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Abstract
Purpose Accurate segmentation of articular cartilage from MR images is crucial for quantitative investigation of
pathoanatomical conditions such as osteoarthritis (OA). Recently, deep learning-basedmethods havemade significant progress
in hard tissue segmentation. However, it remains a challenge to develop accurate methods for automatic segmentation of artic-
ular cartilage.
Methods We propose a two-stage method for automatic segmentation of articular cartilage. At the first stage, nnU-Net is
employed to get segmentation of both hard tissues and articular cartilage. Based on the initial segmentation, we compute
distance maps as well as entropy maps, which encode the uncertainty information about the initial cartilage segmentation. At
the second stage, both distance maps and entropy maps are concatenated to the original image. We then crop a sub-volume
around the cartilage region based on the initial segmentation, which is used as the input to another nnU-Net for segmentation
refinement.
Results We designed and conducted comprehensive experiments on segmenting three different types of articular cartilage
from two datasets, i.e., an in-house dataset consisting of 25 hipMR images and a publicly available dataset fromOsteoarthritis
Initiative (OAI). Our method achieved an average Dice similarity coefficient (DSC) of 92.1 ± 0.99% for the combined hip
cartilage, 89.8 ± 2.50% for the femoral cartilage and 86.4 ± 4.13% for the tibial cartilage, respectively.
Conclusion In summary, we developed a new approach for automatic segmentation of articular cartilage from MR images.
Comprehensive experiments conducted on segmenting articular cartilage of the knee and hip joints demonstrated the efficacy
of the present approach. Our method achieved equivalent or better results than the state-of-the-art methods.
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Introduction

Hip and knee osteoarthritis (OA) is one of the leading causes
of musculo-skeletal diseases. Magnetic resonance imaging
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(MRI) is widely recognized as the imaging technique of
choice for the assessment ofOAdue to its excellent soft tissue
contrast and no ionizing radiation. To get objective, quanti-
tative, reproducible analysis, an accurate and high-quality
cartilage segmentation from MR images is crucial. Manual
segmentation of articular cartilage is tedious, subjective, and
labor-intensive. Hence, development of automatic segmen-
tation methods has drawn more and more attentions.

Automatic methods have been proposed for articular car-
tilage segmentation. There exist methods using statistical
shape models (SSM) [5] and graph optimization [16]. For
example, Fripp et al. [5] introduced a three-stage SSM-
based method for automated segmentation of knee cartilage.
Their method starts with the segmentation of hard tissues,
followed by extraction of bone–cartilage interfaces (BCI)
and finally segmentation of articular cartilage based on
an expectation-maximization Gaussian mixture model. Xia
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et al. [16] developed an arc-weighted graph optimization
method for automatic hip cartilage segmentation.

With the introduction of publicly available MR image
dataset for the knee such as theOsteoarthritis Initiative (OAI)
data and the MICCAI grand challenge “Segmentation of
Knee Images 2010” (SKI10) data [6], significant progresses
have been achieved in segmentation of knee cartilage. For
example, Shan et al. [14] proposed a multi-atlas segmenta-
tion strategy with non-local patch-based label fusion. Lee et
al. [8] introduced a three-stage segmentation scheme con-
sisting of multiple-atlas building, local weighted vote and
graph-cut-based region adjustment.

Recently, deep learning-based methods, especially meth-
ods based on convolutional neural networks (CNNs), have
made tremendous progress in medical image segmentation
tasks. There exist CNNs-based methods developed for auto-
matic segmentation of knee cartilage. Prasoon et al. [12]
were the first to use triplanar-CNNs for articular cartilage
segmentation. Liu et al. [9] introduced a fully automatic seg-
mentation pipeline combining a semantic segmentationCNN
with 3D simplex deformable models (DefModel). Ambellan
et al. [1] presented a method for automated segmentation
of knee bones and cartilage from MR images, combining a
priori knowledge of anatomical shape with CNNs.

Comparedwith cartilage of the knee, hip cartilage is much
thinner [11].Moreover, caused by high curvature of the joint,
voxels composing the hip cartilage are severely affected
by partial volume effect. It is particularly challenging to
distinct the individual cartilage plates (femoral and acetab-
ular) in weight-bearing areas without the use of leg traction
devices or contrast agents [2]. Thus, the acetabular cartilage
and the femoral cartilage of the hip are usually treated as
one combined bulk cartilage. For example, Siversson et al.
[15] developed amulti-template-based label fusion technique
for automatic segmentation of the combined acetabular and
femoral cartilage. Schmaranzer et al. [13] presented a study to
compareCNNs-based segmentation of the combined femoral
and acetabular cartilage with manual segmentation.

