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Abstract
Purpose Fully Convolutional neural Networks (FCNs) are the most popular models for medical image segmentation. How-
ever, they do not explicitly integrate spatial organ positions, which can be crucial for proper labeling in challenging contexts.
Methods In this work, we propose a method that combines a model representing prior probabilities of an organ position
in 3D with visual FCN predictions by means of a generalized prior-driven prediction function. The prior is also used in a
self-labeling process to handle low-data regimes, in order to improve the quality of the pseudo-label selection.
Results Experiments carried out on CT scans from the public TCIA pancreas segmentation dataset reveal that the resulting
STIPPLE model can significantly increase performances compared to the FCN baseline, especially with few training images.
We also show that STIPPLE outperforms state-of-the-art semi-supervised segmentation methods by leveraging the spatial
prior information.
Conclusions STIPPLE provides a segmentation method effective with few labeled examples, which is crucial in the medical
domain. It offers an intuitive way to incorporate absolute position information by mimicking expert annotators.

Keywords Deep learning · Medical image segmentation · 3D spatial prior · Semi-supervised learning · Pseudo-labeling

Introduction

Organ segmentation in medical images is a challenging but
important task for many clinical applications like computer-
aided diagnosis. It is a powerful tool for intervention planning
and other computer-assisted applications.

In the last few years, deep learning and Convolutional
Neural Networks (ConvNets) [8] achieved a breakthrough in
visual recognition. In semantic segmentation, Fully Convo-
lutional Networks (FCNs) [2,10,17] achieve state-of-the-art
performance, while being computationally efficient. In med-
ical image segmentation, the most common architectures
include an encoder–decoder network with the recovery of
absolute position information, e.g. skip connections [3,11,
17]. Despite the huge performance gain brought by deep
learning and modern FCN, medical image segmentation
remains a very challenging task, due to low contrasts between
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organs, andvisual ambiguities. Inmany cases, the local visual
context of an image is insufficient to perform a clear decision
and external knowledge is required.

In this paper, we tackle the problem of including prior
knowledge about the spatial position of organs to improve
the quality of the segmentation. It is a particularly strong
and relevant prior for medical images since there are some
conventions on how the image should be, e.g. the position
of a patient. Using prior knowledge is common for practi-
tioners, which perform segmentation not only by using the
visual appearance of medical images, but also leverage their
strong knowledge on the position of organs or relative layout
between them.

We introduce STIPPLE, a method that incorporates Spa-
TIal Priors and Pseudo LabEls. The spatial prior is a
probability map of the organ presence at a given position.
This map is merged with the visual information extracted
by the FCN through a prior-driven prediction function. We
also propose a semi-supervised extension of our model with
an iterative self-labeling process. It forms a virtuous cir-
cle where the 3D prior is leveraged for selecting relevant
pseudo-labels, leading to refined interactions between visual
and prior predictions.
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We perform experiments on a pancreas segmentation
dataset and show that our method outperforms the per-
formances of other state-of-the-art approaches for both
semi-supervision and integration of position information.

The main contributions of this paper are as follow:

• We introduce STIPPLE, a 3D spatial prior that explicitly
incorporates knowledge in a deep FCN formedical image
segmentation. The prior is added in the final activation
function via a prior-driven softmax.

• Weshow the relevanceof such aprior in a fully supervised
setting and how it could be leveraged for semi-supervised
within a pseudo-labeling scheme. For the latter, our prior
helps to select new labels by limiting the incorporation
of wrong predictions, especially outliers that could ruin
the training.

• Experiments show that our prior is particularly powerful
when very few labels are available. Moreover, compared
to other state-of-the art methods, STIPPLE shows better
results for every proportion of missing labels.

Related work

Including absolute position information to bias a FCN is
not straightforward in semantic segmentation. FCNs are by
design equivariant to small transformations and thus unable
to directly encode spatial location information to bias predic-
tions as shown in [9]. The authors show that FCNs are unable
to model a coordinate transform task. Then, they show that
adding the absolute coordinated of the pixels in a featuremap
could fix this issue. However, the CoordConv layer is added
in the first layer contrary to STIPPLE which explicitly inte-
grates the absolute position information by biasing the visual
prediction.

