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Abstract
Purpose Increasing cancer disease incidence worldwide has become a major public health issue. Manual histopathological
analysis is a common diagnosticmethod for cancer detection.Due to the complex structure andwide variability in the texture of
histopathology images, it has been challenging for pathologists to diagnose manually those images. Automatic segmentation
of histopathology images to diagnose cancer disease is a continuous exploration field in recent times. Segmentation and
analysis for diagnosis of histopathology images by using an efficient deep learning algorithm are the purpose of the proposed
method.
Method To improve the segmentation performance, we proposed a deep learning framework that consists of a high-resolution
encoder path, an atrous spatial pyramid pooling bottleneck module, and a powerful decoder. Compared to the benchmark
segmentation models having a deep and thin path, our network is wide and deep that effectively leverages the strength of
residual learning as well as encoder–decoder architecture.
Results We performed careful experimentation and analysis on three publically available datasets namely kidney dataset,
Triple Negative Breast Cancer (TNBC) dataset, and MoNuSeg histopathology image dataset. We have used the two most
preferred performancemetrics called F1 score and aggregated Jaccard index (AJI) to evaluate the performance of the proposed
model. The measured values of F1 score and AJI score are (0.9684, 0.9394), (0.8419, 0.7282), and (0.8344, 0.7169) on the
kidney dataset, TNBC histopathology dataset, and MoNuSeg dataset, respectively.
Conclusion: Our proposedmethod yields better results as compared to benchmark segmentationmethods on three histopathol-
ogy datasets. Visual segmentation results justify the high value of the F1 score and AJI scores which indicated that it is a very
good prediction by our proposed model.

Keywords Deep learning · Dilated convolution · Histopathology image · Nuclei segmentation

Introduction

Histopathology is one of the best methods to diagnose cancer
disease and early detection of cancer disease is the demand
of today’s time. A histopathology image consists of hema-
toxylin stains cell cores called nuclei, and eosin stain cells
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with other connected tissue called cytoplasm which is of
pink shading. According to the pathologist report [1], grade
of cancer is determined by the morphology of tissue while
the stage of cancer in the body is decided by tumor size,
location, and spread. Most of the information like the stage
of cancer, the grade of cancer, mitotic rate, lymph node
status of the cancer tissue is identified by analyzing the
hematoxylin morphology, location, and spread. The tradi-
tional method to diagnose cancer disease is to examine the
morphological structure and distribution of nuclei manu-
ally by pathologists. After taking the image of the sample
tissue, pathologists decide whether tissue regions are can-
cerous or not and how much is the malignancy level. A
lot of time and effort are required in the manual analysis
of histopathology images due to the complexity involved in
such images. Preparation of histopathology slides is the first
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stage of the automatic segmentation method which involves
tissue collection, fixation, embedding, sectioning, staining,
and visualization. The collection of samples from the human
body and preserved these samples with some fixation mate-
rial is the primary step in the preparation of slides. The
tissue is implanted in several blocks called embedding and
this tissue is used as a block form for the sectioning pur-
pose. Usually, we require a thinner section for the diagnosis
purpose. Adding color in the thinner section of tissue is
basically to make nuclei more expressive called staining
and finally, the stained slide is examined by the different
WSI scanners. Most pathologists rely on the visualization of
histopathology slides with the help of a microscope or the
WSI scanner because a microscope provides faster focusing
and scanning. As a segmentation task, our focus is to separate
hematoxylin stains cells from eosin stain cells and other con-
nected tissue. Nuclei segmentation can be categorized into
conventional and CNN-based deep learning segmentation
approaches. The traditional method of image segmentation
includes the discontinuity-based approach, similarity-based
approach, global clustering, superpixel segmentation, water-
shed segmentation, active contour segmentation techniques,
etc. A summary of conventional image segmentation is pre-
sented in Table 1.
These methods performed better in the field of biomedical
application but the main challenge is to deal with complex
histology images where conventional techniques result in
under-segmentation or over-segmentation. To perform the
segmentation task, we collected three datasets namely the
kidney cancer histopathology image dataset, Triple-Negative
Breast Cancer (TNBC) dataset, and Multi-Organ nuclei seg-
mentation (MoNuSeg) dataset. In this study, we are using
a deep learning framework for the segmentation process
where features are learned automatically from the model,
and based on that they predict the segmented image. Deep
learning architectures learn the model parameters to separate
the nuclei in histology images. The deep learning framework
is driven by large amounts of data, activation function, an
effective optimization algorithm, and powerful loss function.
An activation function can map the input to a meaningful
number and an optimization function is responsible for the
fast convergence of model parameters. A loss function effec-
tively calculates the difference between the true value and
predicted value in the case of regression problems while cal-
culates true probability map and predicted probability map
in the case of classification problems. Many recent studies
reported that deep learning-based segmentation models pro-
vide better accuracy compared to traditional manual feature
extractionmethods. Although the potential of a deep learning
algorithm has proven to be better, these are the challenges in
the automatic segmentation of H & E stained histopathology
images.

