
Vol.:(0123456789)1 3

International Journal of Computer Assisted Radiology and Surgery (2021) 16:1727–1736 
https://doi.org/10.1007/s11548-021-02471-5

ORIGINAL ARTICLE

Coarse‑to‑fine multiplanar D‑SEA UNet for automatic 3D carotid 
segmentation in CTA images

Junjie Wang1,2,7,8,9 · Yuanyuan Yu3 · Rongyao Yan3 · Jie Liu3 · Hao Wu4 · Daoying Geng6,7 · Zekuan Yu5,6,7,8,9,10 

Received: 6 April 2021 / Accepted: 29 July 2021 / Published online: 12 August 2021 
© CARS 2021

Abstract
Purpose  Carotid artery atherosclerotic stenosis accounts for 18–25% of ischemic stroke. In the evaluation of carotid ath-
erosclerotic lesions, the automatic, accurate and rapid segmentation of the carotid artery is a priority issue that needs to be 
addressed urgently. However, the carotid artery area occupies a small target in computed tomography angiography (CTA) 
images, which affect the segmentation accuracy.
Methods  We proposed a coarse-to-fine segmentation pipeline with the Multiplanar D-SEA UNet to achieve fully automatic 
carotid artery segmentation on the entire 3D CTA images, and compared with other four neural networks (3D-UNet, RA-
UNet, Isensee-UNet, Multiplanar-UNet) by assessing Dice, Jaccard similarity coefficient, sensitivity, area under the curve 
and average hausdorff distance.
Results  Our proposed method can achieve a mean Dice score of 91.51% on the 68 neck CTA scans from Beijing Hospital, 
which remarkably outperforms state-of-the-art 3D image segmentation methods. And the C2F segmentation pipeline can 
effectively improve segmentation accuracy while avoiding resolution loss.
Conclusion  The proposed segmentation method can realize the fully automatic segmentation of the carotid artery and has 
robust performance with segmentation accuracy, which can be applied into plaque exfoliation and interventional surgery 
services. In addition, our method is easy to extend to other medical segmentation tasks with appropriate parameter settings.
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CTA​	� Computed tomography angiography
CNN	� Convolutional neural network

DSA	� Digital subtraction angiography
ECAD	� Extracranial atherosclerotic disease
C2F	� Coarse-to-fine
Sen	� Sensitivity
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AUC​	� Area under the curve
AVD	� Average Hausdorff distance

Introduction

Stroke is the second most common cause of mortality and 
the third most common cause of disability worldwide [1]. 
Up to 88% of strokes are ischemic in nature [2]. Extracranial 
atherosclerotic disease (ECAD), primarily, carotid artery 
atherosclerotic stenosis, accounts for 18–25% of ischemic 
stroke [3, 4]. Atherosclerotic plaque can encroach on the 
lumen and cause stenosis. Plaque disruption and thrombus 
formation lead to progressive narrowing of the lumen and 
clinical events (stroke, transient ischemic attack, etc.). Now-
adays, the imaging methods used in the evaluation of carotid 
artery disease mainly include CTA, ultrasound, magnetic 
resonance imaging (MRI) and digital subtraction angiogra-
phy (DSA). Among them, CTA has been widely used and 
as an important reference for treatment and decisions due to 
its high resolution, rapid scanning and 3D imaging results 
[5]. The localization and segmentation of the carotid artery 
is an important antecedent step for the evaluation of carotid 
atherosclerotic plaques. In clinical practice, this task mainly 
relies on the physician's manual annotation of the medical 
images, which is subjective and tedious.

In the studies of carotid artery segmentation, research-
ers have developed various methods, such as mathematical 
morphology [6], adaptive segmentation [7], region growing 
algorithm [8] and the level set method [9]. However, these 
methods are all semi-automatic, and need to select the initial 
point manually. With the development of machine learning 
technology, more and more researchers apply deep learn-
ing method to the medical image segmentation tasks, which 
have achieved remarkable performance. Zhou et al. [10] 
used CNN and UNet to segment carotid media-adventitia 
and lumen-intima boundary from ultrasound slices, but the 
method needs to select the region of interest (ROI) manually. 
Moreira et al. [11] used UNet to segment the longitudinal 
ultrasound images of carotid artery. However, the field of 
view (FOV) of ultrasound screening is not large, and can-
not acquire the 3D images, which is still insufficient for the 
decision-making of clinical decisions compared with CTA. 
Pan et al. [12] used the cascaded optimized 3D-UNet to 
segment the MICCAI 2009 carotid bifurcation CTA data-
set [13], but the experience-based ROI cropping methods 
and the unbalanced dataset (the ratio of training set and test 
set was 15:41) reduce segmentation accuracy, which is only 
82.3%. Ziegler et al. [14] proposed an improved DeepMedic 
network to segment the common carotid artery, internal 
carotid artery and external carotid artery on the contrast-
enhanced MR angiography (CE-MRA) images. But it needs 
to manually divide the left and right carotid artery area and 

perform post-processing operations with a low segmenta-
tion accuracy.

