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Abstract
Purpose Radiotherapy is one of most treatments for tumors. To accurately control the radiation dose distribution and lessen
the radiation damage to normal tissues and organs in radiotherapy, it is essential to delineate organs at risk (OARs) precisely.
However, manual delineating and some traditional methods are labor-intensive and time-consuming. There is an urgent need
for fast and precise segmentation methods in radiotherapy.
Methods This paper proposes a fully automatic segmentation method based on the 3D U-Net for multi-organ in head and
neck. It introduces squeeze-and-attention blocks to gather multi-scale context information and the receptive field block to
balance the performance between large-sized and small-sized organs. Furthermore, it is trained by the marginal and exclusion
loss function in a partially supervised learning mode.
Results We evaluated the model with dice similarity coefficient (DSC), 95% Hausdorff distance (95HD) and inference time.
Its average DSC is 0.829, which is 4.5%, 3.2%, and 2.4% higher than AnatomyNet’s, nnU-net’s, and FocusNet’s, respectively,
and its average 95HD is 2.19. Moreover, its inference time and parameters are 63% and 60% less than FocusNetv2’s.
Conclusion For the segmentation of OARs in head and neck, our model is more accurate than AnatomyNet, faster than
FocusNetv2, and better balances between segmentation accuracy and inference time. It demonstrates that our method is more
applicable for clinical treatment.
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Introduction

There are over 550,000 head and neck (HaN) cancer patients
worldwide every year, with around 300,000 deaths [1].
Radiotherapy is one of essential treatments for them. In
radiotherapy, it is necessary to accurately delineate the HaN
organs to control the radiation dose distribution and lessen the
damage to normal tissues and organs. Professional doctors’
manual delineation of HaN organs is inefficient, and seg-
mentation results depend on their professional experience.
Some traditional segmentation algorithms are challenging to
achieve multi-organ segmentation simultaneously.
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In this paper,wepropose a novelmodel basedon3DU-Net
[2] to improve the accuracy of multi-scale organs segmen-
tation. It introduces squeeze-and-attention (SA) [3] blocks
into residual blocks to gather multi-scale context informa-
tion and group non-local voxels from the same organ. It also
employs down-sampling only once and introduces receptive
field block (RFB) [4] to balance the performance of large-
sized organs and small-sized organs. Furthermore, we choose
marginal loss function and exclusion loss function to train
the model in partially supervised learning mode [5], which
utilizes the prior knowledge among voxels to improve the
generalization performance.

Related work

Methods based on 3D CNNs implement end-to-end auto-
matic segmentation in the task of HaN OARs [6]. General
3D CNN, however, is not easy to solve imbalanced segmen-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-022-02632-0&domain=pdf


1136 International Journal of Computer Assisted Radiology and Surgery (2022) 17:1135–1142

tation accuracy caused by excessive volume difference in
OARs. Researchers improve 3D CNN to solve this problem
by a variety of methods [7]. CNN with self-channel-and-
spatial-attention mechanism adaptively forces the network
to emphasize the meaningful features and weaken irrelevant
features [8]. AnatomyNet [9] introduces 3D squeeze-and-
excitation (SE) [10] blocks into 3D U-Net to enhance the
feature extraction ability. It chooses dice loss function [11]
and focal loss function [12] to reduce the highly imbalanced
segmentation accuracy caused by the various size of OARs.
The cascade of multiple models or structures is widely used
in multi-target segmentation tasks, such as the cascade of
two 3D U-Net models, which locates OARs from the CT
image and then implements fine segmentation to obtain better
results [13]. FocusNet [14] simulates the process of doctors’
delineation, combining the small-sized organs segmentation,
small-sized organs location, andmain segmentation network.
The prior knowledge of OARs’ shape is sometimes applied
in the segmentation of multi-scale organs to improve accu-
racy. FocusNetv2 [15] adds the adversarial shape constraint
block to regularize the estimatedmask,making the segmenta-
tion results consistent with the shape of small-sized organs.
Imaging characteristics of multi-modality images are also
utilized in segmentation tasks to improve accuracy. Liu et al.
[16] exploit synthetic magnetic resonance (MR) to aid train-
ing dual pyramid network (DPN) [17]. Dai et al. [18] utilize
the complementary information of cone-beam CT (CBCT)
images and MR images to improve the segmentation perfor-
mance.

