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Abstract
Purpose Coronary artery segmentation in coronary computed tomography angiography (CTA) images plays a crucial role
in diagnosing cardiovascular diseases. However, due to the complexity of coronary CTA images and coronary structure, it is
difficult to automatically segment coronary arteries accurately and efficiently from numerous coronary CTA images.
Method In this study, an automatic method based on symmetrical radiation filter (SRF) and D-means is presented. The SRF,
which is applied to the three orthogonal planes, is designed to filter the suspicious vessel tissue according to the features of
gradient changes on vascular boundaries to segment coronary arteries accurately and reduce computational cost. Additionally,
the D-means local clustering is proposed to be embedded into vessel segmentation to eliminate noise impact in coronary CTA
images.
Results The results of the proposedmethodwere compared against themanual delineations in 210 coronaryCTAdata sets. The
average values of true positive, false positive, Jaccard measure, and Dice coefficient were 0.9541± 0.0651, 0.0812± 0.1024,
0.8894±0.1214, and 0.9318±0.0833, respectively.Moreover, comparing the delineated data sets and public data sets showed
that the proposed method is better than the related methods.
Conclusion The experimental results indicate that the proposed method can perform complete, robust, and accurate seg-
mentation of coronary arteries with low computational cost. Therefore, the proposed method is proven effective in vessel
segmentation of coronary CTA images without extensive training data and can meet clinical applications.

Keywords Coronary CTA · Vessel filtering · Vessel segmentation · Local clustering

Introduction

Coronary artery disease is the most common type of car-
diovascular disease. If a coronary artery becomes narrowed
or occluded due to plaque build-up, a decrease in blood
flowing to the myocardium may cause ischemia, leading to
fatal consequences [1]. In recent years, coronary computed
tomography angiography (CTA) images have become critical
for cardiovascular disease filtering, diagnosis, and treatment.
However, it is difficult and time-consuming for clinicians
to track and analyze coronary arteries manually. Therefore,
the accurate and automatic segmentation of coronary arter-
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ies in CTA images has an important practical significance
and clinical value [2]. The state-of-the-art methods for the
segmentation of coronary arteries can be divided into the
following categories [3,4].

Models that correspond to the prior assumption are applied
to the target vessels, such as a vascular model, a geometric
model, a hybrid model, and a specific model. Boskamp et
al. [5] designed a series of procedures to segment vessels
according to vessel intensity distributions and morphology
features, but it is sensitive to the noise of the image. To
address those problems, many scholars proposed geometric
models to detect vessel boundaries. Huang et al. [6] designed
amethod for accurate vessel segmentation based on the cylin-
der model. Although the geometric model can naturally deal
with topological structure changes, it is low efficient and sen-
sitive to noise. Therefore, various hybrid models have been
proposed to segment vessels. A hybrid model-based method
was proposed to simulate the generation of the vascular
tree by using constraint construction optimization and flow-
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related geometric constraints [7]. Except for normal vessels,
vessel bifurcations and abnormal vessels will increase the
difficulties of vessel segmentation. Thus, a specific vascular
model was designed for specific vascular shapes [8].

Features based on vessel measures estimate the models
in CTA images, which can be image features, structural
features, and feature transformations. An intensity-based
multi-level classification model was proposed to extract fea-
tures. Zhuang et al. [9] proposed an improved super-pixel
generation algorithm that incorporates both gray-level and
luminosity-based information to improve simple linear iter-
ative clustering algorithms. A popular method in detecting
vessels is to use the second-derivative information to charac-
terize the geometric shape of local images, such as Hessian
matrix transformation (HMT) [10]. Ge et al. [11] proposed
a two-step segmentation algorithm based on Hessian matrix
and level set using Hessian matrix eigenvalues, feature vec-
tors, and evolution of a level set function.