For the entire 3D CTA image, it is usually hard to be 
fed into the segmentation network directly due to the lim-
ited computing resources. If use the entire CTA image with 
down-sampling fed into the segmentation network, it will 
cause another resolution loss problem, which will reduce 
the segmentation accuracy. Moreover, if a random patch 
sampling strategy is adopted, due to the serious imbal-
ance between the objective regions and the background as 
shown in Fig. 1, most patches will only contain the back-
ground, which will bring additional calculation costs without 
improvement of segmentation accuracy. Therefore, there are 
two major problems in the 3D carotid artery CTA image 
segmentation, one is automatically carotid artery segmen-
tation without selecting the ROI manually, another is the 
data imbalance, which the object area is much less than the 
background. In order to address these challenges, this paper 
proposed a C2F segmentation pipeline with the Multiplanar 
D-SEA UNet to segment the carotid artery from the entire 
3D CTA image automatically. The experiment results show 
that the C2F segmentation pipeline can avoid resolution 
loss and improve segmentation accuracy. At the same time, 
Multiplanar D-SEA UNet has robust performance in various 
CTA cases.

The main contribution of our paper includes:

1.	 We introduced a coarse-to-fine segmentation pipeline, 
developed a coarse-to-fine carotid artery segmentation 
pipeline based on CTA images, which can realize the 
automatic segmentation of the full resolution 3D images.

2.	 We proposed a segmentation network named Multipla-
nar D-SEA UNet by extending Multiplanar-UNet com-
bined with the deep-supervision mechanism, squeeze 
and excitation block, and attention block for better fea-
ture extraction.

3.	 Experiments on the clinical carotid artery datasets from 
Beijing Hospital demonstrate the effectiveness of pro-
posed method in both automatic segmentation and seg-
mentation accuracy and can be extended to other medi-
cal images.

Materials and methods

Dataset

68 neck CTA scans from Beijing Hospital were enrolled 
in this study. The CT scanners used to acquire the samples 
come from three manufacturers (Toshiba, Siemens and 
General Electric Company). Scan parameters include the 
average resolution 512 × 512 × 425, and axial scan interval 
0.5–1 mm. The basic characteristics of the patients include 



1729International Journal of Computer Assisted Radiology and Surgery (2021) 16:1727–1736	

1 3

the average age of 68.3 (standard deviation (SD) ± 12.8), 
gender distribution (78% male, n = 53; 22% female, n = 15) 
and time range of image inspection (2015–2020). In this 
study, 50 and 18 cases were randomly used as the training 
and test set.

Two neuroradiologists with 7 and 12 years of dedicated 
experience annotated the carotid artery masks as ground 
truth. The annotation task was performed using 3D Slicer 
(version 4.10.2, www.​slicer.​org) with the spherical paint. 
If they are inconsistent, a senior expert will make the final 
judgment.

Coarse‑to‑fine segmentation pipeline (C2F)

The C2F segmentation pipeline contains coarse and fine seg-
mentation modules, and each module employs a similar deep 
learning segmentation network. The coarse segmentation 
module automatically detects the coarse region of the carotid 
artery from the entire CTA image. Based on the candidate 
regions acquired from the coarse module, the aim of the 
fine segmentation module is to achieve the accurate carotid 
artery boundary segmentation results, as shown in Fig. 2.

Fig. 1   Carotid annotation (red regions) and background tissues in CTA images. From left to right are 3D diagrammatic sketch and transverse 
plane

Fig. 2   Proposed C2F segmentation pipeline for the entire 3D CTA image

http://www.slicer.org
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In coarse segmentation process, the original image Ir is 
down-sampled, which will be sent to the trained segmenta-
tion network to obtain the coarse segmentation mask Im . 
Then, the region of interest (ROI) of the carotid artery in Im 
can be calculated. According to the ROI, the carotid region 
Icr can be obtained by cropping the original image I ′

r
 . The 

purpose of coarse segmentation is to get the coarse region 
of carotid, so the down-sampling operation will not affect 
the final results.