Locally Connected Networks (LCNs) are able to model
absolute position information. LCNs learn predictionmodels
specific to each spatial position, and have been successfully
applied to face recognition, e.g., DeepFace [19]. However,
LCNs significantly increase the number of parameters of the
model (compared to their convolutional counterparts) and
thus require huge labeled datasets to be robust to overfitting.
LCNs are consequently not adapted for medical image seg-
mentation where only few labeled data are available.

In the medical image analysis literature, cascaded net-
works [7,18] include absolute position informationby relying
on the selection of a Region of Interest (RoI) by a first
model, which is subsequently refined by a second one which
performs a more accurate segmentation. Although these
approaches are efficient, they are intrinsically limited by the
quality of the first RoI selection step. Some works simply
take cropped images of the expected RoI [5,14] which is in
fact a very strong prior about the organ position. However,

it does not use the whole image and is very limited to the
selected region. Thus, each class should be learned indepen-
dently [5] which drastically increases the model complexity
and computational burden.

Other methods try to incorporate spatial prior information
by biasing the learning of internal deep representations in an
implicit manner [4,13,20]. In the same way, attention mech-
anisms have gained popularity in the last few years. New
parameters bias the intermediate representations to focus on
a specific region of an image. For example, in [14] themethod
integrates an additive attention block in the decoder part of
a U-Net model. The attention coefficients are learned during
training and are completely implicit. Thus, we cannot assure
that the model actually learns a prior on the spatial position.
Moreover, despite the reasonable improvements shown by
these methods in fully supervised settings, they are intrinsi-
cally limited to 2D absolute position information, whichmay
arguably be inaccurate for organ segmentation with a com-
plex shape varying in 3D. In STIPPLE, we use a spatial prior
that captures the complete organ shape in 3D and explicitly
bias the visual prediction to leverage the depth information.

Medical image analysis often faces the problem of lim-
ited amounts of labeled data. Semi-supervisedmethods allow
trainingmodels on a large dataset of unlabeled images. There
are threemain categories of methods: using adversarial train-
ing, consistency and pseudo-labeling.

In adversarial training, a model is trained to fool a dis-
criminator that is trained to distinguish true and generated
examples. In [12], the authors use the strategy of [6] which
consists in building a generator which produces a segmen-
tation of an input image. Then, the discriminator takes the
segmentation map and produces a confidence map which is
used to select pixels that could be used in the segmentation
loss. This work is further improved in [23] which uses a 3D
deep atlas prior to weight the pixels in the loss function with
a focal loss. This method is very different from ours, the prior
is used to weight examples based on their difficulty through
the focal loss and is not directly integrated to the network.

The consistency approaches [22], e.g., mean teacher, are
purely designed for semi-supervision. The main idea is to
train two similar models in parallel: a student network which
is trained directly on the labeled data and a teacher model
which is trained by using the moving average of the student
weights. On top of that, a consistency loss leverages the fact
that the same input under different transformations or noises
should give the same result. This loss could be computed
both with labeled data and unlabeled data.

Finally, pseudo-labeling is a large category of methods
which aims to assign labels to unlabeled examples before
fine-tuning or training a new model. Those methods are state
of the art in semi-supervised learning. For example, in [1],
all the unlabeled images are pseudo-labeled and added to the
train set. However, it could add too many wrong predictions.
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STIPPLE follows state-of-the-art pseudo-labeling meth-
ods for semi-supervised segmentation and leverages the
proposed spatial prior to improve the automatic selection
of pseudo-labels. We also use an iterative approach which
sequentially adds more pseudo-labels and retrains the model
from the augmented training set.

Organ segmentation with 3D spatial priors
and pseudo-labeling

In this section,we introduce our STIPPLEmodel dedicated to
leverage spatial priors and pseudo-labeling for semantic seg-
mentation of medical images. The overall prediction model
of STIPPLE is depicted in Fig. 1.

A given input volume V is processed by the backbone
FCN segmentation model which outputs a probability pre-
diction volume S = {sk}k∈{1;K } where K in the number of
classes. Our approach is agnostic to the choice of the FCN:
in our experiments we use 2D U-Net [17] due to hardware
limitations and for experiment efficiency, but it could easily
extend to 3D models [3].