1. Difficult to deal with the clumped morphological appear-
ance of nuclei in histopathology images, as a single
histopathological slide may have more than thousands of
nuclei.

2. Requires a sufficient amount of high-quality labeled data
verified by an experienced medical practitioner.

3. Computational cost is an important issue in deep learning
models.

To address the challenges associated with the nuclei segmen-
tation from histopathological images, our contribution is as
follows:

1. A most accurate deep learning architecture of nuclei seg-
mentation from H & E stained histopathology images.

2. To enrich the features at five distinct stages, our proposed
model effectively utilized residual connection throughout
the network and atrous spatial pyramid pooling (ASPP)
layer at the bottleneck.

3. Compared to the benchmark segmentation models com-
posed of the deep and thin path, the proposed network
is wide and deep that effectively leverages the strength of
residual learning as well as encoder–decoder architecture.

4. The proposedmodel carefully experimented on three pub-
lically available histopathology dataset and outperform
five state-of-the-art deep learningmodels in terms of qual-
ity metrics.

The rest of the manuscript is organized as follows: In
the related work section, we provide a concise study of
the most recent benchmark approach. The detailed mathe-
matical analysis of the proposed model is presented in the
proposed architecture section. The process of experimenta-
tion is described in the training and implementation section.
Experimental results and comparisons are presented in the
results and discussion section. Conclusion and future works
we provide in the conclusion section.

Related work

Deep learning techniques are a good option whenever avail-
ability of sufficient data. As a segmentation task, to regain
the relevant information which we lose while going deeper in
the network during pooling operation is the most important.
A great contribution in the field of biomedical image seg-
mentation [11] called UNet. UNet is an encoder and decoder
path that care about both the context and location of an object
in the image. UNet achieves very good prediction result for
different segmentation applications. For gland segmentation,
a deep contour aware network (DCAN) proposed by Hao
Chen et al. [12], able to separate overlapped objects. DCAN
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Table 1 Conventional (Non deep learning) image segmentation methods

Approach Description Advantages Limitations

Discontinuity based approach
[2] (Boundary approach)

This method is based on the
principle of intensity
variations among the pixels

Works well for images having
good contrast between
regions

Boundaries determined by this
method is generally
discontinuous

Point detection Extract regions that differ in
properties like intensity,
color, texture etc

Second-order derivative gives a
reliable result

The single operator does not
suit for all types of images

Line detection

Edge detection

Similarity based approach [2]
(Region approach)

Group those pixels which are
similar in some sence

Gives better result compared to
other conventional
segmentation methods

Expensive in terms of
computation time and
memory

Region growing Common properties of the
pixels are utilized

Flow from inner point to outer
region generates clear object
boundaries

Selection of noisy seed leads to
wrong segmentation result

Region splitting and merging

Thresholding method

Global clustering based
approach

In clustering, all pixels in the
plane have equal weights

Relatively simple to implement Sensitive to initial values

K-means [3] clustering K-means performs grouping
based on their similarity by
comparing the data with each
other

Time taken to cluster K-means
rises linearly with the number
of data points

Falling easily into local minima

Fuzzy-C means [4] clustering In fuzzy C-means samples to be
clustered belongs to a cluster
center in a certain plane

Sensitive to noise

Superpixel (A cluster of
connected pixels with similar
features like color, brightness,
texture, etc.) segmentation
methods [5,6]

SLIC superpixel segmentation
is used as pre-segmentation to
the clustering-based
segmentation method

Applicable in MRI image
segmentation, Glaucoma
screening, Optic disc
segmentation

Superpixel methods extract the
meaningful regions in the
image and improve the
computation based on the
pixel

Simple linear iterative
clustering (SLIC)

SLIC, clusters neighbor pixels
by considering their color and
coordinate information

Superpixel methods used in
histopathological analysis are
about the segmentation of
regions rather than cell
segmentation

The superpixel method with
large parameters leads to slow
running time and poor
segmentation performance

Density-based spatial
clustering of application with
noise (DBSCAN)

DBSCAN is a clustering
algorithm based on the
measurement of density in
regions close to the given
object

SLIC method controls the
tradeoff between superpixel
compactness and boundary
adherence

Different superpixel methods
have different advantages and
drawbacks. We should choose
the proper method according
to the problem

Topological preserved regular
superpixel (TPRS)

DBSCAN improves the
performance of segmentation
by adding local geometric
boundaries

Provides regional information

Entropy rate superpixel (ERS) In TPRS arranged seeds
relocated to the pixel with
locally maximal edge
magnitude