In fine segmentation process, the carotid artery region Icr 
predicted from the coarse segmentation is sent to the trained 
segmentation network to obtain the fine carotid segmentation 
If  . Then padding If  with the area which is cut off in the crop-
ping step, the final result of carotid artery segmentation Ip can 
be obtained.

Multiplanar D‑SEA UNet

In this work, we proposed a new segmentation network named 
Multiplanar D-SEA UNet as C2F pipeline’s segmentation net-
work. It includes the recently proposed multiplanar 3D image 
preprocessing method [15] and our proposed D-SEA UNet 
network, which is extended from UNet [16] with the deep-
supervision mechanism [17], squeeze and excitation block [18] 
and attention block [19].

As shown in Fig. 3, the 3D image input of size w × h × d 
is sampled into multiple slice sequences using trilinear and 
nearest neighbor interpolation along multiple direction axes. 
For each slice sequence, the D-SEA UNet segmentation net-
work is used to predict a full 3D candidate segmentation result 
v̂ ∈ ℝ

w×h×d×C , where C is the total number of classes. At last, 
map all 3D candidate segmentation results to a final segmenta-
tion P̂ ∈ ℝ

w×h×d×C  by the fusion model.
The fusion model is a simple linear regression model, 

which calculates P̂ by a weighted sum of v̂ . It is defined as 
follows:

where M = 6 is the number of 3D candidate segmentation 
results. v̂m,k denotes the probability of class k in the mth 
candidate segmentation result v̂m . Wm,k ∈ ℝ

w×h×d weights 
the class k as predicted from v̂m . �k is bias parameter. The 
number of classes C is set to 2 in this study, including carotid 
artery and background. The parameters of fusion model are 
obtained through training.

In the proposed D-SEA UNet segmentation network, the 
basic architecture UNet consists of an encoder and a decoder 
which symmetrically distributes on the both sides. And the 
features of different levels in the encoder are merged into the 
decoder by skip connection. To extract deeper features, this 
paper sets the base filter to 90 and the network depth to 5.

The deep-supervision mechanism performs 1 × 1 convolu-
tion and up-sampling operations on the output of each layer 
in decoder, then superimposes them on the final network out-
put, as shown in the dashed branches on the right of D-SEA 
UNet in Fig. 3.

The squeeze and excitation block (SE) is added after the 
convolution operation in decoder, which is used to empha-
size important channels and ignore less important ones. The 
detailed structure of SE is shown in Fig. 4a. For the input 
feature map U ∈ ℝ

w×h×c , use a global average pooling layer 
to produce the vector Z ∈ ℝ

1×1×c , then the channel-specific 
descriptor is defined as:

where w1 ∈ ℝ
c×

c

r and w2 ∈ ℝ
c

r
×c are weights of two fully 

connect layers. The parameter r = 4 is the channel squeeze 
factor. �(⋅) is ReLU activation and �(⋅) is sigmoid layer. The 
output of SE block is defined as Û =

[
ẑ1u1, ẑ2u2,… , ẑcuc

]
 , 

where ẑi indicates the importance of the ith channel in U , 
which is either scaled up or down.

(1)P̂k =

M∑

m=1

Wm,k ⋅ v̂m,k + 𝛽k (0 < k ≤ C)

(2)ẑ = 𝜎
(
w1𝛿

(
w2z

))

Fig. 3   The proposed Multiplanar D-SEA UNet architecture
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In addition, a simplified attention block was added to the 
skip connection. It takes the encoder features and the cor-
responding decoder features as input. While retaining the 
original feature information of encoder, the decoder features 
focus more attention on the carotid artery. Figure 4b shows 
the detailed structure. It is worth mentioning that the atten-
tion block was only used in fine segmentation.

The loss function of D-SEA UNet is based on the cat-
egorical cross-entropy, which is defined as follows:

where N is the number of pixels in a batch during training. 
yk
n
 is the binary label of pixel n to the class k in ground truth 

y . ŷk
n
 is the probability of pixel n belonging to class k , which 

is the output of the softmax layer in D-SEA UNet.

Implementation details

In the image preprocessing, the outlier-robust scaling is 
applied for data normalization, which scales intensity values 
according to the median and interquartile range. For each 
sampled image in a batch, this paper applied the Random 
Elastic Deformations augmentation strategy [20] with a 
probability of 1/3. The elasticity constants and deformation 
intensity multipliers are sampled uniformly from (20, 30) 
and (100, 500).