Formally, let us consider a volume V ∈ R
W×H×Z com-

posed of Z axial slices, i.e. V = {xz}z∈{1;Z}, with xz ∈
R
W×H . The semantic segmentation problem consists in

predicting a label among K organ classes (including the
background) for each voxel of the volume V(w, h, z)1. The
FCNsegmentation network computes posterior probabilities,
e.g. s(w, h)z,k = Pr

(
Yw,h,z = k | N(x(w, h)z),W

)
for our

case with a 2Dmodel, whereW represents the model param-
eters and N(x(w, h)z) is the voxel neighborhood in a given
slice z, characterized by the FCN receptive field.

As previously mentioned, the computation of s(w, h)z,k
doesn’t incorporate any absolute position information. We
propose to define a 3D spatial prior P which represents the
probability of an organ presence given its 3D position. The
final prediction of STIPPLE Ŷ consists in merging P and S,
as described in “Prior-driven prediction function” section.

3D spatial prior design and computation

To overcome the lack of absolute position information
encoded in our FCN predictions s(w, h)z,k = Pr

(
Yw,h,z =

k | N(x(w, h)z),W), we propose to model the prior prob-
abilities of the organ position, i.e. with P = {pk}k∈{1;K },
p(w, h)z,k = Pr

(
Yw,h,z = k | (w, h, z)

)
, independently of

the visual input N(x(w, h)z) and model parameters W.
The construction of the proposed 3D spatial prior is based

on the following assumptions: (1) the 3D volumes are given
in the axial direction (z), with the patient lying on the back ;

1 Here we choose to designate the coordinates with (w,h,z) so it is a
different notation than the model’s output and input, x and y.

(2) in the axial (z) direction, there might be strong variations
in the organ position, i.e., the [zmin; zmax ] interval where
the organ is visible might significantly change. On the other
hand, the variability in the (w,h) plane for a given z value is
supposed to be much smaller, such that we can accumulate
the organ positions in this plane across the dataset to obtain
relevant statistics of organ position.

Note that these assumptions are valid in many clinical
cases, since acquisitions in the axial direction are common.
Moreover, it is also common for anatomical structures to
be visible in variable [zmin; zmax ] values in the z direction
because of differences in acquisition procedures.

Our prior P is estimated on a training dataset of labeled
organs {Yi }i∈{1;N } where N is the number of examples, by
computing statistics of the organ presence in a 3D rectangu-
lar volume of size (Wp × Hp × �z) with Wp, Hp and �z

being, respectively, the width, the height and depth of the
rectangular volume. This size is determined by taking the
maximum width, height and depth of the considered organ
in the training set such that every example fits into it. We
observed that the position of the organs are relatively stable
in the (w, h) coordinates, but may largely vary in the z direc-
tion. So we decide to discretize the prior over the z axis such
that the prior P itself is of size (Wp × Hp × B) , where B
bins aggregate the�z slices, with B < �z to gain invariance
with respect to misalignment of organs in the z direction,
but B > 1 to capture organ shape variations. Eventually,
p(w, h)z,k is estimated from the full training dataset by a
nonparametric estimation, i.e. histogram estimation:

p(w, h)z,k = Pr
(
Yw,h,z = k | (w, h, z)

)

= 1

Ztot

Ztot∑

z=1

1(Yw,h,z = k) (1)

where Ztot is the total number of slices in a given bin b.
In practice, the training volumes are first aligned with the

center of the organ segmentation masks, and then, a sub-
volume of size (Wp × Hp × �z) is cropped around this
center.

The prior computation is illustrated in Algorithm 1. An
example of a 3D prior map with B = 3 bins is shown in
Fig. 2. We can see that each bin results in an average of
multiple neighboring slices from the input volume. The bin
(1) corresponds to the top of the segmentationmask, whereas
the bin (3) is the bottom of the pancreas. For those two bins,
the corresponding probabilities are localized in very different
regions.

Prior-driven prediction function

The prior probabilities are introduced through a prior-driven
prediction function which explicitly integrates our 3D spa-
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Fig. 1 Input volume V is sliced along the axial view. The segmentation network outputs a visual prediction S. The 3D spatial prior P is aligned to
the slice before being combined through a prior-driven prediction function. The result is the final prediction Ŷ

Fig. 2 Prior computation
visualization on one volume
with B = 3 bins in the z axis

tial prior in a late fusion manner. For the sake of clarity, we
remove the notation of the dependency in (w,h,z). The main
intuition which is presented in Fig. 1 is to take the visual pre-
dictions of the FCN S ∈ R

W ,H ,Z ,K where K in the number
of classes, so S = {sk}k∈{1;K } and apply a Hadamard prod-
uct with the prior probabilities P = {pk}k∈{1;K }. Then, we
normalize to rescale the values between 0 and 1.