High computational efficiency
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Table 1 continued

Approach Description Advantages Limitations

Mean Shift ERS finds compact and
homogeneous superpixels by
using a graph-based approach

Good adherence to object
boundaries

Quick Shift

Normalized Cut (Ncut)

Watershed segmentation
methods [7,8]

MC watershed identifies the
cells from the background

Popular in cell image analysis Issue of under segmentation
and over-segmentation
depending on cell complexity

Marker Controlled (MC)
watershed

SM watershed separate the
overlapped cell

This method does not achieve
great accuracy but extracted
features supports cell
classification

Split and Merge (SM)
watershed

Active contour segmentation
methods

DCAC employs initial contour
to the previously delineated
nuclear boundary by
considering intensity
information

Works well for nuclei having a
clear nuclear boundary

Need of initial contour, proper
parameters, and long runtime

Dual channel active contour [9]
(DCAC)

The edge-based model uses
local edge information to fit
the boundaries of the
approximated shape

Autonomous and self-adapting
method of finding object
boundary

Difficult to segment the nearest
objects

Edge based active contour [10] When image size is too large,
this method works slowly

pool the multilevel features from the hierarchical architec-
ture then fuse it together that improves the performance of
themodel. Better visualization of object boundary by propos-
ing contour-based architecture make the model efficient. In
a segmentation process, pooling operation losses some rel-
evant information; to address this problem, Fisher Yu et al.
[13] merge the multiscale information by aggregating the
output coming from different dilation rates to regain the res-
olution. This architecture is the best fit for dense prediction
due to the expansion of the receptive field. Semantic seg-
mentation of the road and indoor called SegNet [14] has
encoder, decoder, and pixel-wise classification stages. To
upsample the low-resolution feature map, utilization of max-
pooling indices in the decoder side provides exact boundary
information which is very important in any road and indoor
understanding. [15] proposed a fully convolutional model
which is designed for semantic segmentation. Since their
model is inspired by AlexNet which is a classification model
and is extended for the segmentation task because it does clas-
sification and localization both. [16]’s method is quick and
capable to process large batches of data in a sensible amount
of time. Their deep learning architecture effectively com-
bines the concept of ResNet and UNet. Recognition of close
and overlapped nuclei was the major concern. This particular
issue was addressed in [17] by predicting an eroded version

of the annotated nuclei. They formulated a global loss func-
tion to solve the issue of segmentation of overlapped nuclei.
To increase segmentation accuracy a meaningful modifica-
tion in UNet architecture by implementing an attention gate
in [18], which is able to merge only relevant features before
concatenation. The best part of thiswork is thatwithoutmuch
computational complexity the attention module can be inte-
grated with any other segmentation model. Different dilation
rate is mostly equivalent to different sparse kernels without
the extra computational overhead. The idea is effective in
[19] to enlarge the field of view. Convolution strategies have
a big impact on the efficiency of the system.
The idea of dimension-wise convolution has been imple-
mented by [26] to improve the performance for segmentation
and classification tasks. To extract the semantic features of
nuclei at different stages [22] incorporated an improved ver-
sion of atrous spatial pyramidpooling in the encoder–decoder
networkwhich used concave point detectionmethod segment
touching nuclei and achieved better performance. ASPPU
module in combination with binary cross-entropy loss and
dice loss better handle the class imbalance problems. One
of the recent concepts by [23] is UNet++ for medical image
segmentation.UNet++modify the skip connectionmethod to
provide flexibility in the fusion ofmultilayered features in the
decoder path of the network and also their network shares the
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common encoder for varying depths. Segmentation of liver
histopathology images having thousands of nuclei and many
of them are overlapped. [24] incorporated residual and atten-
tion mechanism in encoder–decoder architecture. Residual
block to regain the meaningful information, attention block
for correct localization of objects in the decoder section, and
bottleneck layer for the maximum extraction of deeper layer
features. From the above existing work, it is clear that seg-
mentation of nuclei from histopathological images is still a
challenging issue. A brief comparison of existing deep learn-
ing approaches is presented in Table 2. The novelty of the
proposed model lies in the manner in which we extended
the idea of UNet [11] and ASPPU-Net [22] such that the
proposed network is efficient and capable to extract interme-
diate features.