Either the model-based or feature-based methods require
a suitable vascular segmentation scheme to achieve good
segmentation results. Generally, a strategy of vascular seg-
mentation is: first, pre-processing or pre-segmenting target
images [12]; second, using a region-growing based method,
an active contour model method, and a centerline tracking-
based method to extract vessels and obtain the boundaries
[13,14]; finally, adopting a post-processing strategy to extract
complete target vessels [3]. Du et al. [15] proposed a
new segmentation framework for 3D coronary artery tress
by integrating noise reduction, candidate region detection,
geometric feature extraction, and coronary artery tracking
techniques.

A deep learning-based method has been widely used in
vascular segmentation in recent years. In contrast to tradi-
tionalmethods, it does not need to designmodels, features, or
segmentation schemes [4,16].Gu et al. [17] proposed a global
feature embedded network (GFE-Net) for coronary arteries
segmentation in CTA images. The GFE-Net improves V-Net
uses a noisy activating function to suppress CTA image noise
during the network down-sampling process. Shen et al. [18]
proposed a 3D fully convolutional network (FCN) integrating
an attention gate for coarse segmentation of coronary arteries.
The coarse segmentation is then optimized using the level set
function to obtain a refined, smooth segmentation. Although
the deep learning-based method has made some achieve-
ments in vascular segmentation, its application in vascular
segmentation of coronary CTA images still presents great
challenges [19,20].

In this paper, we propose an automatic method for
coronary artery segmentation. The main contributions are
summarized as follows:

1. We design a two-dimensional (2D) symmetrical radia-
tion filter (SRF) which is applied to the tissue on three

orthogonal planes (the axial, coronal, and sagittal planes)
rather than a cross-sectional plane.

2. We propose a D-means local clustering segmentation
scheme that performs iterative local calculations on vas-
cular tissue to avoid the influence of cardiac motion
artifacts and unsteadiness of the contrast agent concen-
tration.

3. The proposed method has low complexity, low com-
putational cost, a broad clinical application, and a low
hardware requirement, which can fully meet the need of
clinicians.

Method

The framework of the leading segmentation procedures is
depicted in Fig. 1. The proposed method has two new algo-
rithms: the SRF used to filter the suspicious vessel regions
and theD-means local clustering used to eliminate the impact
of noise in coronary CTA images. Firstly, we describe the
SRF-based vessel filtering method in “Vessel filtering” sec-
tion, including the theory and application. Then, we describe
the vessel segmentation method in “Vessel segmentation”
section, including the use of SRF and D-means local cluster-
ing.

Vessel filtering

Theory of SRF

SRF is a vessel filter used to remove non-vessel tissue by cal-
culating an intensity value of symmetrical vascular gradient
and judging whether it meets a filtering threshold of gradient
symmetry of vessels. Figure 2 depicts the SRF method.

Suppose that a point x0 in a vessel on a 2D plane emits
ray pairs to the surroundings in a range of maximum distance
Dmax and π angles. The ray pairs ±u(α) are two rays emit-
ted from a point x0 in opposite directions. As well known,
in coronary CTA images, vessels are brighter than the sur-
rounding structures. The maximum gradient value will be at
the inner and outer vessel boundary. Therefore, the vessel
boundary should be detected first. b(x) denotes a boundary
measure with a sign along a ray u(α) at a point x , defined as
follows:

b(x) = (|∇σ I (x)|) sign (∇σ I (x)) (1)

where I (x) denotes one-dimensional intensity distribution,
and ∇σ I (x) denotes a gradient of the point x . σ denotes a
spatial scale of the vessel boundary determined according to
a thickness of a vessel wall, set to 1.5mm. Considering the
direction of the gradient, sign (∇σ I (x)) is used to distinguish
whether the change of vascular boundary is rising (from dark
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Fig. 1 Framework of vessel filtering and segmentation of coronaryCTA
images. In the D-means local clustering stage, each step is composed
of four views: axial view on the top left, sagittal view on the top right,
VR view on the bottom left, and coronal view on the bottom right. At

the image patch step, the non-coronary artery tissue marked in green
is removed by the SRF; at the D-means clustering step, multicolored
tissue is used to display the D-means clustering results

Fig. 2 Diagram of SRF. Each colored line with a double-headed arrow
represents a pair of rays. Each red dotted circle represents the distance
traveled by the rays

to bright) or falling (from bright to dark) [12]. The change
from the inner to the outer vessel must present from bright

to dark. Points inside the vessel are surrounded by falling
boundaries except for two conditions: One is points outside
the vessels are surrounded by bright tissue-like vessels and
ventricles; the other is points belong to abnormal substances
like calcified plaques and metal stents.

