

0.88 (PC)

Liu et al. [35] 0.79 0.97 0.83

Ziegelmayer
et al. 2020 [30]

0.89 0.83 0.8

Ma et al. [31] 0.98 0.91 0.95

Park et al. [32] 0.9 1 0.95

Liu et al. [19] – – 0.96

Chu et al. [24] 1 0.98 0.9

Gao and Wang
[25]

– – 0.90 (e.v)

Zhao et al. [28] 0.94 0.9 0.92

Zhu et al. [27] 0.94 0.98

Classification PCL

Shen et al. [33] – – 0.79

Li et al. [34] – – 0.73

Yang et al. [36] 0.85 0.83 0.83

Wei et al. [20] 0.67 0.81 0.83

Dmitriev et al.
[21]

– – 0.86

Dmitriev et al.
[26]

– – 0.91

Si et al. [18] 0.87 0.69 0.83 (all)

1 (IPMN)

0.81(SCN)

Gao and Wang,
[25]

– – 0.91 (i.v)

Detection of HGD/cancer

(Corral et al.
[37])

0.75 0.78 0.77

(Watson et al.
[22])

– – 0.88

(Chakraborty
et al. [18])

0.84 0.70 0.81

(Kang et al.
[29])

– – 0.75

set, the patch-level area under the roc curve (AUC) of carci-
nomas and pancreatic neuroendocrine tumor were 0.903 to
detect PC.

The largest studies up to now are those from Liu et al.
[34] and Si et al. [22], with more than 600 patients using an
external validation cohort. Liu et al. [34] conducted a study
including 370 patients with PC and 320 controls from a Tai-
wanese center. They used 2 internal sets and 1 external set
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for testing. The sensitivity of the CNN for tumors < 2 cmwas
92% in the local test sets and 63% in an external set from the
USA. So, it means that the system achieved excellent results
in the internal validation cohort and good but lower accuracy
in the external cohort, remarking the importance of a large
and representative training cohort of patients. In this study,
AI performance was better than that of the radiologists par-
ticipating in the analysis. In a recently released publication,
Si et al. [22] carried out a large study including also other
types of pancreatic tumors with 319 patients and 143,945 CT
images, obtaining an average accuracy for all tumor types of
82.7%, and the independent accuracy of pancreatic ductal
adenocarcinoma was 87.6% in an external validation cohort.
These data show that AI could help diminish the problems
arising from differences in radiologists’ expertise and miti-
gate the heavy workload that is coming from the increase in
the number of CT performed. However, these systems still
need to prove that they can detect small and early pancre-
atic lesions, which is likely the main limitation in clinical
practice.

Characteristics of included studies addressing PDAC are
detailed in Table 1.

Pancreatic cystic lesions

Eight studies aimed to detect and classify PCLs (2 of them
also included other kinds of tumors as mentioned before)
[21, 22, 24, 25, 30, 33, 36, 37], and 4 aimed to predict the
presence of high-grade dysplasia (HGD) or cancer [19, 27,
32, 40]. Six studies reported the number of patients included
in the image extraction for the training and testing sets [22,
25, 30, 32, 36, 37].

Classification of PCL

From the studies designed to classify PCLs, 6 of them aimed
to detect and classify any type of cyst [21, 22, 30, 33, 36, 37],
1 to differentiate serous cystadenoma from the other types
[25] and 1 to differentiate between serous andmucinous cysts
[24].

Only the studies from Gao et al. and Dmitriev et al.
[36, 37] used an offline external validation. However, in the
study from Gao et al., the corresponding PCL results were
only given for the internal validation set due to the insufficient
number of images including PCLs in the external validation
cohort. The rest of the studies used only internal validation.

Accuracy for classifying cystic lesions ranged from 73
to 91%. S, Sp, and accuracy of all studies are reported in
Table 3.

Early detection of pancreatic cysts could be a great oppor-
tunity of preventing the development of PC. These cysts are
often detected in CT carried out for other reasons [46–48].

However, differentiating between the different cysts is cru-
cial due to the different malignant potential and the different
need of follow-up [49]. In this regard, the best results were
obtained from the study of Dmitriev et al. [21] who ini-
tially presented an algorithm to discriminate between the 4
main types of neoplastic pancreatic cysts: intraductal pancre-
atic mucinous neoplasm (IPMN), mucinous cystic neoplasia
(MCN), serous cystic neoplasm (SCN), and solid pseudo-
papillary neoplasm (SPN). They developed a model using a
Bayesian combination of an RF classifier and a CNN, merg-
ing patient demographic factors with signal intensity and
shape features from the cyst images. The overall accuracy
obtained was 83.6%. Then, in a more recent publication [37],
they tested the algorithm in an external cohort including 134
patients with an accuracy of 95%.However, most of the cases
included were IPMN, so the rest of the lesions could have
been underrepresented. Interestingly, the median size of the
misclassified cysts was 4.8 cm, suggesting that the network
could not correctly distinguish smaller lesions due to a lack of
distinctive internal features. This paper also included an anal-
ysis to provide visual clarification of the decision-making
process of the CAD system focusing on which input fea-
tures are the most important for the RF component and how
their values affect the final prediction and also analyzing the
function of the CNN by studying the semantical separability
and characteristics of the learned radiological features. This
is important to get to understand how the system works and
which changes could bemade to improve it in the near future.