Data

The dataset scale is vital for image segmentation based on
supervised learning; therefore, we use 3 public datasets to
train our model. The public domain database for computa-
tional anatomy (PDDCA) dataset [19] contains 25 training
samples, additional 8 training samples added after the MIC-
CAI 2015 Head and Neck Auto Segmentation Challenge
(MICCAI 2015), 10 offsite test samples, and 5 onsite test
samples. It contains the whole-volume CT images of HaN
and binary labels, including the brainstem, mandible, chi-
asm, optic nerve left (Optic. L), optic nerve right (Optic.
R), parotid gland left (Paro. L), parotid gland right (Paro.
R), submandibular gland left (Subm. L), and submandibu-
lar gland right (Subm. R). According to the data processing
method provided by AnatomyNet, we expanded the training
dataset by the public available dataset of head and neck cetux-
imab [20] (46 samples) and institutions in Québec, Canada
[21] (177 samples). Finally, the training dataset includes 261
samples, and the test dataset includes 10 offsite test samples.

The PDDCA test dataset contains 9 annotated labels, but
the expanded training dataset does not include all. To main-

tain dataset consistency, we cropped the original CT images
to the same size, retaining the basic organs information, and
resampled them to 3 mm × 1.2 mm × 1.2 mm.

Method

Squeeze-and-attention block

The principle of pixel-by-pixel prediction is usually applied
in semantic segmentation tasks based on CNN.We introduce
the pixel grouping mechanism implemented by SA block to
improve the segmentation performance. Figure 1 illustrates
its structure. The average pooling layer gathers non-local spa-
tial attention of feature maps in SA block by increasing the
receptive field, encoding global features, and grouping non-
local voxels from the same organ. Its average pooling layer,
of which kernel size and stride are both 2, scales the size of
its feature map to 1/8 of the original size. Next, two succes-
sive convolution blocks with kernel size of 3 and stride of 1
extract its feature map information. Then, the up-sampling
layer recovers the size of feature map. Finally, the residual
connection fuses the local and non-local information.

Receptive field block

The down-sampling operation increases the receptive field
of the model but loses some details. Therefore, we employ
down-sampling only once and introduce RFB [4], which
increases the receptive field and balances segmentation accu-
racy between large-sized and small-sized organs. Figure 2
illustrates the structure of RFB based on the inception [22]
block, which is improved by the atrous convolution layers
[23] to extract multi-scale features. Three branches calculate
the input featuremap to extract multi-scale features, and each
branch comprises convolutions with kernel sizes of 1×1×1,
3 × 3 × 3, or 5 × 5 × 5, followed by an atrous convolution
with the rate of 1, 3, or 5 to increase the receptive field. In

Fig. 1 The architecture of the SA block
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addition, the shortcut connection fuses the branches’ con-
catenation features and input features.

Network architecture

Based on the 3D U-Net, we propose an HaN segmenta-
tion network as illustrated in Fig. 3; X and X ′ denote input
image and segmentation result, respectively. Its encoder and
decoder have three SA blocks that classify and group vox-
els from the same organ. The down-sampling increases the
receptive field but loses some details of the feature map
and reduces the accuracy of small-sized organs. Therefore,
we only employ down-sampling and up-sampling once in
the model. In addition, we introduce an RFB to balance
segmentation accuracy between large-sized and small-sized
organs and to learn multi-scale features, which increases the
receptive field and improves the segmentation accuracy of
small-sized organs.

Loss function

The MICCAI 2015 dataset contains 9 annotated labels for
each sample, but other datasets contain fewer labels. To deal
with various labels of training datasets, we introduce a vector
denoted by M(c) (M ∈ R1×10, c = 0 denotes the index of
background information for CT images, c ∈ [1, 9] denotes
the index of 9 OARs in HaN) to mark missed annotated data,
which indicates the presence of a class in training sample
with 1 or 0 otherwise. The output of the last convolution
layer is the prediction probability of voxels, denoted by P ,
of which the dimension is Nc × H × W × D, where Nc

represents its channels, corresponding to the type of OARs,
and H × W × D represents the size of CT image.