When combining those operations, the final formulation
(Eq. 2) is denoted as a “prior-driven softmax,” which outputs
Ŷ = {

ŷk
}
k∈{1;K }.

ŷk = sk � pk
∑K

c=1 sc � pc
= es̃k pk

∑K
c=1 e

s̃c pc
= es̃k+ln(pk )

∑K
c=1 e

s̃c+ln(pc)

(2)

S̃ = {s̃k}k∈{1;K } are the values before activation, usually
denoted as “logits.”

Interestingly, we can notice that our prediction function in
Eq. (2) is a consistent generalization of the standard softmax,

since it reduces to it when the prior is uniformly distributed
through the classes, i.e. when pk = pc = 1

K ∀k ∈ {1 . . . K }.
When the prior P is not uniform, it can be used to bias

the prediction of a given class k based on its visual input es̃k ,
dependingon its spatial location. For example, if pk is close to
1 (resp. 0), the prediction of class k ismade close to 1 (resp. 0)
whatever the es̃k value. Our prior-driven softmax prediction
function in Eq. (2) can thus be leveraged to overcome visual
ambiguities between organs and the background.

This formulation is obviously applicable in binary seg-
mentation using a sigmoid (σ ) as shown inEq. (3). It becomes
a “prior-driven sigmoid.”

ŷk = sk � pk
sk � pk + (1 − sk) � (1 − pk)

= σ(s̃k − ln(1 − pk) + ln(pk)) (3)

Positioning the prior in a volume During training, we can
use the position of the organ label to position the prior in the
image. However, for unlabeled volume and test volumes we
need to find the position.We first take the output probabilities
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Algorithm 1: Prior construction for a given organ. yi
designates a volume label and N the total number of
training volumes. Then, B is the number of expected
bins for the final prior and Wp, Hp are, respectively, the
prior’sWidth andHeightwhen�z is themaximumdepth
observed for the organ in the training set.
Data: {(yi )}N , B,Wp, Hp,�z
Result: Prior
N ← number of label maps y;
Prior ← zeros(w, h, B);
for i ← 1 to N do

cw, ch, cz ← get_organ_center(yi );
wmin ← cw − Wp/2;
wmax ← cw + Wp/2;
hmin ← ch − Hp/2;
hmax ← ch + Hp/2;
zmin ← cz − �z/2;
zmax ← cz + �z/2;
for s = zmin to zmax do

idx_in_prior ← B×(s−zmin)
zmax−zmin

;
Prior [:, :, idx_in_prior ]+ = yi [xmin : xmax , ymin :
ymax , s];

Prior ← normali ze_bins(Prior) ← normalize the values
between 0 and 1 by dividing by the number of slices added in a
given bin;

of a segmentation network on the target (unlabeled) volume,
which gives a first but coarse position of the organ. Then,
a reference volume is randomly selected among the labeled
volumes in the training set. For that volume, we have a seg-
mentation map and the true position of the considered organ.
With that, we compute the KL divergence between the two
with different small translations applied to the probabilities
obtained on the target volume. We can finally keep the trans-
lation that gives the lowest KL divergence value and adjust
the position of the organ for the target volume.

Integration in a semi-supervised context

We propose a semi-supervised extension of our model, ded-
icated to leverage unlabeled data. We use a self-training
strategy based on pseudo-labeling, which recently showed
very good performances for medical image segmentation [6,
15,23]. Pseudo-labeling is a technique which consists in
automatically labeling unlabeled examples. State-of-the-art
segmentationmethods in computer vision andmedical imag-
ing for semi-supervised learning use those kinds of methods
in addition to other techniques. The selection of the examples
is crucial and should be properly performed. In our case, we
select the pseudo-labels by taking the most confident pixels.
Concretely, we consider that a prediction with a high proba-
bility is more certain than another with a lower probability.
Then, for a given volume, we select among the predictions
of the organ the top-k most confident voxels that will be

selected as pseudo-labels. Our STIPPLE method actually
provides a “prior-driven uncertainty measure,” in the sense
that our 3D prior is leveraged to improve the selection of
pseudo-labels by using 3D absolute position information.
The pseudo-labeling schema is illustrated in Algorithm 2.