In this paper, based on the recently introduced nnU-Net
[7] model, we propose a two-stage method for automatic
segmentation of articular cartilage. Our contributions can be
summarized as follows:

1. We develop and validate a two-stage method for accu-
rate segmentation of articular cartilage, where results
obtained from the first stage are used to compute inter-
mediate features for cartilage segmentation refinement at
the second stage;

2. We propose to use entropy maps and distance maps to
guide the cartilage segmentation refinement;

3. We design and conduct comprehensive experiments on
datasets of both hip and knee cartilage to evaluate the
efficacy of the present method.

Methods

Overview of the present method

Figure 1 presents a schematic illustration of the two-stage
method for automatic cartilage segmentation. At both stages,
nnU-Net [7] is used. Specifically, at the first stage, nnU-Net
is used to get segmentation of both hard tissues and articu-
lar cartilage. Based on the initial segmentation, we generate
distance maps, which are computed from the hard tissue
segmentation, as well as entropy maps, which encode the
uncertainty information about the initial cartilage segmen-
tation. At the second stage, both distance maps and entropy
maps are concatenated to the original image. We then crop
a sub-volume around the cartilage region determined by the
initial cartilage segmentation, which is used as the input to
another nnU-Net for segmentation refinement.

Below we present the details for segmentation of the knee
cartilage. Similar pipeline has also been developed for the
hip cartilage. For the description as presented below, we use
X and G to represent the original MR image and the corre-
sponding ground-truth label, respectively. P and L are used
to represent a probability map and a predicted label, respec-
tively. E and D are used to represent the entropy maps and
the distance maps, respectively.

Stage one

At stage one, we train a 3D nnU-Net model F1 to get a
coarse segmentation of both hard tissues and articular car-
tilage. After training, the model takes an input 3D volume
X1 ∈ RH×W×D and outputs a probability map after the last
softmax layer: P1 ∈ RH×W×D×C , where H , W , D, C rep-
resent the height, the width, the depth and the number of
classes, respectively. The predicted coarse labels L1 are then
obtained as follows.

l(h,w,d)
1 = argmax

c
(p(h,w,d,c)

1 ) (1)

where c represents class index; p(h,w,d,c)
1 represents each

voxel in the probability map P1; and l(h,w,d)
1 represents the

voxel in the label map L1.

Intermediate data computing

After the initial segmentation at stage one, we observe that
segmentationof the hard tissues is good enoughbut not for the
articular cartilage, especially around the boundary regions. In
order to further refine the cartilage segmentation, we propose
to use entropy maps, which are computed from the initial
segmentation of the articular cartilage, and distance maps,
which are computed from the initial segmentation of the hard
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Fig. 1 A schematic illustration of the two-stage deep learning-based method for articular cartilage segmentation. See main text for detailed
explanation

tissues, to guide the refinement. The rationale behind such
a strategy is that (a) high entropy values usually indicate
high segmentation uncertainty; and (b) previous work [5]
demonstrated that bone–cartilage interfaces (BCI) encoded a
priori knowledge about the cartilagedistribution.The entropy
map Ec is defined as follows:

e(h,w,d,c) = −p(h,w,d,c)
1 log(p(h,w,d,c)

1 ) (2)

where e(h,w,d,c) represents a voxel in the entropy map Ec.
The distance map Dc is calculated as follows:

d(h,w,d,c) =

⎧
⎪⎨

⎪⎩

min
a∈∂Lc

1

√
(
l(h,w,d,c)
1 − a

)2
i f l(h,w,d,c)

1 �= 0

0 i f l(h,w,d,c)
1 = 0

(3)

where d(h,w,d,c) represents a voxel in the distance map Dc;
∂Lc

1 represents the boundary voxels of Lc
1. The boundary is

defined as voxels with at least one neighbor that is not part
of the respective segmentation label. In this paper, we only

compute the bone distance maps and combine them into one
volume to obtain a combined distance map D.

Stage two

At stage two,we first concatenate both the combined distance
map and the entropymaps to the original image.We then crop
the concatenated data to a sub-volume around the cartilage
region by adding a randomly selected margin of 10–15 vox-
els to the boundary box determined by the initial cartilage
segmentation. The cropped data are then used as the input to
another nnU-Net model F2 to get refined segmentation map
L2 of the articular cartilage.

