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Abstract
Purpose Orthognathic surgery requires an accurate surgical plan of how bony segments aremoved and how the face passively
responds to the bony movement. Currently, finite element method (FEM) is the standard for predicting facial deformation.
Deep learning models have recently been used to approximate FEM because of their faster simulation speed. However, current
solutions are not compatible with detailed facial meshes and often do not explicitly provide the network with known boundary
type information. Therefore, the purpose of this proof-of-concept study is to develop a biomechanics-informed deep neural
network that accepts point cloud data and explicit boundary types as inputs to the network for fast prediction of soft-tissue
deformation.
Methods A deep learning network was developed based on the PointNet++ architecture. The network accepts the starting
facial mesh, input displacement, and explicit boundary type information and predicts the final facial mesh deformation.
Results We trained and tested our deep learning model on datasets created from FEM simulations of facial meshes. Our
model achieved a mean error between 0.159 and 0.642mm on five subjects. Including explicit boundary types had mixed
results, improving performance in simulations with large deformations but decreasing performance in simulations with
small deformations. These results suggest that including explicit boundary types may not be necessary to improve network
performance.
Conclusion Our deep learning method can approximate FEM for facial change prediction in orthognathic surgical planning
by accepting geometrically detailed meshes and explicit boundary types while significantly reducing simulation time.
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Introduction

Facial appearance is a representative image of an individ-
ual and can significantly impact self-confidence and social
relationships. Patients with jaw deformities suffer from
both esthetical impairment and functional abnormality [1].
Orthognathic surgery is a corrective jaw surgery which
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corrects skeletal deformities by repositioning osteotomized
bony segments into desired positions [2,3]. While surgi-
cally “untouched,” the facial soft tissues are passively and
“automatically” corrected following the movement of the
underlying bony segments [4]. Due to the complex nature
of facial anatomy, orthognathic surgery requires an accu-
rate surgical plan. To date, surgeons can accurately plan the
movement of bony segments (“bony movement” for short)
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using computer-aided surgical simulation (CASS) technol-
ogy [3,5]. However, because of the nonlinear relationship
between bony segments and soft tissues, the prediction of
postoperative facial appearance remains a practically chal-
lenging task [6].

Various attempts have been made to predict three-
dimensional (3D) facial change following orthognathic
surgery [4,7,8]. Among them, the finite element method
(FEM) is reported to be the most accurate and biomechan-
ically relevant method [6,9]. When using FEM simulation,
geometrically accurate patient-specific FE mesh modeling
and realistic boundary condition assignment are critical to
achieve quantitatively and qualitatively accurate prediction
results [4,6,9]. However, this level of customization is often
difficult to implement using a general FE solver, thusmotivat-
ing development of a novel incremental simulation method
in our previous work [6]. FEM simulation is also a com-
putationally expensive process, and a typical facial change
prediction takes about 30 minutes to complete after the bony
movement is planned. It is impossible to use FEM simula-
tion for quick surgical planning in clinical settings because
surgeons often try multiple procedures or revisions during
the planning for each patient in order to achieve the best
possible outcome. While various FE acceleration methods
such as SOFA [10], NiftySim [11], and proper orthogonal
decomposition may accelerate computation, their simulation
time rarely approaches that needed for rapid surgical plan-
ning, especially for highly detailed meshes. [12]. Therefore,
a more efficient approach is needed to improve prediction
time while maintaining comparable accuracy to FEM.

Deep learning has been applied to a variety of applications
related to orthognathic surgical planning, including clas-
sification, segmentation, registration, denoising, and many
others [13]. Only recently have deep learning techniques
been introduced as a potential alternative to the traditional
FEM method to simulate biomechanical problems including
tissue deformation [14]. While training a deep neural net-
work is computationally expensive, a fully trained network
can decrease simulation time by several orders of magnitude
compared to FEM [14]. This decrease in computation time
has made deep learning an attractive solution for obtaining
simulation results rapidly.