The marginal probability fuses the probability of unla-
beled organs and background to drive the model to learn
information of unlabeled organs, and it is formulated as
Eq. (1).

PM =
9∑

c=0

P(c | M(c) = 0) (1)

where PM and c denote the marginal probability and the type
of organs, respectively; M(c) = 0 represents the organ c is
not annotated. The marginal probability and the annotated
organs’ probability consist of a new vector; it is denoted by
Q and formulated as Eq. (2).

Q = [PM P(c | M(c) = 1)] (2)

The binary mask data of annotated organs in the train-
ing dataset are denoted by Y , on which one-hot encoding is
performed and formulated as Eq. (3).

Z = onehot(Y ) (3)

The dice loss function and the focal loss function are
plugged into themarginal loss to solve imbalanced segmenta-
tion accuracy caused by huge volume differences, formulated
in Eqs. (4)–(9).

TPm(t) =
N∑

n=1

Zn(t)Qn(t) (4)

FNm(t) =
N∑

n=1

Zn(t)(1 − Qn(t)) (5)

FPm(t) =
N∑

n=1

Qn(t)(1 − Zn(t)) (6)

LmDice = T − 2
T∑

t=0

TPm(t)

TPm(t) + αFNm(t) + βFPm(t)
(7)

LmFocal = −λ
1

N

T∑

t=0

N∑

n=1

Zn(t)(1 − Qn(t))
2 log(Qn(t))

(8)

Lm = LmDice + LmFocal (9)

whereTPm(t), FPm(t), andFNm(t)denote true positive, false
positive, and false negative of marginal probability for the
organ t , respectively. Qn(t) denotes the marginal probability
of voxel n for organ t , and Zn(t) denotes the one-hot encode
of voxel n for organ t . T and N denote the total number of
annotated organs and voxels for one sample, respectively, and
C denotes the total number of OARs, which is 9 in our task.
LmDice, LmFocal, and Lm denote dice loss function, focal loss
function, and marginal loss function, respectively, where λ

trades off the dice loss function and focal loss function; α

and β trade off weights for false negative and false positive.
For the best performance, λ is set to 0.2; α and β are set to
0.5.

The exclusion vector exploits the principle that each voxel
can only belong to one organ and mutual exclusion of vox-
els between OARs. Its calculation is negated to the one-hot
vector of the binary mask and formulated in Eq. (10).

E(c) =
{
1 − Z(0) if M(c) = 0

1 − Z(c) otherwise
(10)

The exclusion vector is denoted by E(c), of which the
dimension is Nc × H × W × D. In this paper, the dice loss
function is plugged into the exclusion loss, denoted by LeDice,
where P1n(c) and P0n(c) indicate the probability that voxel
n is predicted to be organ c or not be organ c, respectively;
E0n(c) and E1n(c) indicate that the value of exclusion vector
represented by the voxel n of organ c is 0 or 1, respectively. α
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Fig. 2 The architecture of RFB, the number of channels is marked above each block

Fig. 3 The architecture of
model, the number of channels
is marked above or below its
blocks

and β are set to 0.5 for the best performance. The exclusion
loss is formulated as Eq. (11).

LeDice =
C∑

c=0

∑N
n=1 P1n(c)E1n(c)∑N

n=1 P1n(c)E1n(c) + α
∑N

n=1 P0n(c)E1n(c) + β
∑N

n=1 P1n(c)E0n(c)
(11)

Verified by many experiments, the model gets the best
performance when the weight of exclusion loss is 2. Finally,

the loss function denoted by L loss is formulated in Eq. (12).