Since SRF is designed based on the gradient symmetry
of vessels, the maximum falling edge response E (x0, u(α))

should be searched at the different locations x in a step size
of 0.6mm along the ray u(α) within the maximum distance
Dmax. The step size is set according to the vessel diameter
and the average physical size of coronary CTA images. The
definition of function E (x0, u(α)) is given by:

E (x0, u(α))= max
x∈[x0,x0+Dmaxu(α))

{(−b(x), 0)} (2)

where u(α) = sin(α)u1 + cos(α)u2, and u1 and u2 are
two directions of the 2D plane. α, α ∈ [0, π), denotes an
angle of the ray. The maximum distance Dmax is set to 8mm,
which only needs to exceed the maximum vessel diameter
according to the vascular physiology structure. For the ray
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Fig. 3 Polar coordinates used to illustrate the SRF. a The polar coor-
dinates for any three points a, b, and c in the vessel used to illustrate
the SRF. b The polar coordinates for point a in the vessel and points
b, c in the right ventricle used to illustrate the SRF. The first column

shows local axial planes of coronary CTA images. The red, green, and
blue curves represent the maximum falling edge responses of a, b, and
c points in each direction, respectively. The yellow circle represents the
minimum threshold of the maximum falling edge responses

pairs ±u(α), there are two maximum falling edge responses
E (x0, u(α)) and E (x0,−u(α)). When the two maximum
falling edge responses both satisfy conditions, the ray pairs
have gradient symmetry. Thus, the gradient symmetry func-
tion B (x0,±u(α)) is given by:

B (x0,±u(α)) = P (E (x0, u(α))

> T1 ∧ E (x0,−u(α)) > T1) (3)

where T1 denotes a minimum threshold of the maximum
falling edge responses, set to 70. The binary function P is
equal to 1 when the expression condition inside the function
is evaluated to be satisfied. Otherwise, it is equal to 0.

On a 2D plane, there are N ray pairs, set to 20 according
to the size of coronary arteries and CTA images. Thus, the
definition of the SRF function is given by:

F (x0) = P

((
1

N

N−1∑
i=0

B

(
x0,±u

(
π i

N

)))
> T2

)
(4)

where T2 denotes aminimum threshold of a proportion of ray
pairs that satisfy the gradient symmetry, set to 0.65. When
the proportion of the ray pairs emitted from the point x0
to satisfy the gradient symmetry function B(x0,±u(π i

N )) is
greater than the threshold T2, the point x0 belongs to the
vessels. The fixed parameters related to SRF are obtained by

statistical methods, such as receiver operating characteristic
(ROC) curves and histogram analysis.

SRF is designed according to the feature of the descending
boundary from the inner to the outer vessel on the 2D plane.
Unlike the filter designed in the literature [12], SRF does not
require the calculatedpoint to be the center point of the vessel.
As shown in Fig. 3a, as long as the points (like points a, b,
and c) are in the vessel, their gradient of SRF is similar, and
all have symmetry features of gradient change. Nevertheless,
if the points are not in the vessel, they will not be similar and
not have the symmetry feature like points b and c depicted
in Fig. 3b.

Application of SRF

Compared with the state-of-the-art 3D vessel filter [21,22],
SRF is a 2D vessel filter designed based on the gradient sym-
metry of vessels on a 2D oblique plane, which is used to
reduce the computational cost for clinical application. Gen-
erally, a 2D vessel filer is applied to a cross-sectional plane
obtained based on the HMT, like the method used in the lit-
erature [12]. HMT is time-consuming and often inaccurate
for week vessels [21,22]. As we can observe from Fig. 4,
whether in vascular or non-vascular cross-sectional planes,
points have stronggradient symmetry (thefirst columnofFig.
4a and c). Even using multi-scales, the HMT has a deviation
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Fig. 4 2D planes and polar coordinates used to illustrate the SRF. The
first column depicts the cross-sectional planes of the points obtained
based on HMT and their corresponding polar coordinates. The second
to the fourth columns depict the axial, coronal, and sagittal planes of the
points and their corresponding polar coordinates. The red curve repre-

sents the maximum falling edge responses of the red point. The yellow
circle represents the minimum threshold of the maximum falling edge
responses. The points in a and b are in vessels. The point in c is not in
the vessel