Deep learning networks based on the U-Net architecture
have been developed to simulate soft-tissue deformation in
various organs [15,16]. However, such models require input
data to be sampled from a regularly spaced grid, which is
not suitable for facial change simulations. Accurately cap-
turing details of the face, especially in the clinically critical
regions, e.g., the lips, is extremely important for predicting
the facial appearance outcome. Therefore, a network which
can accept unstructured data with irregularly spaced nodes is
needed. Recent works have implemented a PointNet to per-
form deformation estimation because of its ability to accept

data in point cloud format, allowing for unstructured data as
input [17,18]. These networks were able to learn biomechan-
ically relevant tissue deformation while using unstructured
data. However, boundary type information was limited to
whether or not deformation occurred at a given node. In com-
parison, boundary types for facial tissue simulations aremore
complex [4,6,9]. For this reason, a way of explicitly supply-
ing boundary type information to a network is needed.

The purpose of this study is to develop a novel biomecha-
nics-informed deep learning method to enable efficient and
accurate facial tissue change simulation, addressing the
weaknesses of prior deformation prediction networks and
FEM simulation. The contribution of this proof-of-concept
work are (1) implementation of a deep neural network based
on the PointNet++ architecture [19] that accepts data input
in point cloud format, and thus is compatible with any geo-
metrically detailed facial mesh, and (2) implementation of
explicit patient-specific boundary types as additional input
to the network to improve facial change prediction accuracy.

Method

The proposed biomechanics-informed deep learning method
is based on PointNet++ [19]. In this method, we assume that
the facial tissue mesh has already been generated from com-
puted tomography (CT), and the surgical plan (i.e., exact
bony movement) has already been formed. The facial mesh
in point cloud format and the explicit patient-specific bound-
ary types are used as inputs to the network for fast prediction
of facial soft-tissue deformation following the bony move-
ment. Figure 1 shows an overview of the proposed method.

Data representation

Our network learns a nonlinear mapping between an input
state, which is represented by the starting mesh, boundary
types, and bony surface displacement, and the predictedmesh
following bony displacement. The network is designed to
accept input data in the same format as in an FEM simula-
tion. Partially inspired byMendizabal et al. [12] and Saeed et
al. [17], let the input vector, xn , consist of N feature vectors
xn = [cn, bn, sn] where n = 1, 2, ..., N represents the nodes
in an input FEMmesh. The vectors cn are the Cartesian coor-
dinates of the input mesh, bn are one-hot encoding vectors of
the boundary type, and sn represent the applied surface dis-
placement using displacement in x, y, and z directions. The
encoding vector, b, varies depending on the boundary type at
each node (Fig. 1). Boundary types are differentiated using
a one-hot encoding vector which can be used to distinguish
many types of boundary conditions, as opposed to the binary
indicator used by Saeed et. al. [17]. Three different boundary
types are implemented: fixed, moving and free nodes [6]. For
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Fig. 1 Overview of the proposed method for soft-tissue deformation prediction

the fixed nodes, b = [0, 0, 1]. For the moving nodes with
known displacement b = [0, 1, 0]. For the remaining free
nodes, b = [1, 0, 0]. We therefore refer to the inclusion of
the encoding vector b as “explicit” boundary types, whereas
exclusion of the vector b is referred to as “implicit” boundary
types. For the moving nodes where a known displacement is
applied, s = [sx , sy, sz]where sx , sy, sz represent the applied
nodal displacement based on corresponding bonymovement.
For the fixed and free nodes, s = [0, 0, 0]. We use the FEM
simulation output as ground truth while training the deep
neural network. The deep neural network is trained to pre-
dict the final nodal displacement after deformation un where
u = [ux , uy, uz]. The ground-truth nodal displacements after
deformation, vector vn where v = [vx , vy, vz], are calculated
by subtracting the nodal coordinates of the input mesh from
the FEM-simulatedmesh. Our network is taskedwith finding
the function which minimizes the expected error between un
and vn . Mean squared error is used as our loss function:

min
1

N

N∑

n=1

‖(vn − un)‖2 (1)