Algorithm 2: Iterative Pseudo-labeling strategy used
in STIPPLE. (xi , yi ) is a training example with xi the
image and yi the ground truth (which could be partially
labeled). γt is the number of voxels to relabel at iteration
t , T the number of iterations, mt the model at iteration
t .
Data: {(xi , yi )}, γmax , T , m0
Result: mT
yi,0 = yi ;
for t ← 1 to T do

γt = t
T γmax ;

for i in {unlabeled_image_indices} do
ŷi ← mt (xi ) // Predict image xi ;
y+
i,t ← select_γ _most_con f ident_predictions(ŷi , γt )
// Select γt new target labels from the prediction ŷi by
taking the most confident;
yi,t = yi,t−1∪ y+

i,t // Augment training set by adding the
pseudo-labels;

mt = train({(xi , yi,t )}) // Re-train model with the
augmented dataset

Experiments and results

Experimental setup

Evaluation dataset.We evaluate our method on the publicly
available dataset TCIA [16] for pancreas segmentation in
CT-scans. It is composed of 82 CT-scans with manual labels
of the pancreas. In all our experiments, we performed 5 fold
cross-validation and reported the standard deviation between
the folds. For each fold, a different spatial prior is computed.
Implementation Details We carried out experiments in a
semi-supervised setting. Thus, we randomly removed labels
(uniform sampling without replacement) at a patient level
to reach proportions (α) like 70%, 50%, 30% and 10% of
labeled volumes in the training set such that the test set
remains the same across the experiments. We also report the
results for a fully supervised setting, i.e. a label proportion
of 100%. In practice we use one step of relabeling for the
low proportions from 50% to 10% and two steps at 70%.

The input volumes are preprocessed by clipping the
Hounsfield Units (HU) values in the abdominal organ range
[−160, 300]. Then, the values are normalized to have zero
mean and unit variance. In all the experiments, we use
a backbone 2D U-Net. The models are trained using the

123



134 International Journal of Computer Assisted Radiology and Surgery (2022) 17:129–139

Fig. 3 Segmentation results for STIPPLE (B = 5) compared to the
baseline. Values are Dice Scores (DSC) for every proportion of missing
labels from 100% (every image is labeled) to 10% (only 10% of the
images are labeled). Error bars show the standard deviations of the
results between the folds

Adam optimizer with standard data augmentation tech-
niques, i.e. random translations, random rotations.

The spatial prior is estimated with the available training
examples only. We choose B = 5 for every proportion and
study its impact in “Further analysis” section

Pancreas segmentation results

The results on the TCIA pancreas dataset are given in Fig. 3.
STIPPLE is compared with a U-Net baseline for every pro-
portion. In each case, our method shows significant gains
which are validatedwith a paired t-test, see Table 1. At a label
proportion of 100%, we see an improvement of +1.4 pts, at
70%:+4.0 pts, at 50%:+3.7 pts, at 30%:+5.9 pts and finally
at 10%: +9.9 pts. The gains are more pronounced when the
proportion α is low. It is validated by the p-values shown in
Table 1. The gains increase and the p-values decrease when
α decreases.

The images could be ambiguous due to the low contrast
between the objects and because of the reduced size of the
organ region. In medical image segmentation, it is common
that the local visual content is insufficient, such that one needs
external knowledge for proper segmentation. Moreover, the
low balance of labeled pixels makes the model naturally
under-segment, and this effect is exacerbated when very few
labeled images are provided.

All this causes multiple kinds of errors which are
addressed by the prior. Firstly, it reinforces the probabili-
ties in the most probable region and allows to recover missed
predictions. Secondly, it reduces false positives by cleaning
out errors far from the region of interest. Finally, the prior sta-
bilizes the relabeling step by selecting only the pixels in the
correct region which avoid potential errors that could cause
drops in performances.

To illustrate how the spatial prior acts on the predictions,
we show in Fig. 4 two examples. The first row is a missed
prediction which has been correctly recovered thanks to the
prior. In that case, the visual prediction has been reinforced
by the spatial prior shown in the last column. The second
row shows how the prior removes improbable segmentation
and more generally false positives out of the organ region.
We see that the wrong prediction of the baseline is out of
the high prior probabilities in the last column. The visual
prediction was not sufficient to correctly decide in this area,
but with STIPPLE the prior has removed the ambiguity and
filtered out those errors. In this case, the prior combined with
the visual prediction reduces the false positives and has a
positive impact on the relabeling step by preventing adding
errors.