123



1884 International Journal of Computer Assisted Radiology and Surgery (2022) 17:1879–1890

(the first column of Fig. 4b). However, the three orthogonal
planes can effectively distinguish inside points (the second
to fourth columns of Fig. 4a and b) from the outside points
(the second to the fourth columns of Fig. 4c).

Taking the feature of SRF and coronary CTA images into
account, we integrated SRF values from three orthogonal
planes (axial, coronal, and sagittal planes) into one judgment
to replace a judgment of SRF values from one cross-sectional
plane. When two or more 2D orthogonal planes meet the
intensity value, the point is considered to satisfy the gradient
symmetry and belongs to vessels.

Vessel segmentation

In this paper, we integrate the designed SRF-based vessel
filtering and D-means local clustering into coronary artery
segmentation (as depicted in Fig. 1). Firstly, the initial seed
points are obtained by state-of-the-art algorithms with the
SRF to further ensure the initial seed points are effective
for subsequent iterations of vessel segmentation. Secondly,
the D-means local clustering is integrated into the iterative
process to obtain image patches used to update vessel seg-
mentation parameters. During each iteration, the SRF is used
again to ensure that the image patches belong to the coronary
arteries. Finally, the vessel segmentation is done when all the
initial seed points and image patches are completed.

Initial seed points

The initial seed points that are generally starting points for
region segmentation can be obtained in many ways, such as
the methods described in the literature [10,23,24]. The ini-
tial seed points are coarse in this paper, i.e., only at least two
effective seed points in each main coronary tree are enough,
and numerous seed points and false seed points are toler-
ated. Therefore, to reduce the computational cost, two coarse
thresholds, set to 130 Hounsfield units (HU) and 500 HU, are
firstly used to extract a region of interest (ROI) for the ini-
tial seed points. Secondly, a Hessian matrix with a single
scale determined by the average radius of coronary arteries
and a tubular structure similarity function is adopted to get
suspicious seed points with robust tubular structure features.
Finally, the effective seed points are obtained by SRF.

D-means local clustering

Vessels in CT images appear unstable changes such as large
changes in CT values, dislocation of coronary arteries, and
blurry artifacts in coronary CTA images. Only in a small
range of regions, the features are similar. Thus, the D-means
local clustering algorithm is critical in the iterative segmen-
tation process. It can divide a large region into multiple
localized small image patches so that these small image

patches can update the parameters required for the next iter-
ation segmentation.

There aremany state-of-the-art clustering algorithms such
as K-means [25], K-medoids [26], density-based spatial
clustering of applications with noise (DBSCAN) [27], and
hierarchical clustering [28]. The D-means local clustering is
the evolution of K-means and DBSCAN, which makes the
distance between all target points in the clustering domain
and the clustering center meet the defined conditions. More-
over, there is no need to specify the number of clusters before
clustering.

Let us assume a data set X composed of m voxels from a
region V . The process of the D-means clustering algorithm
is to divide the data set X into N clusters Ci according to a
distance D as defined in the following equation:

X=

{
xi j | xi j

i∈[1,N ], j∈[1,|Ci |]
∈ V

}
(5)

where xi j is a voxel of the region V . D is set 4mm according
to the maximum radius of the coronary artery. Each cluster
Ci has a cluster center μi defined as follows:

μi = 1

|Ci |
∑

j∈[1,|Ci |]
xi j (6)

where Ci is defined as:

Ci = {
(xi j , μi ) | d(xi j , μi ) ≤ D

}
(7)

the distance d(xi j , μi ) is defined as follows:

d(xi j , μi ) =
∑
xi j∈Ci

∥∥xi j − ui
∥∥ (8)

By selecting Euclidean distance as the criterion of simi-
larity and distance, the number of clusters N whose distance
d from each point xi j to the cluster center μi is less than
or equal to D is calculated. Figure 5 depicts the process of
dividing a dataset X into three predefined clusters.