Network design details

PointNet++ [19] is adopted for our task because of its effi-
ciency on point set processing. Its structure is modified by
adding the boundary type information and displacement vec-
tors as additional input channels. PointNet++ is a hierarchical
feature extraction network consisting of 4 feature encoding
modules, 4 feature decoding modules, and a unit PointNet
layer, as shown in Fig. 2a. Each feature encoding module
has a sampling layer, a grouping layer, and a PointNet layer
as shown inFig. 2b. Each feature decodingmodule consists of
an interpolation layer and a unit PointNet layer as illustrated
in Fig. 2c. The PointNet layer has a multilayer perceptron
(MLP) and max pooling operator. The unit PointNet layer
is similar to one-by-one convolution in convolutional neural

networks [19]. Skip connections are used to concatenate the
features between feature encoding and decoding modules.
The final output of the network is the predicted 3D displace-
ment vector for each of the N input nodes.

Experiments and results

Experiments

We tested themethod’s ability to simulate facialmesh change
following synthetic bony movement based on real patient
data.We then tested themethod on an actual patient’s surgical
plan to assess the performance of our network in solving a
clinical problem.

Data for facial change simulation

A dataset of synthetic surgical plans was generated from real
patient examples to train, test, and validate our network. The
actual surgical plan from each patient was reserved to val-
idate our network’s performance on real data. Patients who
underwent double-jaw orthognathic surgery were randomly
selected from our digital archive [IRB#: Pro00008890]. We
generated synthetic bony movements and their correspond-
ing FE facial meshes to be used as data for training, testing,
and validating the network. The synthetic bony movements
were created first. Following the standard surgical procedure,
the midface and mandible of preoperative CT models were
osteotomized for a LeFort segment, a distal mandible, and
a right and a left proximal segment. After the postoperative
CT models were registered to the preoperative ones based
on surgically unaltered volumes, the surgical plan for the
actual surgery (i.e., the movement of each bony segment)
was retrospectively formed. The LeFort and the distal seg-
mentsweremoved individually in 6 degrees of freedomwhile
the right and left proximal segments were rotated around
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Fig. 2 N1 x 128 (Node Features size after the third Feature Decoding module)

the ipsilateral condyle and aligned to the distal mandible.
Each rotational and translational bonymovementwerefinally
divided into several sub-steps within the maximal surgical
movement. A facial changewas then simulated for each com-
bination of LeFort and distal mandibular (bony) movements.
An initial hexahedral patient-specificFEmeshmodel (47,088
nodes and 38,280 elements) with detailed lip geometry was
generated from patient CT images using eFTP-VP method
[6,20]. Neo-Hookean material properties (Young’s modulus:
3,000 Pa, Poisson’s ratio: 0.47) and patient-specific bound-
ary conditions were applied [6]. Using our validated FEM
simulation method [6], facial meshes were generated (Fig.
3). An incremental approach was used for FEM simulation.
In this approach, facial changes were simulated sequentially
based on incremental bony movements from preoperative to
final position. For each simulation, at least 10 simulation
results (e.g. 9 intermediate incremental results and 1 final
result) were generated. In this way, each incremental simu-
lation result could be used as a separate data sample. Since
each simulation takes about 30 minutes to complete, it took
approximately a week to generate the 3600 data samples for
subject 1 (Table 1). The number of data samples generated
for each subject depended on the range of bony movement
that was physiologically plausible. Therefore, the number of
data samples generated for each subject was not identical

Table 1 The data split and number of data samples for each subject

Subject Training (70%) Validation (10%) Testing (20%) Total

1 2520 720 360 3600

2 700 200 100 1000

3 945 270 135 1350

4 1750 500 250 2500

5 2205 630 315 3150

(Table 1). To improve network training efficiency, the area
above the infraorbital region was removed from the original
mesh, and the number of nodes and elements was also down-
sampled (from 50,000 to 3,960 nodes) while maintaining
the best possible geometrical accuracy (Fig. 3). The moving
and fixed nodes in the facial FE mesh were assigned using a
K-nearest neighbor algorithm (Supplementary Fig. S1).