Proposed architecture

In deep learning framework segmentation strategy as in
[11,18,24] involves encoder path where model learns the
‘what’ information or context in the image. In decoder path,
the model learns the ‘Where’ information or location in the
image. The encoder path consists of repeated application of
standard convolution layer and an additional parallel path to
the main network through a residual connection to minimize
the loss in poolingoperation.Each stage of the downsampling
pathhas a (2×2)max-pooling layerwhich effectively reduces
the spatial size of the image. Similar level features are con-
catenated with upsampling layers. In the upsampling path,
the features having different shapes and size has cropped and
merged into the next layer. Our wide network used a power-
ful decoder by aggregating the similar level spatial features
and collecting maximum possible residual information. At
the final stage, a (1 × 1) convolution is used to map the
size (512 × 512 × 16) to (512 × 512 × 1). To improve the
performance of the network shown in Fig. 1, we introduce
an additional information retrieval module to extract a more
relevant feature used in [22] called ASPPU bottleneck path
where a CNN uses multiple dilation rate. Dilation rate is
an additional parameter that differed from the resultant fea-
ture map to visualize a larger area. Different dilation rates
are applied to the same layer and results are then concate-
nated,which allows themodel to take advantage ofmultiscale
feature extraction. This yields very good results because hier-
archical information with varying sizes can be identified in
the same layer.

Standard convolution layer

Convolution layers consist of a set of learnable parameters.
Our input image has three color channels (RGB) and has a
dimension of 512×512×3, onwhich we are applying a filter

of size (3×3). If we talk about standard 2D convolution and if
we have x(p,q) is the input feature map and h(p,q) is the filter
kernel, then y(p,q) is the output of 2D convolution expressed
in Eq. (1).

y(p, q) =
∞∑

j=−∞

∞∑

k=−∞
x( j, k)h(p − j, q − k). (1)

When we apply a kernel of K ×K on the image of N ×N
with padding P and stride S, we will get the image size as in
Eq. (2).

N × N →
(
N − K + 2P

S
+ 1

) (
N − K + 2P

S
+ 1

)
.

(2)

Without padding and single-step, stride, the relation between
the input image and the output image is in Eq. (3).

N × N → (N − K + 1) (N − K + 1) . (3)

High-resolution layer

Proposed architecture addressed the problem of degradation
of information in deeper network by introducing deep and
wide residual network which is easier to train and optimize.
The residual connection is realized by creating an additional
path parallel to themain encoder–decoder path of the network
to restore the flow of information in deep network. Instead
of deep and thin encoder and the decoder path our network
has wide and deep path that effectively leverage the strength
of residual learning as well as encoder–decoder architec-
ture. Proposed architecture has a high-resolution encoder in
Fig. 2a,ASPPbottleneck path in Fig. 2b formultilevel feature
extraction and an effective decoder shown in Fig. 2c.

Activation function

Any linear function has less capability to learn any complex
input. Since the outcome of the convolution layer is based
on linear operation, a nonlinear operation is needed to map
complex input to a meaningful output. The nonlinear acti-
vation function allows the network to learn complex data,
compute and learn almost any function, and provide accurate
predictions. It also helps the model to generalize or adapt to a
variety of data and to differentiate the output. Rectified Lin-
ear Unit (ReLU) is the most popular activation function in
deep learning models. ReLU takes care of several problems
faced by the sigmoid and the tanh activation function, and
it also avoids and rectifies the vanishing gradient problems.
The ReLU activation function simply has a value of zero, if
it receives any negative input, but for any positive value, it
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Table 2 Deep learning image segmentation methods

References and dataset Application Advantages Limitations

Olaf Ronneberger et al.
(2015) [11].
PhC-U373, DIC-HeLa
(ISBI cell tracking
images)

Cell segmentation and various
biomedical image segmentation
tasks

A benchmark model for
biomedical image segmentation

For deeper model, learning gets
slow

Can be easily scaled Ground truth mask required

High GPU required for larger
images

Hao Chen et al. (2016)
[12]. Warwick-Qu
Gland Dataset

Gland segmentation from
histopathology data

Network provides clear contour of
gland images

Not advantageous in the case of
large-scale histopathology data

A unified deep learning framework

Fisher Yu et al. (2016)
[13]. Pascal VOC 2012
segmentation Dataset

Object segmentation and Class
segmentation

Systematically aggregated the
semantic features of different
stages

This network is not an end-to-end
framework

Designed network is useful for
dense prediction

Uses pre-trained weights

Vijay Badrinarayanan et
al. (2017) [14].
CamVid road scene
Dataset & SUN
RGB-D Indoor Scene
Dataset

Road and Indoor segmentation Improved boundary delineation
and less memory requirement

Semantic pixel-wise labeling is a
tedious task

Evan Shelhamer et al.
(2017) [15]. Pascal
VOC, SHIFT FLOW
& NYUDv2
Segmentation Dataset

Semantic segmentation of objects
like Person, Animal, Vehicle, etc.