Segmentation procedures

Vessel segmentation is an iterative process. During the iter-
ative process, the image patches are grown coarsely by two
thresholds Threlow and Threhigh. Threlow and Threhigh denote
a low CT value threshold and a high CT value threshold,
respectively. They are constantly updated during the growth
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Fig. 5 Schematic diagram of D-means clustering. The red points in a are the set X of points to be clustered. b is the three clusters (green points,
red points, and blue points) obtained after D-means local clustering on a. The crosshair in each cluster represents their corresponding cluster center
points

of each image patches, which are defined by CT mean
MeanCT and standard deviation SDCT as follows:

{
Threlow = MeanCT − SDCT

Threhigh = MeanCT + SDCT
(9)

whereMeanCT andSDCT denoteCTvaluemean and standard
deviation, respectively. They are calculated by the last image
patches. For the first image patch, they are calculated by the
26 neighborhoods of the initial seed points. The image patch
IP is defined as follows:

IP = {
xCT | xCT ≥ Threlow ∧ xCT ≤ Threhigh

}
. (10)

where xCT denotes the CT value at x . The image patch IP
will contain many false points which need to be removed.
Thus, the SRF is applied to ensure that the reserved image
patch RIP given by (11) is coronary arteries (see the “Vessel
filtering” section).

RIP = {x | x ∈ IP ∧ x ∈ SRFV} (11)

where SRFV denotes a set of points that satisfies the con-
dition of SRF. As described in “D-means local clustering”
section, the image patch RIP should be clustered to ensure
that the two thresholds Threlow and Threhigh used for the next
iterative segmentation are accurate. Thus, the D-means local
clustering algorithm is used to get the regional cluster sets
CN :

CN=

{
Ci | Ci

i∈[1,N ]
⊆ RIP

}
(12)

The cluster Ci is the input image patch for the next itera-
tion. When all seed points and image patches are completed,
the segmentation is done.

Results

Materials

Theproposedmethodwas implemented inVisual Studio soft-
ware (C/C++) and MATLAB software and executed on a
desktop computer equipped with an Intel(R) Core (TM) i5-
4590 HQ processor (3.30 GHz) and 16 GB of RAM.

Since there are no public data sets used for testing and
verification in coronary artery segmentation, we randomly
collected a total of 210 data sets of coronary CTA images
fromdifferentmanufacturers (GE, Philips, andSiemens), dif-
ferent equipment, and different hospitals. The average voxel
size of images is 512 × 512 × 291 with an average physi-
cal size of 0.40 mm × 0.40 mm × 0.47 mm. There are 120
healthy data sets and 90 diseased data sets, of which 50 are
significant stenosis (≥ 50% luminal narrowing).

The manual delineation is time-consuming and energy-
consuming because of the complex coronary artery structure,
inconsistent image quality, and different expert requirements
for coronary artery segmentation. Therefore, three senior car-
diovascular experts have manually delineated the data based
on the results of the proposed method by adding the missing
coronary arteries and removing non-coronary arteries.

Evaluationmetrics

The resultswere comparedwith thosemanually delineatedby
experts to evaluate the accuracy of the segmentation results.
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Fig. 6 Examples of VR images of coronary artery segmentation results
a, b. Red and green regions are the segmentation results of the pro-
posed method, and especially green regions are the non-coronary artery
tissue removed by experts. Blue regions are missing coronary artery

tissue added by experts. Each row compares the segmented results of
the proposed method and the manual delineations of experts 1, 2, and
3, respectively

Four metrics are used to evaluate the performance of the
coronary artery segmentation methods: true positive (13),
false positive (14), Jaccard measure (15), Dice coefficient
(16):

TP = |Sauto ⋂
Slabel|

|Slabel| (13)

FP = |Sauto| − |Sauto ⋂
Slabel|

|Slabel| (14)

JM = |Sauto ⋂
Slabel|

|Sauto ⋃
Slabel| (15)

DC = 2 × |Sauto ⋂
Slabel|

|Sauto| + |Slabel| (16)

where Sauto and Slabel denote the coronary artery region
obtained by automatic segmentation andmanual delineation,
respectively.