Li et al. [33] also developed aCNNmodel to classify PCLs
on whole pancreas CT images. Besides, saliency maps were
generated to remark the important pixels in the images to
visualize the most important areas contributing to the classi-
fication output and to help the physicians to understand how
the deep learning method works for in the diagnostic pro-
cess. This system showed and accuracy of 72.8% improving
the results of the radiologist’s baseline manual reading in the
same study. They observed that MCN was easily misclassi-
fied as IPMN probably due to the similar appearance in the
CT images.

As already stated, malignant potential of the PCL varies
widely. Serous cystic neoplasms have a negligible malignant
potential; therefore, identifying those is key to detect patients
that will not have malignant potential and will not have to
undergo long-term surveillance [50, 51]. To classify pan-
creatic serous cystic neoplasms from other pancreatic cystic
neoplasms, Wei et al. [25] conducted a study including 260
patients fromwhich 102 had an SCN. They achieved an accu-
racy of 83%, an S of 67%, and an Sp of 81%. Besides, they
reported that only 31 of 102 serous cystic neoplasm cases in
this study were recognized correctly by clinicians before the
surgery. Previous publications [9, 52] reported an accuracy of
~ 70% for the discrimination of pancreatic cysts on CT scans
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read by radiologists with > 10 years of experience in abdom-
inal imaging. In this sense, this study from Wei showed an
accuracy greater than 83% evidencing the potential of these
networks to classify PCLs.

Yang et al. [24] also investigated the performance of a
RF to discriminate between serous and mucinous cysts with
similar results. Later, Shen et al. [30] carried out a study to
compare the performance of 3 differentML systems: support
vector machine, RF, and an automatic neural network (ANN)
for the differential diagnosis of SCN, MCN, and IPMN. In
this case, the RF model showed the highest overall accuracy
in both the training and validation dataset.

Detection of HGD and cancer

Three studies aimed to detect HGD or cancer in IPMN [19,
27, 40] and another included the 4 main kinds of cysts [32].
Accuracy ranged from 75 to 88%.

One of the most important tasks of the radiologists when
analyzing pancreatic cysts is to determine whether they have
malignant features or not. This task is extremely challeng-
ing, especially for recognition of high-grade dysplasia as the
changes in the cyst may be extremely subtle. Many guide-
lines have been developed to address this topic, but results
are still not accurate enough [53–55].

Chakraborthy et al. [27] initially developed an ML model
that included clinical and imaging features from CT to pre-
dict high- or low-risk IPMNs. Using the imaging features,
they reported a sensitivity of 80% and a specificity of 59%.
Interestingly, when they also included clinical variables, the
Sp raised to 70%.

Later, Corral et al. [19] published a study using a CNN
in MR images to detect HGD in IPMN. They included 139
patients, achieving an S and Sp of 75%. Their research
reported that once featureswere extracted, the computer code
took 0.18 s to run the complete algorithm. They stated that
the accuracy reported was similar to that of an expert radiolo-
gist but much faster [38, 39]. In this regard, probably the use
of clinical or biochemical data could also help to improve its
performance.

In another study released in 2020, Kang et al. [40] com-
pared the performance of a ML-based system with the
traditionally used logistic regression (LR) to detect HGD in
IPMN, reporting similar results (accuracy ~ 75%) for both
systems without including clinical or biochemical informa-
tion.

When approaching the diagnosis of dysplasia in PCL, the
balance between S and Sp is crucial. These studies showed a
performance comparable to the current diagnostic guidelines
with a slight increase in sensitivity [4, 56–58]. The use of this
tools could increase the chances of some patients of having
a curative pancreatic resection, which may reduce pancre-
atic cancer mortality. However, the still low Sp causes the

concerns about false positive results which could lead to an
increase in unneeded major surgeries with the mortality and
comorbidities often attached [59–61].

It has been proved that adding different imaging tech-
niques could improve the outcomes regarding diagnosis of
dysplasia [62, 63]. Endoscopic ultrasonography (EUS) is a
technique used to evaluate the pancreas with high accuracy,
and it adds valuable information to assess the malignancy of
IPMNs [64–66]. In a recent research study, Kuwahara et al.
[66] reported an accuracy of 94% to detect HGD in IPMN
using EUS images. The reported that AI accuracy was higher
than humandiagnosis (56.0%) and themural nodule (68.0%).
They also performed a multivariate logistic regression anal-
ysis that showed that AI malignant probability was the only
independent factor for IPMN-associated malignancy. How-
ever, the study was a single-center retrospective study with
small sample size and these results should be further vali-
dated.