Loss function

Training a deep neural network is challenging. As the matter
of gradient vanishing, final loss cannot be efficiently back
propagated to shallow layers, which is more difficult for 3D
cases when limited number of annotated data is available. To
address this issue, nnU-Net [7] incorporates deep supervision
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Table 1 Ablation study results.
The best results are highlighted
with bold font

Method Cartilage Metrics

nnUNet DM EM DSC(%) JC(%) ASSD(mm) HD(mm)

� FC 89.0 ± 2.50 80.4 ± 3.97 0.18 ± 0.05 5.40 ± 2.56

TC 85.5 ± 4.32 74.9 ± 6.42 0.22 ± 0.08 5.12 ± 2.05

� � FC 89.2 ± 2.45 80.6 ± 3.90 0.18 ± 0.05 5.27 ± 2.40

TC 85.7 ± 4.39 75.2 ± 6.50 0.21 ± 0.09 4.97 ± 2.14

� � FC 89.4 ± 2.42 80.9 ± 3.85 0.17 ± 0.05 5.31 ± 2.43

TC 86.0 ± 4.27 75.8 ± 6.38 0.20 ± 0.08 4.81 ± 1.99

� � � FC 89.8± 2.50 81.6± 4.03 0.16± 0.05 5.22± 2.47

TC 86.4± 4.13 76.3± 6.23 0.20± 0.09 4.70± 2.12

DM distance maps, EM entropy maps, FC femoral cartilage, TC tibial cartilage

Table 2 Results of comparing
our method with the method
present in [1] on segmenting
both hard tissues and cartilage
of the knee

Method Structures DSC(%) ASSD(mm) HD(mm)

Ambellan et al. [1] FB 98.6± 0.30 0.17± 0.05 2.93± 1.24

TB 98.5 ± 0.33 0.18 ± 0.06 3.16± 2.03

FC 89.9± 3.60 0.16 ± 0.07 5.35 ± 2.50

TC 85.6 ± 4.54 0.23 ± 0.12 6.35 ± 4.36

Ours FB 98.6 ± 0.34 0.18 ± 0.05 11.82 ± 3.74

TB 98.6± 0.81 0.17± 0.10 5.30 ± 4.42

FC 89.8 ± 2.49 0.16± 0.05 5.22± 2.47

TC 86.4± 4.12 0.20± 0.09 4.70± 2.12

The best results are highlighted with bold font
FB, femoral bone, TB tibial bone, FC femoral cartilage, TC tibial cartilage

mechanism. Specifically, three branch classifiers at three dif-
ferent resolutions are injected into the network in addition to
the classifier of the main network. Thus, the total loss is a
sum of losses computed at each resolution.

Let LD , LCE be the Dice loss [4] and the cross-entropy
loss, respectively. The loss function used for training nnU-
Net is defined as:

LDeepS =
3∑

i=0

23−i

23+1 − 1
(LD (Gi , Pi ) + LCE (Gi , Pi )) (4)

where Gi represents the ground truth labels at the i th reso-
lution. Accordingly, Pi represents the probability map of the
classifier at the i th resolution.

In Eq. 4, the ground truth labels at a lower resolution are
obtained by downsampling from the labels at the higher res-
olution.

Implementation details

All methods reported in this study were implemented in
Python using PyTorch [10] framework and were trained and
tested on a desktop with a 2.1GHz Intel Xeon(R) Silver 4110
and a NVIDIA GeForce GTX 2080Ti graphics card with
11GB GPU memory. We trained our network from scratch,

and the parameters were updated by the stochastic gradi-
ent descent (SGD) algorithm (nesterov momentum = 0.99,
weight decay=0.00003). The batch size was 2 and the initial
learning rate was 0.01 and decayed with poly learning rate
policy. We trained the network for a total of 150,000 iter-
ations. Data augmentations as implemented in the nnU-net
framework [7] were used to enlarge the training samples.

Experiments and results

Datasets description and evaluationmetrics

We designed and conducted comprehensive experiments on
twoMR image datasets to evaluate the efficacy of the present
method. Specifically, the first dataset consists of 507 3D
MR volumes of the knee from the OAI database1. Each vol-
ume was acquired with Double-Echo Steady-Stage (DESS)
sequence.Manual segmentation of both hard tissues and knee
cartilage was supplied by experienced users at Zuse Insti-
tute Berlin (ZIB)2. We refer this dataset as OAI-ZIB dataset,
which is publicly available [1]. The second dataset consists

1 https://oai.nih.gov
2 https://doi.org/10.12752/4.ATEZ.1.0
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Table 3 Results of the study
comparing our method with the
state-of-the-art methods on
segmenting cartilage of both the
hip and the knee