End-to-end trained network Segmented boundaries are not fine
enough

Yves-Remi et al. (2018)
[16]. GlaS Challenge
Dataset

Gland Segmentation from
histopathology images

Augmented the training data by
varying the color and intensity
properties

The visibility of segmented nuclei
is a major concern of this
approach

Effectively Combines the concept
of ResNet and UNet

Peter Naylor et al.
(2019) [17]. Triple
Negative Breast
Cancer (TNBC) &
MoNuSeg Dataset

Segmentation of Nuclei from
Multi-Organ histopathology
images

Focused to separate the clumped
nuclei

The problem of segmentation of
close nuclei is partially solved
but not completely

Introduced the intra-nuclear
distance concept for nuclei
segmentation

Jo Schlemper et al.
(2019) [18]. 3D CT
Abdominal Dataset &
2D Fetal ultrasound
Image Dataset

Medical image segmentation and
classification

It suppresses the irrelevant features
while highlights the meaningful
features

It increases the training time of the
model particularly for a large
sequence of data

Attention module can be attached
in most of the CNN-based
segmentation and classification
framework
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Table 2 continued

References and dataset Application Advantages Limitations

Xipeng Pan et al. (2019)
[20]. Triple Negative
Breast Cancer (TNBC)
& MoNuSeg Dataset

Segmentation of Nuclei from
Multi-Organ histopathology
images

Used combined loss function that
better train the model for
pathology dataset

Segmented cell boundaries differ
from ground truth images

Depthwise separable convolution
is used to control the trainable
parameter

Simon Graham et al.
(2019) [21]. GlaS
Challenge Dataset

Lumen and Gland Segmentation in
Colon histopathology Images

This method was the first to apply
rotational symmetry in
encoder–decoder architecture

Improvement is marginal

The additional rotated kernel in
G-convolution better extracts the
discriminative features

Tao Wan et al. (2020)
[22]. Four H&E
Stained
Dataset(TNBC,
MoNuSeg, 80 WSI of
Lung histopathology
images, 58 invasive
Breast carcinoma)

Nuclei segmentation from
Multi-Organ histopathology
images

Captures multi-layer features of
nuclei by integrating ASPPU
module and concave point
detection

The applied post-processing
technique is not providing
promising results

Joint loss function better handles
the class imbalance problems

Zongwei Zhou et al.
(2020) [23].
ISBI-2012, Cell-CT,
BraTS-2013,
DBS-2018,
MICCAI-2017,
LIDC-IDRI

Medical image segmentation
(Microscopy, CT, MRI)

Provides flexibility in the fusion of
multilayered features

The architecture becomes nested

Network shares the common
encoder for varying depths

Extended decoders and redesigned
skip connections result in longer
training time

An improvement over the
fixed-depth U-Net

Shyam Lal et al. (2021)
[24]. KMC Liver
Dataset & MoNuSeg
Dataset

Segmentation of Nuclei from Liver
and Multi-Organ histopathology
images

Fully automated deep learning
framework

Morphology of detected nuclei
differs from the original mask
and some nuclei near the
boundary region are missing

For the nuclei segmentation task,
this architecture is faster than
UNet [11], Dist [17], and
Attention UNet [18]

Mahendra Khened et al.
(2021) [25]. H&E
Stained- Breast cancer
(CAMELYON), Colon
cancer (Digest path),
Liver cancer (PAIP)

H&E Stained segmentation of
pathology images

Processed the entire whole slide
image

Lack of generalizability in the
proposed method

Utilized multiple fully connected
network architectures

Generated the uncertainty maps,
which is helpful in fine-tuning
the model
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Fig. 1 Proposed high-resolution deep transferred ASPPU-Net

Fig. 2 High-resolution encoder path, ASPP bottleneck path, and decoder path

returns that value like a linear function. It is computationally
economical compared to sigmoid and tanh. Mathematically,
ReLU activation function and its derivative are expressed by
Eqs. (4) and (5).

f (x) =
{
0 if x < 0

x if x ≥ 0
(4)

f ′(x) =
{
0 if x < 0

1 if x ≥ 0
. (5)

Pooling layer

Pooling is a concept that makes our model, location invari-
ant, scale-invariant, rotation invariant. It acts as an additional
layer. Whatever we have a higher value within the kernel
dimension, where higher value corresponds to object region,
only that area will reflect in the higher layer which makes
detection task easy. By applying a kernel of size K = (2× 2)
and stride size S = 2 on (4× 4) two-dimensional image, the
resultant feature size is shown in Fig. 3.
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Fig. 3 Max-pooling with kernel K = 2 and stride S = 2

Batch normalization

Due to lots of operations happening between layers, if the
input changes slightly in the deep network, this can lead to
large changes at later layers. The distribution of each layer’s
input changes during training.Aswe train the networkweight
keeps changing. If the weight changes randomly in succes-
sive iterations, it becomes difficult for the network to adjust
each layer’s input. Batch normalization [27] makes sure the
distribution does not change too much. During the training
procedure gradient of the loss, plays an important role in the
convergence. Visualization of internal covariate shift in the
deeper network can be seen in Fig. 4. Batch normalization
we can think of as an additional layer and it works well in the
very deep network. It has the following advantages (a) faster
convergence, (b) works as a regularizer, (c) avoids internal
covariate shift, and (d) we can train a deeper network.