Performance

The examples of the segmentation results and corresponding
manual delineations are shown inFig. 6.Wecanobserve from
Fig. 6 that the segmented results in this paper are highly con-
sistent with the tissue manually delineated by three experts.
For some undersegmented tissue, the manual delineations
vary considerably.

Figure 7 shows box plots of the four metrics obtained
after quantitative evaluation of the segmented results and the
results manually delineated by experts. We can observe from
Fig. 7 that the results obtained by the proposed method are
consistent with the results manually delineated by experts.
Compared with the three experts, the mean medians of TP,
FP, JM, and DC are 0.9837, 0.0258, 0.9558, and 0.9875,
respectively.

We also evaluated the segmented results of diseased data
and healthy data in the data sets separately. The mean value
and standard deviation of four metrics are shown in Table
1. From Table 1, we can observe that the proposed method
has good performance on the healthy data sets as well as the
diseased data sets.
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Fig. 7 Box plots of four metrics of the segmentation results

Table 1 Performance of the proposed method compared with the manual delineations on diseased data sets and healthy data sets, respectively

Metrics Manual delin. 1 Manual delin. 2 Manual delin. 3

Diseased Healthy Diseased Healthy Diseased Healthy

TP 0.9283 ± 0.0810 0.9765 ± 0.0357 0.9274 ± 0.0850 0.9728 ± 0.0391 0.9278 ± 0.0826 0.9729 ± 0.0407

FP 0.0906 ± 0.1165 0.0708 ± 0.0858 0.0902 ± 0.1237 0.0744 ± 0.0912 0.0909 ± 0.1170 0.0771 ± 0.0919

JM 0.8643 ± 0.1377 0.9130 ± 0.1025 0.8629 ± 0.1374 0.9099 ± 0.1034 0.8601 ± 0.1420 0.9067 ± 0.1070

DC 0.9079 ± 0.0987 0.9512 ± 0.0621 0.9053 ± 0.1020 0.9515 ± 0.0634 0.9070 ± 0.0985 0.9500 ± 0.0660

1. Manual delin 1, 2, and 3 represent the modification done by expert 1, 2, and 3, respectively, 2. All data are presented in the form of mean ±
standard deviation

To illustrate the segmentation error of the proposed
method, we compared the error between each of the man-
ual delineations. The mean value and standard deviation of
four metrics were calculated between the manual delineation
results of two experts in Table 2. Table 3 shows the mean
value and standard deviation of four metrics of our proposed
method compared with the manual delineation results. From
the results, we can observe that the error between each of the
manual delineations is close to the results of the proposed
method.

Although there are no public gold standard data sets for
evaluating coronary artery segmentation, the 3D Cardio-
vascular Imaging: a MICCAI (Medical Image Computing
and Computer-Assisted Intervention) segmentation chal-
lenge workshop held in 2012 provides a framework for
stenosis detection and evaluation. This evaluation framework
provides 48 sets of CTA images, including 18 training sets
and 30 test sets. 26% and 32% of the lesions are significant
(≥ 50% luminal narrowing) for training and test datasets,
respectively [29]. The evaluation method uses the common
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Table 2 The measurement
values of the four metrics
obtained by comparing each of
the manual delineation results

Metrics Exp1 vs Exp2 Exp1 vs Exp3 Exp2 vs Exp3 Average

TP 0.9700 ± 0.0587 0.9689 ± 0.0612 0.9712 ± 0.0560 0.9700 ± 0.0586

FP 0.0538 ± 0.0614 0.0579 ± 0.0599 0.0510 ± 0.0624 0.0542 ± 0.0612

JM 0.9120 ± 0.1077 0.9096 ± 0.1020 0.9126 ± 0.0980 0.9114 ± 0.1026

DC 0.9645 ± 0.0719 0.9612 ± 0.0840 0.9688 ± 0.0712 0.9648 ± 0.0757

1. Exp stands for Expert 1, 2, and 3 represent different experts, respectively, 2. All data are presented in the
form of mean ± standard deviation

