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Abstract
Purpose  The purpose of this study is to provide a simple, feasible and effective patient-to-image registration method for 
robot-assisted long bone osteotomy, which has rarely been systematically reported. The practical requirement is to meet the 
accuracy of 1 mm or even higher without bone-implanted markers.
Methods  A hybrid feature-based registration method termed CR-RAMSICP is proposed. Point-based coarse registration 
(CR) is accomplished relying on the optical retro-reflective markers attached to the tracked rigid body fixed out of the bone. 
In surface-based fine registration, an improved iterative closest point (ICP) algorithm based on the range-adaptive match-
ing strategy (termed RAMSICP) is presented to cope with the robust precise matching between the asymmetric patient and 
image point clouds, which avoids converging to a local minimum.
Results  A series of registration experiments based on the isolated porcine iliums are carried out. The results illustrate that 
CR-RAMSICP not only significantly outperforms CR and CR-ICP in the accuracy and reproducibility, but also exhibits bet-
ter robustness to the CR errors and less sensitiveness to the distribution and number of fiducial points located in the patient 
point cloud than CR-ICP.
Conclusion  The proposed registration method CR-RAMSICP can stably satisfy the desired registration accuracy without the 
use of bone-implanted markers like fiducial screws. Besides, the RAMSICP algorithm used in fine registration is convenient 
for programming because any complex metrics or models are not involved.
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Introduction

Orthopedic robot systems (ORSs) have been widely applied 
to clinical surgery of knees, hips, spines, skulls, zygomas, 
maxillofacial, teeth, etc., greatly improving the safety, accu-
racy and efficiency of traditional artificial surgery [1–4]. 
During ORS-assisted surgery, surgical planning is first cus-
tomized by the surgeon using medical images of patient’s 
anatomy and then guides the robot system to perform the 
required manipulation tasks (e.g., osteotomy and target 
positioning). For this purpose, patient-to-image registration 
(hereinafter referred to as registration) is necessary, which 

largely determines the surgical outcome. Its essence is to find 
a rigid transformation between the intra-operative patient’s 
anatomy (called patient space) and the corresponding CT 
images (called image space) using an appropriate registra-
tion method [5]. Generally, marker-based paired-point regis-
tration (MBPPR) and surface-based marker-less registration 
(SBMLR) methods have been developed to adapt to different 
surgical objects, conditions and procedures [6, 7].

MBPPR is commonly acknowledged to be high-accuracy 
[8, 9]. No fewer than three non-collinear artificial markers 
which significantly differ from patient’s anatomy in X-ray 
absorptivity, are frequently inserted into the bone [10–12], 
or fixed out of patient’s anatomy with an extending bracket 
[3], or glued onto the skin surface [13]. The paired fidu-
cial points (FPs) in patient and image spaces determined by 
these markers can be manually or automatically obtained 
[14], and then the transformation between them can be 
solved by the representative least-squares fitting method 
[15]. However, MBPPR faces several practical challenges 
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involving: introducing invasive bone-implanted markers not 
only requires time-consuming preparation, but also causes 
discomfort even complications to patients [11]; skin-adhered 
markers may slip or fall off, which negatively impacts the 
registration accuracy [5]; the target registration error (TRE) 
may be significantly amplified with the distance between 
the external markers and the patient’s anatomy [3]; artifacts 
of metal markers produced in CT images severely limit the 
segmentation and detection of markers [16].

Accordingly, SBMLR attracts more attention. The patient 
point cloud (PPC) acquired from the anatomic surfaces using 
a scanner, or a stereo camera [6, 17–20], or a digital touch 
probe [9, 11, 21] is frequently registered to the correspond-
ing image point cloud (IPC) extracted from the CT images 
via the most representative iterative closest point (ICP) 
algorithm [22]. Generally, the PPC acquired by scanners 
or stereo cameras contains tens to hundreds of thousands 
densely distributed FPs to characterize a relatively com-
plete anatomic surface, which is closest to the IPC in the 
number of FPs, thus greatly increasing the computing time. 
Furthermore, numerous disturbances (e.g., noises, outliers) 
existing in the PPC and/or IPC, caused by the uncertainty 
of sampling and image segmentation of bone surface, have 
adverse effects on the registration accuracy and robustness. 
Some reported algorithms [23–26] aiming at solving simi-
lar issues require the establishments of complex metrics or 
models, which increase the calculation complexity and pro-
gramming difficulty. In contrast, the PPC collected by suc-
cessively touching the exposed bone surface using a digital 
touch probe, usually contains only fewer than one hundred 
sparsely distributed FPs due to the limited accessibility and 
operation time [6], which is seriously asymmetric to the IPC 
in the number and distribution. In this case, numerous FPs 
regarded as possible disturbances in the IPC that cannot 
accurately match with those in the PPC, which may lead 
to a wrong registration trend. Besides, another marker-less 
scheme is to pick up the paired anatomic landmarks in image 
and patient spaces [5, 27, 28].