Let T1, T2 are two transformations at a particular layer L
shown in Eq. (6). Two layers are characterized byweightsW1

and W2. If W1 changes, T1 will change, and input to T2 will
change. If W2 changes L will change. If these changes are
random and large then there is the problem of convergence
in deep neural networks.

L = T2 (T1 (U ,W1) ,W2) (6)

Batch Norm (yo)
(m) = β1

(
(yo)(m) − μ (y0)

σ (y0)

)
+ β2 (7)

Batch normalization normalizes each activation indepen-
dently by controlling the mean and standard deviation of the
layer’s output. The process expressed in Eq. (7), where ymo
is the value of the output yo on the mth input of a batch and
β1, β2 are trainable parameters.

Internal covariate shift

Santurkar et al. [28] analyzed the effect of internal covariate
shift, here the idea is the constant changes in the layer’s input

distribution are beneficial for fast training. Their experiment
also suggests that for larger learning rate training may not
converge without batch normalization. Impacts of internal
covariate shift on optimization, where it measures the effect
at the kth layer of n layer network having parameters W1:n
and W ′

1:n as
∥∥∇Wk£ (W1:n) − ∇Wk£

(
W ′

1:k−1,Wk:n
)∥∥. It fol-

low the properties of convex function.
If D is a convex subset of Rn and ∇X f , X ,Y ∈ R

n Let
f : D �→ R is a convex function then

1. f is L Lipschitz if | f (Y ) − f (X)| ≤ L ‖Y − X‖
∀X ,Y ∈ D

2. f is β-smooth if its gradient is β-Lipschitz, i.e.,
‖∇X f − ∇Y f ‖ ≤ β ‖X − Y‖ ∀X ,Y ∈ D.

Dilated convolution layer

The mathematical expression of a 2-D dilated convolution is
given by Eq. (8).

y(p, q) =
P∑

j=1

Q∑

j=1

x(p + r ∗ i, q + r ∗ j) f (i, j) (8)

y(p, q) is the output of dilated convolution, x(p, q) is the
input feature map, f (i, j) is the filter kernel and, r is the rate
(r > 1) with length and width of P and Q, respectively.
Dilated convolution or atrous convolution is a simple way
to increase the field of view by placing spaces between the
elements of the kernel. The rate of dilation is controlled by
the parameter r. Dilation rate r, insert (r −1) spaces between
the elements of the kernel. r equal to 1 corresponds no space,
called standard convolution. A kernel of size K dilated by a
factor r has an effective size in Eq. (9).

K¨= K + (K − 1) (r − 1) (9)

Dilated convolution is similar to standard convolution applied
to the input with different gaps.
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Fig. 4 Internal covariate shift

Fig. 5 Visualization of the receptive field with multiple dilation rates

Visualization of the receptive field with different dilation
rates is shown in Fig. 5. If we applied dilation rate 1 to the
input 2D image in Fig. 5a, it is similar to standard convolution
with kernel size 3 × 3. Dilation rate 2 produces a receptive
field of 7 × 7 by skipping one pixel shown in Fig. 5b. Dila-
tion rate 4 produces a receptive field of 15× 15 by skipping
three pixels shown in Fig. 5c. The motive of this work is
to extract more relevant features by applying different dila-
tion rates in the same layer. Dilated convolution allows us
to expand our filter strides with different rates, so this con-
volution becomes dilation convolution. In this architecture,
the maximum relevant information is retrieved by applying
three different dilation rates after each pooling layer. Dilated
convolution [29] is a generalization of a standard convolution
that allow us to control the resolution of features computed
by deep CNN in order to capture multi-level feature.

Implementation and training

This experiment is implemented on the latest version of
python with Keras and TensorFlow framework. Google
GPU and Colab notebook were the resources for conduct-
ing the experiments. We have used three histopathological