Table 3 The measurement
values of the four metrics
obtained by comparing between
the proposed method and the
manual delineation results

Metrics Manual delin. 1 Manual delin. 2 Manual delin. 3 Average

TP 0.9557 ± 0.0636 0.9532 ± 0.0663 0.9534 ± 0.0655 0.9541 ± 0.0651

FP 0.0794 ± 0.0995 0.0812 ± 0.1054 0.0830 ± 0.1024 0.0812 ± 0.1024

JM 0.8920 ± 0.1298 0.8896 ± 0.1200 0.8866 ± 0.1240 0.8894 ± 0.1214

DC 0.9325 ± 0.0819 0.9315 ± 0.0845 0.9314 ± 0.0834 0.9318 ± 0.0833

1. Manual delin 1, 2, and 3 represent the modification done by expert 1, 2, and 3, respectively 2. All data are
presented in the form of mean ± standard deviation

delineation of three observers as the gold standard. Since the
framework has been closed, we can only evaluate 18 train-
ing sets with the ground truth. The experimental results are
shown in Table 4.

As deep learning has been widely used in segmentation
and has achieved significant results, the proposed method
was also compared with deep learning-based methods [17,
18]. The architectures are described in the fifth paragraph of
the introduction section. According to the literature [17], the
learning rate, optimizer, and number of epochs are 1×10−4,
Adam, and 200, respectively. According to the literature [18],
the learning rate, optimizer, and number of epochs are 1 ×
10−5, Adam, and 500, respectively. The common manual
delineations are used as ground truth to test 210 data sets.
According to the general requirements of deep learning, 147
data sets were selected as the training sets, while 32 data sets
were selected as the validation sets, and the others were used
as the test sets. The experimental results are shown in Table
5.

The computational cost of the critical processes of the
proposed method besides the HMT method was carried out
on the 210 data sets (see Table 6). The most time-consuming
procedure is obtaining the initial seed point, which accounts
for 62.89% of the total time, whereas the SRF and local
clustering segmentation account for 13.80% and 15.91%,
respectively. The execution time using the HMT to acquire
cross-sectional planes is 5.27 times the total computational
cost of the proposed method, which is indicated in the last
column of Table 6.

Discussion

The proposed method has been tested on 210 randomly
obtained data sets, and the results are promising. We can

observe from Fig. 6 that the results are consistent with the
manual delineations, which can fully include the left and
right coronary arteries as well as branches. Although there
may be local oversegmentation, they do not affect the overall
structure of the coronary arteries. There may also be local
undersegmentation mainly focused on the end of coronary
arteries, but themanual delineations also have some disputes.
As we can observe from the box plots of four metrics of seg-
mentation results depicted in Fig. 7, the segmentation results
have good clustering properties. The mean median of T P is
0.9837, which indicates that the results are relatively com-
plete with less undersegmentation. The mean median of FP
is 0.0258, which indicates that the error of oversegmentation
is also within a small range.

To prove the segmentation error and clinical applica-
tion, we conducted a comparative experiment, which results
means that the proposed method is very close to the error of
the manual delineations (see Table 2 and Table 3) and can
fully meet clinical use. Furthermore, the proposed method
was also tested and evaluated on the diseased and healthy
data sets, respectively. The experimental results (see Table 1
and Table 4) are close to the results of the three observers,
which means the proposed method has good adaptability to
diseased data and can not be interfered with various factors
such as calcified plaques, lipid plaques, hybrid plaques, and
stents. For the healthy data, the segmented results are better
than the diseased data, but there are still some poor seg-
mented results. Although the healthy data are not affected by
lesions, they are still easily affected by other factors, such
as machine artifacts, motion artifacts, and unsteadiness of
the contrast agent concentration, which result in poor image
quality and seriously affect the segmented results.