Network training and evaluation

The available data were split randomly into training, vali-
dation, and test sets by 70%, 10%, and 20%, respectively
(Table 1). The feature vectors c and s were scaled such that
all data fit in the range between 0 and 1 before being fed to
the network. The mean squared error was used as the loss
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Fig. 3 Example of facial change
simulation. a preoperative
original mesh b facial mesh
following bony movement c
adjusted preoperative mesh for
the network training d adjusted
facial mesh following bony
movement for the network
training

(a) (b) (c) (d)

function for training. We used the Adam optimizer, which
adaptively adjusts the learning rate, with an initial learning
rate of 1e-5 and a batch size of 8. The network trained for
100 epochs, which took approximately 5 hours for a single
subject on a Nvidia Tesla V100 GPU.

The network was evaluated using the mean Euclidean
error between the predicted node locations and the ground-
truth node locations e(u, v) = 1

N

∑N
n=1 ‖(vn − un)‖. The

distribution ofmean errorswas used to evaluate the network’s
performance.

Ablation study

To understand the impact of including explicit boundary type
information, an ablation study was performed. The boundary
type vector b was omitted from the input vector x . This is
referred to as “implicit” boundary types as the network still
learns the boundary types implicitly. The size of the first layer
in the PointNet++ network was changed to fit the dimen-
sion of the input vector accordingly. The mean Euclidean
error was calculated for all samples within the validation and
test sets to compare the network results with and without
boundary types. Since the distribution of mean errors was
not normal, a Wilcoxon signed-rank test was used for testing
statistical significance in network performance.

Results

In the facial mesh prediction following the synthetic bony
movement task, the network achieved between a mean error
of 0.159 and 0.642mmon the test set of each subject (Fig. 4).
The mean error rarely exceeded 1 mm, even on simulations
with very large input displacement (Supplementary Fig. S2).
The predicted facial mesh closely resembled the ground-
truth FEM mesh, and the largest error was typically seen
around the lips (Fig. 5). On the real surgical plan exam-
ples, the network achieved a mean error of between 0.292
and 0.989 mm between the subjects. These results are com-
parable, if not better, than the synthetic bony movement
simulations when compared to the average input displace-
ment (Supplementary Fig. S2). The error was reasonable
given the magnitude of the ground truth deformation (Sup-
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Fig. 4 Results from ablation study showing explicit boundary types
(E) versus implicit boundary types (I). Bars marked with an asterisk
(*) denote statistically significant difference due to inclusion of explicit
boundary type information (p < 0.05)

plementary Fig. S3). The result of the ablation study showed
that including explicit boundary types had mixed effects
on the performance of the network. In subject 3, includ-
ing explicit boundary types improved the performance of the
network. However, in subjects 4 and 5, inclusion of explicit
boundary types hurt network performance. In subjects 1 and
2, network performance was not significantly impacted by
inclusion of explicit boundary types. The average run time
was only slightly longerwhen boundary typeswere included,
increasing by 5 ms on average.