It is likely that these systems will also benefit from includ-
ing clinical information and biochemical and genetic data, as
has been recently reported inCompCyst, anML tool designed
to characterize PCL and guide clinical decisions [67]. They
tested Comp Cyst in 474 patients, and it correctly identified
71% of pancreatic adenocarcinomas with cystic degenera-
tion,whereas clinical and imaging criteria correctly identified
58% of pancreatic adenocarcinoma although slightly lower
Sp.However, Sp to detect serous cystic lesionswas very high.
Application of the CompCyst test would have spared surgery
in more than half of the patients who underwent unnecessary
resection of their cysts. These systems will probably be not a
substitute of imaging techniques but a help to clinicians con-
tributing with additional information to allow doctors make
a better diagnosis [68, 69]. The way in which these tests
will be implemented in routine clinical settings remains to
be determined.

Complete characteristics of included studies addressing
PCLs are reported in Table 2.

Conclusions

In this review, we searched publications on machine learning
for pancreatic ductal adenocarcinoma or pancreatic cystic
lesions diagnosis in CT or MRI images, observing that in the
last 3 years, there has been a huge increase in the number of
publications regarding this topic. However, most of them are
still in experimental stages.

With the arrival of higher-resolution cross-sectional imag-
ing techniques, incidental PCL has been increasingly dis-
covered over the past years [5, 70]. Some carry a malignant
potential or could even carry malignant cells already, and
in most cases, these changes are very difficult to detect and
classify [71]. In this sense, while PCL is increasingly being
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discovered, the survival rate of pancreatic cancer patients
has barely improved in the last few decades. Indeed, a correct
management of these PCLs, focusing on the stratification the
malignant potential of these cysts, may prevent the mortality
associated with progression to pancreatic cancer. The current
consensus guidelines for management of PCL, which rely on
standard imaging characteristics to predict cyst malignancy
potential, have shown a limited accuracy in detecting and
characterizing PCLs [4, 57, 58]. For this reason, the intro-
duction of a new technology such as AI through machine
learning has raised a lot of attention [72].

In recent years, there have been a fast development of AI
tools that have showed the great potential of ML and DL
models to detect pancreatic lesions and pancreatic adenocar-
cinoma and to help to classify PCL [73]. Some of them have
showed a very good performance with an accuracy over 90%
for differentiating pancreatic adenocarcinoma from normal
pancreatic tissue [35] or for differentiating carcinoma from
autoimmune pancreatitis [20] which is another important dif-
ferential diagnosis of PC. However, other features such as
parenchymal atrophy or pancreatic duct enlargement are not
yet recognized by AI [74].

Regarding PCL, some groups focused on classifying the
different types of cystic lesions with varying results, often
more accurate for diagnoses of IPMN [21, 33] and others
tried to differentiate between mucinous and serous lesions
which is important because of the different prognosis and
follow-up [25]. Besides, the usage of this tools can speed
up dramatically this tasks that usually carry a great burn for
the radiologists. There are also very promising results in the
field of detecting HGD or cancer, with a recent study report-
ing high S over 80% although with moderate Sp that will
probably be increased in the future by including clinical,
biochemical, and genetical data [32, 67].

However,most of the studies referred in the review present
several limitations and methodological concerns that need
to be addressed in the coming future. The main concern is
the retrospective and offline design, which makes difficult to
elucidate the applicability of these systems in clinical prac-
tice. Another crucial limitation is that many of the studies
were trained in a small internal dataset. The low preva-
lence of some PCLs may difficult the collection of the large
number of images needed to construct a reliable algorithm.
This, together with the inclusion of only the best radiolog-
ical images to perform the studies, could lead to a poor
generalization of the model. Another problem is the refer-
ence gold standard chosen in the different studies. The most
reliable gold standard is the anatomopathological sample of
the cyst. However, this samples are usually obtained only for
larger cysts according to clinical guidelines [4] which could
bias the results of the studies and exclude the analysis of the
smallest cysts. More importantly, most of the studies were

carried out without external validation [72]. External valida-
tion is crucial to estimate the prospective performance of the
model in an unseen population. Testing the system with an
external prospective cohort is necessary to characterize the
model bias and leads to a more reliable tool [75, 76].

An important aspect to consider is how the interaction
between the human doctors and the AI tools will be. There
are multidisciplinary groups working on it, such as the one
involved in “Felix Project,” that describe the future of this tool
as a “second reader” integrated in the radiology workflow,
that will segment the organs and annotate any suspicious
pancreatic pathology and then send it back to the radiologists
to be double checked [77].

In conclusion, the increased number of cross-sectional
imaging tests and diagnoses related to PCLs implies an
increase in workload in the clinical practice, but on the other
hand it entails a greater probability of finding lesions ofmuci-
nous origin with premalignant characteristics. This may lead
to an increase in early-stage pancreatic cancer diagnoses.
AI techniques have shown to be a promising tool which is
expected to be helpful for most radiologists’ tasks. However,
methodologic concerns must be addressed, and prospective
clinical studies should be carried out before implementation
in clinical practice.
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