To show that our method is agnostic to the choice of the
backbone, we carry out experiments using a patch-based 3D
U-Net. We choose a fixed fold and add the prior using the
same method as explained. At 50%, we observe an improve-
ment for the baseline of +3 pts from 68% in DSC to 71%
for the 3D U-Net. Then, with the spatial prior we observe an
improvement of+1pt validating the relevance of ourmethod.
At 10%, our spatial prior with a 3D U-Net gets a 58% DSC
outperforming both the baseline (+6 pts) and our prior (+3
pts) with the 2D U-Net. Our method can easily be extended
to other backbones and our 3D spatial prior still improves the
final results even with a strong baseline, i.e., 3D U-Net.

Ablation study

To understand how different parts of STIPPLE act on the
final performance, we show in Table 2 an ablation study of
the method. The results are given for the different stages:
the 2D U-Net baseline which is also the backbone in our
experiments; after adding the 3Dprior butwithout relabeling;
the complete method, including the prior and the relabeling
step.

Adding the prior alone outperforms the baseline for every
proportion. The relative gains are +1.41 pts at 100%, +2.90
pts at 70%, +1.32 pts at 50%, +1.50 pts at 30% and finally
+2.84 pts at 10%. The information brought by the spatial
prior allows to increase the results consistently through the
proportions. This shows the relevance of exploiting the abso-
lute position for organ segmentation. Then, the relabeling
step boosts the performances as we can see in the last row.
This step is particularly interesting for the low proportions.
As discussed in “Pancreas segmentation results” section, the
gains are more and more important when the proportion α is
decreasing.

Using a prior impacts positively the performances in the
two contexts: with or without relabeling. We can also notice
that the relabeling step boosts the results, especially for the
low αs.
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Table 1 p-values given by a
paired t-test between the
baseline and STIPPLE

Proportion (α) 100% 70% 50% 30% 10%

p values 4.51% 3.00 × 10−4% 5.53 × 10−2% 6.40 × 10−6% 2.60 × 10−7%

Fig. 4 Examples of two
behaviors induced by the spatial
prior. First row: recovery of a
missed prediction. Second row:
cleaning of a wrong prediction
in an unexpected area. The last
column represents the spatial
prior on top of the input image
to illustrate where the prior
influences the prediction

Table 2 Ablation study of STIPPLE

Proportion (α) 100% 70% 50% 30% 10%

Baseline 76.13 (± 0.94) 72.12 (± 2.01) 70.43 (± 3.38) 64.48 (± 2.13) 44.57 (± 5.24)

STIPPLE w/o relab 77.53 (± 1.44) 75.02 (± 2.21) 71.74 (± 2.02) 65.99 (± 1.71) 47.41 (± 8.40)

Baseline w relab – 75.12 (± 1.91) 73.71 (± 2.59) 69.00 (± 2.04) 51.91 (± 7.77)

STIPPLE 77.53 (± 1.44) 76.10 (± 1.23) 74.08 (± 1.39) 70.37 (± 1.88) 54.45 (± 6.37)

The reported values are Dice Similarity Scores (DSC,%)
The values in bold are the best results (highest score)

State-of-the art comparison

We compare our method with other semi-supervised
approaches in addition to a method that includes an atten-
tion mechanism. In [1], the unlabeled images are completely
relabeled before training a new model. [12] propose an
adversarial training to incorporate unlabeled images during
training. Finally, [22] use a mean teacher method where the
unlabeled images are used through the consistency loss. We
also compare our method with an attention model from [14].
It uses an additive attention gate in the decoder part of the
U-Net before the concatenation of the skip-connections.

Table 3 shows the results of the comparison. For every row,
we implement the method with the same backbone 2D U-
Net. STIPPLE shows better results for every proportion with
a more pronounced gain in the low αs, e.g. at 10%, STIPPLE
is better by 2.4pts than the best method (the adversarial). The
pseudo-labels method [1] is the closest to ours, but we see
that STIPPLE stays above for every proportion thanks to the
spatial prior and the progressive adding of pseudo-labels.