L loss = Lm + 2 × LeDice (12)
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Fig. 4 Comparisons of the model performance with the original
challenge dataset. (a,b) represent theDSCand 95HDofmodels, respec-
tively; AC, TA, ET, and OUR represent results of Antong Chen et al.
[25], Thomas Albrecht et al. [26], Tappeiner et al. [13], and our model,

respectively. ET does not provide results of the submandibular gland
left and right. In addition, we cropped the ET’s error bars of the brain-
stem and parotid gland left for visualization purposes, and their standard
deviations are 14.3 and 33.3, respectively

Results

Implementation details and evaluationmetrics

Experiments were run on the platform with NVIDIA RTX
2080Ti GPU and INTER I7-10700 CPU, and the model was
implemented by PyTorch. The apexmixed precision released
by the NVIDIA platform accelerated the training process
and saved hardware resources. The RMSprop algorithm opti-
mized the gradient of the loss function, of which the learning
rate was 0.001, the number of epochs was 200, and the batch-
size was 1 caused by the vector M in the loss function.
Dice similarity coefficient (DSC), 95% Hausdorff distance
(95HD) [19], and inference time were used to evaluate the
performance.

Experimental results and analysis

We compared the model’s DSC with previous state-of-the-
art methods, as illustrated in Table 1. With the same training
dataset, the DSC of our model is 4.5% higher than Anato-
myNet’s [9], which also uses one down-sampling layer to
avoid loss of information of small organs. The RFB expands
the receptive field and addresses the conflict between recep-
tive field and small organs. Moreover, the marginal loss
function handles data without labels, and the exclusion loss
function improves performance according to prior knowl-

edge among voxels. Our model is also superior to the best
results in MICCAI 2015 [19] (It just gives average DSC for
symmetrical organs). Compared with nnU-net [24], it shows
better performance of imbalanced organs, and nnU-net gets
the poor performance of small-sized organs. Compared with
the state-of-the-art models, it is close to the performance of
FocusNetv2 [15] for large-sized organs and is slightly worse
for small-sized organs, but FocusNetv2 is a largermodel with
more parameters and trained by more private data. In addi-
tion, FocusNet and FocusNev2 are not end-to-end models,
trained separately by three sub-networks followed by a com-
bined network to implement segmentation of OARs.

DSC is sensitive to internal details of organs, and 95HD
is sensitive to boundaries. Experimental results in Table 2
demonstrate that our method is not better than FocusNetv2
[15] in the metric of 95HD and much better than oth-
ers. Our model has better performance on boundaries of
organs because LeDice employsmutual exclusive information
among voxels of different organs. In addition, we performed
Kruskal–Wallis test on the offsite test dataset. Their p-value
and test statistic of DSC are 0.9998 and 2.0630, respectively,
and their 95HD is 0.5293 and 12.9636, respectively.

To evaluate the performance of the model more credi-
ble, we trained our model with the original training samples
(0522c001 to 0522c0328 of PDDCA) and tested on 15 sam-
ples, including offsite samples and 5 onsite samples.With the
same dataset, we also compared our model with method of
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Table 1 DSC comparisons with state-of-the-art methods

Organs Raudaschl et al. [19] AnatomyNet [9] nnU-Net [24] FocusNet [14] FocusNetv2 [15] Ours

Brainstem 0.880 0.867 ± 0.020 0.884 ± 0.023 0.875 ± 0.026 0.882 ± 0.025 0.896 ± 0.020

Chiasm 0.550 0.532 ± 0.150 0.576 ± 0.063 0.596 ± 0.181 0.713 ± 0.170 0.641 ± 0.018

Mandible 0.930 0.925 ± 0.020 0.938 ± 0.012 0.935 ± 0.019 0.947 ± 0.011 0.942 ± 0.013

Optic.L 0.620 0.721 ± 0.060 0.736 ± 0.070 0.735 ± 0.096 0.790 ± 0.075 0.762 ± 0.082

Optic.R 0.620 0.706 ± 0.100 0.735 ± 0.062 0.744 ± 0.072 0.817 ± 0.073 0.757 ± 0.078

Paro.L 0.840 0.881 ± 0.020 0.879 ± 0.015 0.863 ± 0.036 0.898 ± 0.016 0.903 ± 0.018

Paro.R 0.840 0.873 ± 0.040 0.880 ± 0.023 0.879 ± 0.031 0.881 ± 0.042 0.894 ± 0.023

Subm.L 0.780 0.814 ± 0.040 0.829 ± 0.020 0.798 ± 0.081 0.840 ± 0.046 0.832 ± 0.057