The iteration of the segmentation network is 150, and the 
batch size is 8. Use the Adam optimizer to update the gradi-
ent with an initial learning rate of 0.0005, the momentum 
β1 = 0.9 and β2 = 0.999. If the network stabilizes after 10 
epochs, the learning rate will reduce to half. The experiment 
was deployed under the Keras framework and trained with 
NVIDIA Titan GPU.

(3)L(y, ŷ) = −
1

N

N∑

n=1

C∑

k=1

yk
n
log ŷk

n

Results and analysis

Evaluation metrics

Five evaluation metrics used to evaluate the performance 
of the segmentation network in this study, including Dice 
coefficients (Dice), Jaccard similarity coefficient (Jaccard), 
Sensitivity (Sen), Area Under the Curve (AUC) and Average 
Hausdorff Distance (AVD) [21]. Among them, Dice is the 
most used metric in validating medical volume segmenta-
tions, which measure the similarity between the ground truth 
and segmentation result, which is defined as:

where TP, FP, and FN represent the amount of true posi-
tive, false positive and false negative, respectively. Jaccard 
is given by the expression:

Sensitivity measures the portion of positive voxels in the 
ground truth that is also identified as positive in the segmen-
tation result, and it is defined as follows:

AUC is the area under the ROC curve (Receiver Operat-
ing Characteristic). For the case where a segmentation result 
is compared to a ground truth, we consider a definition of 
the AUC according to [22], namely the area of the trapezoid, 
which is given by:

(4)Dice =
2TP

FP + 2TP + FN

(5)Jaccard =
TP

TP + FP + FN

(6)Sen =
TP

TP + FN

(7)AUC = 1 −
1

2

(
FP

FP + TN
+

FN

FN + TP

)

Fig. 4   Blocks used in D-SEA 
UNet. c represents the channels 
of the feature map. a Squeeze 
and excitation (SE) block. b 
Attention block
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High values indicate good segmentation results in these 
four metrics.

AVD mainly calculates the distance between two finite 
point sets. The definition of AVD is as follows:

where A and B are the ground truth and segmentation result 
voxel sets respectively. N is the number of points in voxel set 
A and ||a − b|| is the Euclidean distance. A lower value means 
that the segmentation result is closer to the ground truth.

Comparison with different networks

As there is no published prior work for comparison, in order 
to show the performance of our proposed method for 3D 
carotid segmentation, we compared it with the 3D image 
segmentation classic networks such as 3D-UNet [23], RA- 
UNet [24] and Isensee-UNet [17], and the state-of-the-art 
architecture Multiplanar-UNet [15]. Among them, 3D-UNet 
is a simple extension of UNet. RA-UNet is an improved 
3D UNet network with adding residual module [25] and 
attention mechanism. Isensee-UNet adds deep-supervision 
to 3D-UNet and uses an equally weighted Dice coefficient.

Firstly, in order to evaluate the performance of the 
designed C2F segmentation pipeline, we compared the 
segmentation result of each network before and after using 
the C2F pipeline as shown in Table 1. It can be observed 
that the segmentation result of different networks under the 
C2F pipeline is improved with a 9.81–16.11% increase in 
Dice score, indicating that the C2F pipeline can effectively 
improve the segmentation performance and avoid resolu-
tion loss.

Then, compared with other networks, our proposed Mul-
tiplanar D-SEA UNet under the C2F pipeline achieved the 

(8)

�
AVD(A,B) = max (d(A,B), d(B,A))

d(A,B) =
1

N

∑
a∈A

min
b∈B

��a − b��

best Dice 91.51%, the best Jaccard 84.46%, the best Sen 
89.62%, the best AUC 0.948 and the best AVD 0.21 mm, 
which is closest to the ground truth. In addition, the metrics 
of Multiplanar-UNet and Multiplanar D-SEA UNet are sig-
nificantly better than other 3D-UNet networks. It means that 
in the 3D carotid artery segmentation task, the multiplanar 
2D segmentation network is better than the 3D segmenta-
tion network, which can capture the details of features from 
different views.

Figure 5 is the box plot of different networks’ evaluation 
metrics under the C2F pipeline. The box plot is a statisti-
cal chart to display the data distribution. It is often used to 
observe shape information such as the median, outlier and 
distribution interval of the data. It can be seen the results of 
3D-UNet, RA-UNet and Isensee-UNet have a wide range 
of distribution, which indicates that their test results are 
greatly affected by the test samples. By contrast, the results 
of Multiplanar-UNet are more concentrated, and Multipla-
nar D-SEA UNet has the best and densest data distribution 
results, showing that Multiplanar D-SEA UNet has the better 
robustness.