Concerning the attention model in [14], we can see that
compared to the baseline, it helps consistently from α =
100% to α = 50%. Then, the scores drop below the baseline.
STIPPLE is better for every proportion and especially for the
lowαs. It could be explained by the fact that our prior exploits
the three dimensions unlike the attention module which is

2D. Moreover, it is built beforehand by following a specific
method which is adapted to low label proportions.

Further analysis

Impact of the prior size B The number of bins, B, of the prior
impacts the final results and the best value may depend on
the available data. As an example, Fig. 5 shows a spatial prior
with B = 5 and B = 1, i.e. 2D prior. At B = 5, we can see
how the spatial position evolves through the 3D prior bins.
As a contrary, the 2D prior (B = 1) doesn’t encode the depth
information and is thus less informative.

We evaluate STIPPLE without relabeling with different
B values (1, 2, 5, 7, 10 and 90) at 10% and 70% of labeled
images, see Fig. 6. B = 90 means that there is no discretiza-
tion in z, i.e. the spatial prior is complete.

We observe that the best value at 70% is 5, but for every B
there is a significant improvement compared to the baseline.
At 10%, the best results are given for 5, 7 and 10 with an
optimal value at 7. In our experiments in “Ablation study”
section, we choose a standard value of B = 5. Though it is
good in practice, it means that we could get better results by
increasing B for lower proportions.

For both proportions, we can see that the prior has better
results than the baseline.Using a 2Dprior (B = 1) is effective
but using more bins boosts the performances. Then, with a
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Table 3 State-of-the-art comparison on TCIA

Proportion (α) 100% 70% 50% 30% 10%

Baseline 76.13 (± 0.94) 72.12 (± 2.01) 70.43 (± 3.38) 64.48 (± 2.13) 44.57 (± 5.24)

Pseudo-labels ([1]) – 75.12 (± 1.91) 73.71 (± 2.59) 69.00 (± 2.04) 51.91 (± 7.77)

Adversarial ([12]) – 75.41 (± 1.78) 73.91 (± 2.27) 67.60 (± 1.84) 52.09 (± 6.00)

Consistency ([22]) – 74.53 (± 2.10) 72.68 (± 3.05) 66.99 (± 1.38) 46.04 (± 3.70)

Attention U-Net [14] 76.38 (± 1.27) 74.18 (± 1.57) 71.37 (± 1.73) 64.25 (± 2.49) 41.28 (± 6.47)

STIPPLE (Ours) 77.53 (± 1.44) 76.10 (± 1.23) 74.08 (± 1.39) 70.37 (± 1.88) 54.45 (± 6.37)

The values in bold are the best results (highest score)

Fig. 5 Visualization of a spatial
prior with B = 5. We can see
how it captures the depth
information compared to (f)
which is a 2D prior

(a) b = 0 (b) b = 1 (c) b = 2 (d) b = 3 (e) b = 4 (f) 2D prior

Fig. 6 Dice score versus the
number of bins B at 70% and
10% of labeled images. In blue,
STIPPLE without relabeling. In
dotted red, the baseline

complete prior, B = 90, the scores decrease which shows
that discretizing the z axis is relevant.
Impact of the prior positioningAs explained in “Prior-driven
prediction function” section, the prior has to be positioned
in the test volumes. We use the predicted position refined by
an adjustment step. Table 4 shows the results with the naive
method of using only the center given by the segmentation
model and then with the adjustment step used in STIPPLE.

Aswecan see the naive approach is not sufficient and alters
the final results. The adjustment step is necessary and allows
to reach optimal results comparable to the one obtained by
using the true organ position.

Discussion and limitations

STIPPLE relies on assumptions such that the position of an
organ in (w,h) varies slightly compared to the variations in
z. Thus, there could be an issue when strong rotations (e.g.,
of the patient) occur, or for data mixing various acquisition
directions (axial/coronal/sagittal). In this case, our approach
would require a (manual or automatic) method to register
with respect to those variations.