Subm.R 0.780 0.813 ± 0.040 0.827 ± 0.020 0.801 ± 0.061 0.838 ± 0.041 0.834 ± 0.054

Average 0.760 0.793 0.809 0.803 0.845 0.829

Bold font and bold italic font represent the best and second-best results

Table 2 95HD comparisons with state-of-the-art methods (mm)

Organs Raudaschl et al. [19] AnatomyNet [9] nnU-Net [24] FocusNet [14] FocusNetv2 [15] Ours

Brainstem – 6.42 ± 0.38 2.35 ± 0.76 2.14 ± 0.6 2.32 ± 0.70 2.15 ± 0.72

Chiasm – 5.76 ± 2.49 2.84 ± 1.1 3.16 ± 1.3 2.52 ± 0.85 2.61 ± 1.45

Mandible – 6.28 ± 2.21 2.06 ± 0.48 1.18 ± 0.3 1.08 ± 0.45 1.12 ± 0.47

Optic.L – 4.85 ± 2.32 2.54 ± 1.08 3.76 ± 2.9 1.92 ± 0.80 2.24 ± 0.62

Optic.R – 4.77 ± 4.27 2.49 ± 1.12 2.65 ± 1.5 2.17 ± 0.74 2.27 ± 1.23

Paro.L – 9.31 ± 3.32 2.32 ± 0.71 2.52 ± 1.0 1.91 ± 0.43 1.98 ± 0.68

Paro.R – 10.08 ± 5.09 2.28 ± 0.69 2.07 ± 0.8 2.51 ± 2.00 2.11 ± 1.32

Subm.L – 7.01 ± 4.44 2.91 ± 1.18 2.67 ± 1.3 2.84 ± 1.20 2.65 ± 1.38

Subm.R – 6.02 ± 1.08 2.82 ± 1.21 3.41 ± 1.4 2.74 ± 1.25 2.57 ± 1.50

Average – 6.30 2.51 2.62 2.17 2.19

Bold font and bold italic font represent the best and second-best results

Table 3 Comparison of
parameters and inference time
of different models

Methods AnatomyNet [9] FocusNetv2 [15] Ours

Parameters (million) 0.73 2.02 0.81

Time (s) 0.68 1.88 0.70

Tappeiner et al. [13] and some participants who provided full
experimental results of MICCAI 2015 [25,26], and Figure 4
illustrates their DSC score and 95HD.

We compared the number of parameters and the average
inference time on the same hardware platform. Experimen-
tal results in Table 3 show that the parameters of our model
are 60% less than FocusNetv2’s, and the inference time
is 63% less, which means our model requires fewer hard-
ware resources and less time. Compared to AnatomyNet, our
model has higher accuracy with the same order of magnitude
of inference time and the model’s parameters.

Visualization

Figure 5 illustrates the visualization of segmentation results,
of which the legend shows the correspondence between

colors and organs. In the cross-sectional view, predicted con-
tours match ground truth quite well for large-sized organs,
such as the mandible, but there is a slight difference in size
and shape for small-sized organs. In the 3D view, there are
very tiny differences in volume size and shape between the
predicted mask and ground truth.

Conclusion

In conclusion, our model delineates OARs in HaN to better
balance inference time and accuracy. SA blocks are intro-
duced into the model, which aggregates multi-scale context
information and encourages voxel grouping of the same
organ. Our model only employs down-sampling once and
introduces a receptive field block to balance the segmenta-
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Fig. 5 Visualization results. (a)
The cross-sectional view of
prediction; (b) the
cross-sectional view of ground
truth; (c) the cross-sectional
view of overlap between
prediction and ground truth; (d)
the 3D view of overlap between
prediction and ground truth

tion accuracy between large-sized and small-sized organs.
In addition, its loss function combines the marginal loss and
themutual exclusion loss, which trains themodel by partially
supervised learning and exploits the prior information among
voxels. Compared with natural images, there are more rela-
tively fixed shapes and stable spatial structures in HaN CT
images. The prior knowledge of OARs, such as shape, sym-
metry, and similarity, should be considered in the following
research.
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