The 3D display of the carotid artery segmentation results 
under the C2F pipeline is shown in Fig. 6. In case01–03, it 
can be seen that (a) 3D-UNet, (b) RA-UNet are difficult to 
ensure the continuity of the carotid artery. (c) Isensee-UNet 
performs well in case 03, but there are ruptures in case01 
and case02. (d) Multiplanar-UNet appears a rupture in the 
lower part of the right carotid artery in Case01. Only (e) 
Multiplanar D-SEA Unet retains the integrity and continu-
ity of blood vessels to the greatest extent, showing the best 
performance. In Case02, the four networks (a), (b), (c) and 
(d) are all susceptible to the influence of the background 
tissues, which can cause over- segmentation. (e) Multi-
planar DSA-UNet exhibits the slightest over-segmentation 
and is closer to the ground truth, which is stably in various 
CTA cases.

Table 1   Evaluation metrics for 
different segmentation networks 
in C2F segmentation pipeline

Segmentation networks Metrics

Dice (%) Jaccard (%) Sen (%) AUC​ AVD (mm)

3D-UNet [23] 64.59 49.47 60.04 0.800 4.14
C2F 3D-UNet 80.70 69.97 77.56 0.887 2.48
RA-UNet [24] 69.85 54.60 65.02 0.825 2.17
C2F RA-UNet 80.47 69.18 77.84 0.889 2.13
Isensee-UNet [17] 70.88 55.35 67.92 0.839 2.07
C2F Isensee-UNet 85.51 75.79 85.91 0.929 0.97
Multiplanar-UNet [15] 79.56 66.26 76.31 0.881 0.50
C2F Multiplanar-UNet 90.14 82.25 88.24 0.941 0.31
Multiplanar D-SEA UNet 81.70 69.17 79.93 0.899 0.35
C2F Multiplanar D-SEA UNet 91.51 84.46 89.62 0.948 0.21
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Ablation experiments

In order to evaluate the contributions of the added compo-
nents in the proposed C2F Multiplanar D-SEA UNet, we 
conducted a series of ablation experiments.

As shown in Table 2, the first row represents the results 
that use the proposed method and the remaining rows cor-
respond to the results after removing a component.

According to the first two rows, the designed C2F 
pipeline makes a great contribution to the segmentation 
accuracy as mentioned in the previous section, indicat-
ing that the C2F pipeline can be used as an effective 
processing technology for segmentation when the objec-
tive regions are far less than the background. Then, the 
first and third rows reveal that the deep-supervision 
mechanism can increase the mean value of each metric 
by combining the deep and shallow features in decoder. 
As shown in the first and fourth rows, the SE block can 
also improve the network’s performance, which aims to 
emphasize the important channels after the convolution 
operation. Finally, we observed that the attention block 

related to the first and fifth rows is shown to contribute 
to the segmentation accuracy.

Conclusion

In this paper, we proposed a C2F pipeline with the Mul-
tiplanar D-SEA UNet to segment the carotid artery from 
the entire 3D CTA images automatically. The experiment 
results of the clinical datasets indicate that our approach 
is robust, and it remarkably outperforms state-of-the-art 
3D image segmentation methods used in carotid artery 
dataset. We also confirmed by ablation experiments that 
the C2F pipeline, deep-supervision mechanism, SE block 
and attention block are considerably useful techniques for 
learning discriminative features and improving segmenta-
tion performance. This methodology can also be applied 
to the different CTA images from different clinical centers 
with appropriate parameter settings, which does not need 
the physicians to intervene. All the segmentation process 
is automatic and can be applied into the clinical practice.

Fig. 5   Box plots of different networks’ evaluation metrics under the C2F pipeline
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Fig. 6   3D displays of segmentation results under the C2F pipeline. 
Columns from left to right are the segmentation results of different 
networks and the ground truth. a 3D-UNet b RA-UNet c Isensee-

UNet d Multiplanar-UNet e Multiplanar D-SEA UNet. Rows form up 
to down are the samples (Case01–04)

Table 2   Ablation experiments 
of the added components

“ − ” represents the removal of a component from the proposed C2F Multiplanar D-SEA UNet

Segmentation networks Metrics

Dice (%) Jaccard (%) Sen (%) AUC​ AVD (mm)

C2F Multiplanar D-SEA UNet 91.51 84.46 89.62 0.948 0.21
 − (C2F) 81.70 69.17 79.93 0.899 0.35
 − (Deep-supervision) 90.52 82.90 87.31 0.936 0.27
 − (SE block) 91.13 83.85 88.84 0.944 0.25
 − (Attention block) 91.01 83.66 88.75 0.943 0.27
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