Method Structure DSC (%) JC (%) ASSD (mm) HD (mm) p-value

3D U-Net [3] FC 87.5 ± 2.76 77.9 ± 4.21 0.23 ± 0.25 6.23 ± 3.91 < 0.001

TC 84.1 ± 4.62 72.8 ± 6.59 0.25 ± 0.14 5.57 ± 2.79 < 0.001

HC 87.6 ± 3.72 78.1 ± 5.76 0.29 ± 0.19 6.71 ± 3.70 0.04

nnU-Net [10] FC 89.1 ± 2.50 80.0 ± 3.97 0.18 ± 0.05 5.30 ± 2.43 < 0.001

TC 85.5 ± 4.33 74.9 ± 6.42 0.22 ± 0.08 5.17 ± 3.97 < 0.001

HC 91.3 ± 1.77 84.1 ± 2.98 0.14 ± 0.05 4.34 ± 1.91 0.08

Ours FC 89.8± 2.50 81.6± 4.03 0.16± 0.05 5.22± 2.47 –

TC 86.4± 4.13 76.3± 6.23 0.20± 0.09 4.70± 2.12 –

HC 92.1± 0.99 85.4± 1.69 0.12± 0.03 4.28± 1.86 –

The best results are highlighted with bold font
FC: femoral cartilage; TC: tibial cartilage; HC: hip cartilage.

of 25 delayed gadolinium-enhanced MR images of cartilage
(dGEMRIC) of the hip, which has been previously used in
[13]. Slice-by-slice manual segmentation of both hard tis-
sues and hip cartilage was done by experienced clinicians
[13]. For details about these two datasets, we refer readers to
[1] and [13].

Volume-based metrics such as Dice similarity coefficient
(DSC) and Jaccard coefficient (JC) as well as distance-based
metrics like average symmetry surface distance (ASSD) and
Hausdorff distance (HD) are used to evaluate the perfor-
mance of different methods.

Ablation study

We first investigate the influence of different components of
the present method on the segmentation performance. We
conduct the ablation study on the OAI-ZIB dataset. In total,
254 volumes out of 507 volumes are used for training and the
remaining data are used for validation. The results are present
in Table 1. From this table, one can see that (1) either distance
maps or entropy maps help to boost the performance of the
nnU-Net in segmenting both femoral and tibial cartilage; and
(2) the best results are obtained when both maps are used.

Validation study

We designed and conducted two studies to compare the
present method with the state-of-the-art methods. First, we
conducted a twofold cross-validation study using the same
protocol as introduced in [1], which then allowed us to
compare our method with the method introduced in [1] on
segmenting both hard tissues and cartilage of the knee. The
results are present in Table 2. From this table, one can observe
that bothmethods achieved equivalent performance. Overall,
an average DSC of 93.15% was achieved by their method,
while our method achieved an average DSC of 93.35%.

We additionally conducted a second study to compare the
present method with the state-of-the-art methods such as 3D

U-Net [3] and nnU-Net [10].We conducted this study on both
the OAI-ZIB dataset and the hip dataset. For the OAI-ZIB
dataset, we took 254 volumes out of 507 volumes for training
and the remaining data for validation. For the hip dataset,
we used 20 cases for training and the remaining 5 cases for
validation. The results are presented in Table 3. From this
table, one can see that (1) nnU-Net achieved consistently
better results than 3D U-Net, demonstrating the efficacy of
nnU-Net; and (2) our method achieved the best results, with
an average DSC of 89.8± 2.50%, 86.4± 4.13% and 92.1±
0.99%, when segmenting femoral cartilage, tibial cartilage,
and hip cartilage, respectively. UsingWilcoxon signed-ranks
test (SPSSAU, Version 21.0, www.spssau.com) and taking
0.05 as the significance level, it was found that the differences
between the proposed method and the other two methods
on segmentation of both femoral and tibial cartilage were
statistically significant (p-value < 0.001). Figure 2 shows
qualitative comparison of the present method with 3D U-Net
and nnU-Net.

Discussion

In this paper, we proposed a two-stage method for auto-
matic segmentation of articular cartilage. Starting from the
initial segmentation obtained at stage one, we computed both
entropy maps and distance maps, which were then used to
refine the cartilage segmentation at the second stage. We
designed and conducted comprehensive experiments on two
datasets to validate the efficacy of the present method on
segmenting articular cartilage of both the hip and the knee.
Our method achieved an average DSC of 92.1 ± 0.99% for
the combined hip cartilage, 89.8 ± 2.50% for the femoral
cartilage and 86.4 ± 4.13% for the tibial cartilage, respec-
tively. We further investigated the effectiveness of different
components of the present method. Our experimental results
confirmed that both distance maps and entropy maps helped
to improve the segmentation performance.
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Fig. 2 Qualitative comparison of the results obtained from different
methods on segmenting femoral cartilage (top two rows) and hip car-
tilage (bottom two rows). a and g: ground truth label; b and h: results
from 3D U-Net (DSC of femoral cartilage: 90.4%; DSC of hip carti-
lage: 85.8%); c and i: results from nnU-Net (DSC of femoral cartilage:

92.5%; DSC of hip cartilage: 92.1%); d and j results from our method
(DSC of femoral cartilage: 93.8%; DSC of hip cartilage: 92.9%); e
and k entropy map; f and l: color-coded surface distance between the
prediction of our method and ground truth segmentation (unit: mm).