A second problem could emerge for atypical cases, for
example, for patients with situs inversus where the major
abdominal organs are reversed from their normal positions.
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Table 4 Impact of the prior
positioning on the final results

Proportion 100% 70% 50% 30% 10%

Naive 74.48 (± 2.53) 72.84 (± 3.15) 69.90 (± 1.85) 61.82 (± 3.49) 41.80 (± 9.94)

Ours 77.53 (± 1.44) 75.02 (± 2.21) 71.74 (± 2.02) 65.99 (± 1.71) 47.41 (± 8.40)

The values in bold are the best results (highest score)

With STIPPLE, we define a spatial prior which translates the
observed average position of the organs. However, with cer-
tain conditions, it could not apply and a human professional
is needed. We must point out that those conditions represent
a fraction of the cases andmost of the available segmentation
datasets do not contain any atypical cases.

However, our method could be adapted to other imaging
modalities by adapting the prior computation or the prior
positioning depending on the problem. The main idea is the
same when a segmentation dataset with dense labels is pro-
vided.

Conclusion and perspectives

This paper introduces STIPPLE, a method that integrates
a 3D spatial prior and pseudo-labels for training FCNs in
a semi-supervised context. STIPPLE shows very important
gains especially when few images are available making it
particularly relevant in the medical field where labeled data
are limited and very expensive to obtain. Comparisons with
state-of-the-artmethods further highlight the relevance of our
method compared to attention models and semi-supervision
techniques. Future works could be to transfer a prior com-
puted on a large external dataset to another dataset with less

data, for example, from a modality to another (e.g. CT to
MRI). Another idea that could be explored is to integrate
our spatial prior at different stages of the network. It could
be done by combining the prior with a specifically designed
attention module, for example, a transformer [21].

ADetails on the network used in the study

See Table 5.

B Additional training details

In this work, we use a 2D U-Net as our main backbone FCN.
It was trained with a batch size of 6. The learning rate was
1e−4 with an inverse time decay scheduler and a decay rate
set to get a learning rate of 1e − 5 at the end of training.
We train the model for 25 epochs which corresponds to the
observed convergence in all the experiments.

The data augmentation consists of small random transla-
tions (e.g. between−15 and+15), small rotations (e.g.,−6 to
+6 degrees) and zooms (e.g., 0.9 to 1.1). This augmentation
is applied to the image and label but also to the prior. More-
over, we have another augmentation on the prior to simulate
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Table 5 Details of the
network’s blocks and layers
used in STIPPLE

Block name Output size Layer’s parameters

input 512 × 512 × 1

encoder_block_1 256 × 256 × 64 conv(3 × 3, 64) + relu

conv(3 × 3, 64) + BN + relu → res_1

max_pool(2 × 2)

encoder_block_2 128 × 128 × 128 conv(3 × 3, 128) + relu

conv(3 × 3, 128) + BN + relu → res_2

max_pool(2 × 2)

encoder_block_3 64 × 64 × 256 conv(3 × 3, 256) + relu

conv(3 × 3, 256) + BN + relu → res_3

max_pool(2 × 2)

encoder_block_4 32 × 32 × 512 conv(3 × 3, 512) + relu

conv(3 × 3, 512) + BN + relu → res_4

max_pool(2 × 2)

decoder_block_4 64 × 64 × 1024 conv(3 × 3, 1024) + relu

conv(3 × 3, 1024) + BN + relu

upsampling(2 × 2)

conv(2 × 2, 512) + BN + relu

concat(res_4)

decoder_block_3 128 × 128 × 512 conv(3 × 3, 512) + relu

conv(3 × 3, 512) + BN + relu

upsampling(2 × 2)

conv(2 × 2, 256) + BN + relu

concat(res_3)

decoder_block_2 256 × 256 × 256 conv(3 × 3, 256) + relu

conv(3 × 3, 256) + BN + relu

upsampling(2 × 2)

conv(2 × 2, 128) + BN + relu

concat(res_2)

decoder_block_1 512 × 512 × 128 conv(3 × 3, 128) + relu

conv(3 × 3, 128) + BN + relu

upsampling(2 × 2)

conv(2 × 2, 64) + BN + relu

concat(res_1)

final_prediction 512 × 512 × 64 conv(3 × 3, 64) + relu

conv(3 × 3, 64) + relu

output_probabilities 512 × 512 × nb_classes conv(1 × 1, nb_classes) + {softmax;sigmoid}

This architecture comes from U-Net [17]. Convolutions are given by conv(kernel_size, filters). The model
has 32M parameters

imperfect positioning by using an additional translation.
The code was developed with tensorflow and the training

performed on Nvidia RTX 2080Ti GPU cards.
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