We also compared our results with the related methods
based on deep learning found in the literature. The exper-
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Table 4 Performance of the proposed method compared with related methods on public data sets

Method Dice % Diseased Dice % Healthy MSD mm
Diseased

MSD mm
Healthy

MaxD mm
Diseased

MaxD mm
Healthy

Observer 1 74 79 0.09 0.20 3.29 3.61

Observer 2 66 73 0.11 0.20 2.70 3.00

Observer 3 76 80 0.09 0.15 3.07 3.25

Wang et al. [13] 68 72 0.15 0.40 4.06 5.23

Shahzad et al. [14] 63 68 0.14 0.26 2.81 3.49

Proposed method 70 74 0.12 0.23 2.59 2.95

1. Dice = Dice similarity index, MSD = mean square distance, MaxD = Hausdorff distance, % = percentage, mm = millimeters (see the study of
[29] for more details)

Table 5 The measurement
values of the four metrics
obtained by compared with the
methods based on deep learning

Method TP FP JM DC

Gu et al. [17] 0.9221 ± 0.0411 0.1579 ± 0.1472 0.8101 ± 0.0940 0.9017 ± 0.0524

Shen et al. [18] 0.9396 ± 0.0371 0.1233 ± 0.1110 0.8378 ± 0.0818 0.9189 ± 0.0579

Proposed method 0.9697 ± 0.0370 0.0761 ± 0.0909 0.8912 ± 0.1021 0.9401 ± 0.0700

1. All data are presented in the form of mean ± standard deviation

Table 6 The computational cost of the critical procedures when applied to each data set (unit is seconds)

Metrics The initial seed point SRF Local clustering segmentation Total time Cross-section based on HMT

Mean 2.2276 0.4887 0.5637 3.5420 18.6789

Std 0.5666 0.0971 0.1246 0.9377 7.4915

1. Std = Standard deviation.

imental results (see Table 5) showed that our method is
better than theirs. Although themethods based on deep learn-
ing have been widely used in vessel segmentation and have
achieved good results, coronary artery segmentation in coro-
nary CTA images is still not well. Since the coronary arteries
are smallwith various shapes and lesions, they canbe affected
by various kinds of noise and imaging factors. In addition,
coronary artery segmentation based on deep learning needs
numerous training data to have good adaptability and gener-
alization. However, it is difficult for us to obtain numerous
training data in practice, which can lead to poor results.

In terms of the computational cost, the average total time
of the proposed method to process each of the 210 data sets
was 3.5420±0.9377s,which can fullymeet the clinical appli-
cation.

The proposed method has achieved good results in coro-
nary artery segmentation and can meet the clinical applica-
tion. However, there are still two limitations.

1. The initialization of parameters. Although the proposed
method with the various parameters adopted in this paper
can segment the coronary artery, a fully automatic seg-
mentationwithout any empirical parameters increases the
reliability and robustness of the method for abnormal
data. Hence, future studies will be conducted to seg-

ment coronary arteries effectively without any empirical
parameters.

2. The initial seed points. Obtaining the initial seed points
causes a high computational cost. Comparing the advan-
tages and disadvantages of deep learning to the small
number of data sets, we plan to combine the twomethods
in future work to reduce computing time and post-
processing procedures.

Conclusion

In this study, a fully automatic method based on SRF and D-
means local clustering for the segmentation of coronary CTA
images is presented. TheSRF is used tofilter the vessel region
to address the problem of segmentation caused by noise, arti-
facts, and non-coronary regions in the coronary CTA images.
Furthermore, using the local clustering segmentation algo-
rithm based on D-means can address the problem of large
changes in CT values, dislocation of coronary arteries, and
blurry artifacts in coronary CTA images, to quickly, stably,
efficiently, and effectively segment the coronary artery. The
experimental results of the quantitative analysis showed that
the segmentation results of the proposed method are con-
sistent with the three manual delineations within the error
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range, which also fit abnormal data and can meet the clinical
applications.
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