Theperformance of the present approach is comparedwith
the state-of-the-art articular cartilage segmentation methods
[1,8,9,13–16]. The comparison results are summarized in
Tables 4 and 5. Due to the fact that different datasets are used
in evaluation of different methods, direct comparison of dif-
ferent methods is difficult. Thus, the comparison results in
Tables 4 and 5 should be interpreted cautiously.Nevertheless,

as shown inTables 4 and 5, our approach is better thanmost of
the existing work including atlas-based methods [8,14,15],
graph optimization method [16], and CNN-based methods
[1,9,13]. One possible explanation why the present approach
achieves better results than the existing atlas-based or graph
optimization methods is that these methods are difficult to
handle large variations of shape and appearance, leading to
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Table 4 Comparison of the results achieved by the present method with those reported in the literature when applied to knee cartilage segmentation

Sources Methods Datasets FC(DSC(%)) TC(DSC(%)) Testing time

Shan et al. [14] Atlas-based SKI10 [6] 85.6 85.9 >9h

Lee et al. [8] Atlas-based SKI10 [6] 71.7 72.4 40min

Liu et al. [9] CNN+DefModel SKI10 [6] 83.4 80.2 4.18min

Ambellan et al. [1] CNN+SSM SKI10 [6] 88.3 89.5 9.37min

Ambellan et al. [1] CNN+SSM OAI-ZIB [1] 89.9 85.6 9.37min

Ours CNN OAI-ZIB [1] 89.8 86.4 0.28min

FC femoral cartilage, TC, tibial cartilage

Table 5 Comparison of the
results achieved by the present
method with those reported in
the literature when applied to
hip cartilage segmentation

Sources Methods Datasets HC (DSC(%)) Testing time

Xia et al. [16] Graph optimization In house [16] 81.0 n.a.

Siversson et al. [15] Atlas-based In house [15] 82.4 3h

Schmaranzer et al. [13] CNN Hip dataset [13] 86.0 n.a.

Ours CNN Hip dataset [13] 92.1 0.05min

The best results are highlighted with bold font
HC hip cartilage.

limited performance. By contrast, by learning hierarchies of
relevant features directly from training data, our method can
handle large variations of shape and appearance. Our method
also achieves better results than other existing CNN-based
methods such as those introduced in [9,13]. Possible expla-
nations include (a) our method is based on nnU-Net which is
a state-of-the-art CNN architecture, and (b) we additionally
use distance maps and entropy maps to guide the cartilage
segmentation refinement. This has been demonstrated by the
results shown in Tables 1 and 3.

It is worth to compare the present method with the method
reported in [1] as both methods have been evaluated on the
publicly available OAI-ZIB dataset. As shown in Table 2,
although these two methods achieved equivalent accuracy
when evaluated on the same dataset, there are significant
differences between our approach and the method reported
in [1]. Specifically, their method involves a complicated
pipeline consisting of following steps: (a) at the first step,
2D CNN is used to get the masks of both femoral bone and
tibial bone; (b) at the second step, SSM adjustment is used to
regularize the results of the first step by fitting SSMs to the
bone masks; (c) at the third step, 3D CNN is used to segment
small MRI subvolume at the bone surfaces as given by the
second step; and (d) at the last step, SSM post-processing
uses regions pre-defined on SSMs to enhance the results of
3D CNN. By contrast, our method is based on a two-stage
pipeline. At both stages, we use the same nnU-Net architec-
ture. We compute the distance maps and the entropy maps
from the initial segmentation of the first stage and then use
bothmaps to guide the segmentation refinement at the second
stage. This is also the reason why at testing, our method is

significantly faster than theirs. As shown in Table 4, it takes
only 0.28min for our method to finish one case, while their
method needs 9.37min to finish one case.

In summary, we presented a fully automatic method for
segmenting articular cartilage and validated our method on
two datasets of both the hip and the knee. The strength of
the present approach lies in the combination of the state-
of-the-art deep learning architecture model with self-context
including distance maps and entropy maps.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-021-02555-
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