datasets from the literature [17,30,31]. (a) Kidney dataset:
This dataset of size 400 × 400 pixels is used in [29], and
consists of 730 H&E renal cell carcinoma (RCC) histology
images created from 10WSIs of TCGA. (b) Triple-Negative
Breast Cancer (TNBC) dataset: TNBC dataset [30] consists
of 33 H&E stained breast tissue of dimension 512 × 512
pixels, and these tissues are collected from seven different
patients. (c) MoNuSeg dataset: This dataset is first used in
[31] and composed of 30 H&E stained histology images of
size 1000 × 1000 pixels of seven organs. We partitioned the
obtained data into training, validation, and test. After the cre-
ation of patches, we considered 80% of the total images for
the training of the model and the rest 20% for validation and
testing. We had applied some data augmentation techniques
such as horizontal flip and vertical flip in the training sam-
ple of the TNBC, and MoNuSeg dataset. Adam [32], is the
optimization method and binary cross-entropy used in [17]
is the loss function used in this study. The reported results
of all deep learning models are the averages of three trials
conducted independently. We had calculated the final results
based on an average of three trials by initializing random
weights in each trial. The final quality metrics were mea-
sured as the average quality metrics of all images in the test
dataset.
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Table 3 Experimental performance comparison of different architectures with three datasets

Model Kidney TNBC MoNuSeg

F1 AJI F1 AJI F1 AJI

UNet(2015) 0.8537 0.7489 0.7324 0.6559 0.7248 0.6029

SegNet(2017) 0.8972 0.8304 0.7685 0.6434 0.7879 0.6514

Attention UNet(2019) 0.9135 0.8590 0.7216 0.6194 0.7735 0.6315

DIST(2019) 0.8992 0.8272 0.7516 0.6727 0.7795 0.6467

ASPPU-Net(2020) 0.9052 0.8293 0.7781 0.6378 0.8087 0.6803

Proposed model 0.9684 0.9394 0.8419 0.7282 0.8344 0.7169

Table 4 Network computational complexity in millions

Model Parameters (millions) FLOPs (millions)

UNet 31.3 62.7

SegNet 18.8 47

Attention UNet 31.9 63.7

Dist 7.7 15.5

ASPPU-Net 4.3 8.6

Proposed 8.7 21.6

Performancemetrics

Jaccard coefficient It is a commonly used method for the
measurement of overlap of two sets. It is ameasure of similar-
ity or dissimilarity between binary data. Jaccard coefficient
measurement is the best method to evaluate the performance
in the case of nuclei segmentation from histopathology
images in a deep learning framework.

Jaccard(A, B) = Number of items in A ∩ B

Number of items in A ∪ B

If we take the Jaccard coefficient of a set with itself ratio
will be one and the Jaccard coefficient will be one.

Jaccard(A, B) = 1.

If two sets are disjoint and have no members in common,
then Jaccard coefficient will be zero.

Jaccard(A, B) = 0.

If two sets are not the same size, then the Jaccard coefficient
will always assign a number between zero and one.

0 ≤ Jaccard(A, B) ≤ 1.

Jaccard distance/ Jaccard loss = (1 – Jaccard coefficient).
Aggregated Jaccard index (AJI) The concept of AJI was

proposed in [31]. AJI compute and measure the performance

of segmentation better than the global Jaccard index by
incorporating the concept of the connected components. AJI
compute and measure the performance of segmentation bet-
ter than the global Jaccard index by incorporating the concept
of the connected components.

AJI =
∑M

k=1

∣∣Gk
⋂

Pk
S

∣∣
∑M

k=1

∣∣Gk
⋃

Pk
S

∣∣ + ∑
RεU |PR |

where Gk is kth nuclei of ground truth having M nuclei.
Pk
S is Sth Connected component in prediction result having

the highest Jaccard index with ground truth. Each index of
S cannot be utilized more than once. U represents a set of
the connected components in the prediction result without
corresponding ground truth. PR represents the ground truth
and intersection that are not in the associated space. AJI is
a connected component-based method that is the improved
version of the pixel-based global Jaccard index. A higher AJI
value indicates a better segmentation method.

AccuracyAccuracy is a good measure only when we have
symmetric dataset. For data being symmetric,Values of false-
positive should be almost the same as false negatives.

Accuracy = [TP + TN]
[Total predicted pixels]

Precision It tells out of total predicted positive observation
how much sample is true positive.

Precision = TP

[Total positive prediction]
Recall/Sensitivity It calculates the ratio of correctly pre-

dicted positive observation of the observation in actual class.

Recall/Sensitivity = TP

[TP + FN]
F1 Score F1 score has the effect of both precision and recall
by calculating the harmonic mean between precision and
recall. F1 Score is the best method to measure that howmuch
information is retrieved used by [33]. The range of the F1
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Kidney Image-1 Ground Truth U-Net(2015) SegNet(2017)

Att. U-Net(2019) Dist(2019) ASPPU-Net(2020) Proposed Model

Kidney Image-2 Ground Truth U-Net(2015) SegNet(2017)

Att. U-Net(2019) Dist(2019) ASPPU-Net(2020)) Proposed Model

TNBC Image-1 Ground Truth U-Net(2015) SegNet(2017)