Discussion

Ourmethod is capable of closely approximatingFEMresults.
The modified PointNet++ network can predict deformation
accurately and consistently, as demonstrated by the lowmean
error achieved in the facial simulations. The network can also
easily adapt to various simulated displacements and achieve
low error even on large displacements, as seen in the per-
formance in the surgical simulation results (Table 2). These
results indicate that the presented method is robust to high
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Fig. 5 Visualization of a
simulated facial mesh following
synthetic bony movement

Predicted Volume Ground Truth Volume Euclidean Error

Table 2 Performance on real surgical simulations for each subject

Subject Explicit mean
error (mm)

Implicit mean
error (mm)

max deforma-
tion (mm)

1 0.581 0.569 12.2

2 0.601 0.586 10.3

3 0.782 0.989 11.0

4 0.312 0.292 6.5

5 0.376 0.320 7.5

levels of elastic deformation. Our method also demonstrates
exemplary performance on real surgical plans. Qualitatively,
the network-predicted facial shapes closely resemble those
of the ground truth FEM facial shapes (Fig. 5). These results
clearly validate our method’s ability to capture fine facial
details that are imperative to facial surgical planning.

The inclusion of explicit boundary types did not have a
noticeable effect on subjects 1 and 2 and even decreased per-
formance in subjects 4 and 5. Only subject 3 had improved
accuracy when explicit boundary types were included. We
found that including explicit boundary types only seems to
improve accuracy when the simulations have a high maxi-
mumdeformation, aswas seen in the surgical planning results
(Table 2).Webelieve ourmethod of including explicit bound-
ary types may be limited due to the learning process of the
network. Since deep learning networks act as a universal
approximator, only introducing explicit boundary types in the
input may not have a noticeable impact on network learning
without also providing a way to enforce boundary condi-
tions in the output. Our future research will seek to develop
methods for enforcing boundary conditions through network
design or loss algorithms.

The main advantage of our deep learning method is in
decreasing simulation time as compared to FEM. The aver-
age computation time of our network was less than 700ms,

while FEM takes several minutes on similar simulations [6].
This decrease in computation time allows for clinicians to
perform many more simulations during surgical planning
and get rapid feedback as compared to FEM. At the same
time, our method can achieve simulation results comparable
to FEM.

One limitation of our work is the use of mean squared
error as our only loss function. In future iterations of our
network, adding a smoothing loss algorithm may help lower
error while also obtaining better visual accuracy. Further-
more, recent work by Odot et al. has emphasized that use of
mean squared error as a loss function may result in shape
inaccuracies when simulating hyper-elastic materials [21].
Future iterations of our network will include a governing
physics equation as a loss function, as seen in the work of
Raissi et al. [22]. We also did not implement sliding nodes
as a possible boundary type in this work. We believe that
this may have limited the performance of the explicit bound-
ary type encoding as the original FE meshes for our subjects
contained sliding nodes. Modeling sliding nodes will require
custom loss algorithms, which we will investigate in future
work. Another limitation is that we did not include material
properties as additional input to the network. This is an addi-
tional feature that wewill add to ourmethod in future studies,
as it has been seen in related works [17]. Additionally, any
future iterations of the networkwill be trainedusingdata from
multiple subjects. In future studies, training should occur on
a large group of subjects with a wide range of physiologi-
cally relevant surgical plans to make the network robust and
generalizable to unseen subjects. Ideally, a network trained
on sufficient subjects would be adaptable to new subjects
(possibly with minimal fine-tuning), making it suitable for
clinical use. In order to train our network on multiple sub-
jects, known point correspondence across subjects will need
to be established to optimize the training procedure [23]. As
this was a proof-of-concept study, the networkwas trained on
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data from only one subject at a time. Finally, to validate the
performance of our method, we will compare the accuracy of
the PointNet++ network to previously used networks, such
as U-Net [12,15,16].

Conclusion

We presented a deep learning method for biomechanics
modeling of facial deformation in orthognathic surgical plan-
ning. Our method addressed issues in previous deformation
prediction networks approximating FEM, namely network
compatibility with geometrically detailed facial meshes and
the inclusion of explicit boundary type information. The pro-
posed method achieved accurate performance on facial mesh
simulations following synthetic bony movement. Inclusion
of explicit boundary type information had mixed results,
improving performance in simulations with large deforma-
tions but decreasing performance in simulations with small
deformations. Finally, our network achieved accurate results
on a real surgical example, demonstrating its clinical feasi-
bility.
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