Fig. 6 Row-wise visual segmentation comparison of different models on three datasets
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Att. U-Net(2019) Dist(2019) ASPPU-Net(2020) Proposed Model

TNBC Image-2 Ground Truth U-Net(2015) SegNet(2017)

Att. U-Net(2019) Dist(2019) ASPPU-Net(2020) Proposed Model

MoNuSeg Image-1 Ground Truth U-Net(2015) SegNet(2017)

Fig. 6 continued
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Att. U-Net(2019) Dist(2019) ASPPU-Net(2020) Proposed Model

MoNuSeg Image-2 Ground Truth U-Net(2015) SegNet(2017)

Att. U-Net(2019) Dist(2019) ASPPU-Net(2020) Proposed Model

Fig. 6 continued

Score is [0, 1]. The greater the F1 score, the better is the
performance of our model.

F1 Score = 2 × [Recall × Precision]
[Recall + Precision]

Results

Comparison of methods

Table 3 shows a comparison of the proposed architecturewith
five other segmentation architectures on three datasets. Per-
formance measurement in terms of F1 Score, AJI score, the
total number of trainable parameters that describe the train-
ing time and complexity and floating point operations per
second (FLOPs). The value of FLOPs describes the comput-
ing power of given hardware like GPU, the smaller the value,
the faster is the computing ability. Here, our F1 Score and
AJI score are the averages of all images of the test set in the
dataset. Table 4 shows the comparison of the total number
of trainable parameters and FLOPs with other segmentation
architectures.

Performance comparison of different architectures

Visual segmentation comparisons of predicted images by dif-
ferent models on the Kidney, TNBC, and MoNuSeg datasets
are shown in Fig. 6. Visual results in Fig. 6 are the com-
parison of predicted images of five state-of-the-art models

with the proposed model of two images of each of the three
mentioneddatasets. For the purposeof discussionon segmen-
tation accuracy, we are taking one sample test image from the
kidney dataset shown in row-1 of Fig. 6. Their correspond-
ing ground truth image has 57 annotated nuclei. U-Net [11],
detected 53 nuclei clearly, two nuclei are not detected and two
are in clustered form. Four additional ducts are detected in
U-Net which are not desirable and not present in the ground
truth. SegNet [14], also not detected any additional things,
but out of 57 nuclei only 47 nuclei detected accurately, three
are detected partially and seven nuclei are not detected. The
best part of SegNet architecture is that it separates the over-
lapped nuclei. Attention U-Net [18] is an extended version of
the original U-Net that detected 49 nuclei clearly, two nuclei
are in overlapped form, five nuclei are partially detected, one
nucleus not detected and five additional things found that are
not required. Dist [17], architecture detected 49 nuclei almost
similar to ground truth, three nuclei not able to detect, three
partially detected, and two are in clustered form.ASPPU-Net
[22] identifies 7 additional shapes, 2 nuclei are in clustered
form out of 57 nuclei.

The best part of our proposed model is out of 57 nuclei,
55 nuclei are clearly identified, no undesirable things are
detected, the morphology of the detected nuclei are exactly
similar to the ground truth image and it also reflects from
performance metrics shown in tabular form. Results indi-
cated that our architecture is able to retrievemore information
compared to others. Training and validation accuracy, train-
ing, and validation loss curve on three datasets are shown in
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Fig. 7 Training accuracy, validation accuracy, training loss, validation loss curve on three datasets

Fig. 7. These plots indicated that the proposed model better
learns the parameters for the prediction on each ofmentioned
datasets.

Conclusion

Automatic segmentation of H&E stained cell nuclei from
histopathology image is a pre-requisites in digital pathol-
ogy. In this paper, a CNN-based architecture called high-
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resolution deep transferred ASPPU-Net was proposed that
addressed automatic nuclei segmentation of histopathology
images having a widely varied spectrum with a large number
of artifacts. The implemented networks effectively leverage
the strength of residual learning as well as encoder–decoder
architecture by incorporating wide and deep network paths
that strengthen the intermediate features. Promising results
were obtained due to the effective use of the wide and deep
network with ASPP at the bottleneck layer. To prove the wor-
thiness of the proposed architecture, we have used the most
preferred performance matrices F1 score and AJI score by
performing experiments on three different publically avail-
able datasets. The proposed model achieved a considerable
margin in terms of F1 score and AJI score over state-of-the-
art models and works effectively for three histopathological
datasets.

Although the proposed model produced excellent results,
the segmentation of overlapped nuclei is still a challenge for
somehistopathology images and reported results are still sub-
optimal for clinical use. Furthermore, vanished and blurry
boundaries of detected nuclei are another issue. The prob-
lem of over-segmentation and under-segmentation for nuclei
associated with complex histopathology images has not been
solved completely. These issueswill be the focus of our future
work.
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