The goal of this study is to provide a simple, feasible, 
robust and high-accuracy (i.e., the TRE is about 1 mm) reg-
istration scheme for robot-assisted long bone osteotomy, 
which has rarely been systematically reported to our knowl-
edge. Other practical requirements mainly involve that (1) 
invasive bone-implanted and skin-adhered markers are unde-
sirable; (2) the exposed bone surface should be as small as 
possible; (3) the intra-operative real-time registration and 
tracking performance of the patient’s bone needs to be guar-
anteed; however, scanner-based and stereo camera-based 
schemes are usually subject to this limitation due to large 
amounts of data to be processed; (4) anatomic landmark-
based method is not absolutely reliable because the long 
bone surfaces are usually too smooth to find distinguishing 
features.

Based on the consideration of the reported methods and 
practical requirements, we present a hybrid feature-based 
patient-to-image registration method termed CR-RAMSICP 
and integrate it into our self-developed ORS. In this paper, 
the ORS architecture is first outlined. Then, the proposed 
CR-RAMSICP is elaborated, in which coarse and fine regis-
trations adopt different fiducial data and algorithms, respec-
tively. The initial alignment between the PPC collected by 
the tracked optical probe and the IPC extracted from the 
CT datasets is accomplished, relying on the retro-reflective 
markers (RRMs) attached to the tracked rigid body which is 
rigidly fixed out of the bone with an extending bracket. The 
fine transformation between the PPC and the IPC is solved 
by an improved ICP algorithm based on the range-adap-
tive matching strategy (termed RAMSICP). Subsequently, 
we experimentally evaluate the accuracy of the proposed 
method and discuss some important impact factors. The reg-
istration results of isolated porcine iliums indicate that CR-
RAMSICP is effective for accuracy improvement without 
bone-implanted markers, and exhibits great robustness to the 
CR errors, and low sensitivity to sampling with the tracked 
probe. Finally, the conclusions and prospects are given.

Context

The self-developed ORS is modularized into tracking, 
patient, image and robot subsystems (see Fig. 1). A high-
accuracy infrared optical tracking system (Polaris Vega®, 
NDI, Canada) is selected as the tracking subsystem, includ-
ing a set of near-infrared (NIR) sensors, a tracked rigid 
body and a tracked probe. Each tracked tool is localized 
by multiple attached wireless RRMs which can be tracked 
by the NIR sensors automatically. To construct the patient 
subsystem, the tracked rigid body is rigidly fixed out of an 
isolated porcine ilium (instead of a real patient) by insert-
ing an extending bracket into the porcine ilium. Note that 
in clinical application, a special bone clip equipped on 
the extending bracket can avoid the invasiveness to a real 
patient. The image subsystem mainly provides an integrated 
surgical navigation software programmed by Python based 
on the open source software platform “3D Slicer” to guide 
the operation processes, which supports image processing, 
three-dimensional (3D) visualization, surgical planning, tool 
calibration, registration, intra-operative real-time naviga-
tion, etc. The developed software runs on a computer with 
an Intel (R) core (TM) i7-1065G7 (1.30 GHz) processor, 
16 GB RAM, and the Windows 10 operating system. The 
robot subsystem is constructed by a six-degree-of-freedom 
robot (UR5, Universal Robots, Denmark) equipping a sur-
gical tool, which can perform a full-automatic osteotomy 
process in strict accordance with the planned tool trajectory.
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Each rigid transformation between any two coordinate 
systems (CSs) determined by the corresponding subsys-
tems is defined and illustrated in Fig. 1, and mathematically 
described by a homogeneous transformation matrix:

 where tar
ref
� represents the transformation matrix from the 

reference CS ref to the target CS tar and R and t are the 
rotation matrix and translation vector of tar

ref
� , respectively. 

The solution principles for several key matrices are briefly 
described as follows:

(1)	 P
G
� and TP

G
� can be tracked by the NIR sensors directly, 

and then TP
P
� can be calculated as follows:

(2)	 T
B
� can be computed by combining the robot kinematics 

and the four-point calibration method [29].
(3)	 To calculate B

G
� , an optical calibrator was customized 

(see Fig. 2). First, the calibrator was installed on the 
surgical tool to ensure that the current tool center point 
ptcp of the surgical tool coincides with the calibration 
groove bottom point pgbp which can be directly tracked 
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(2)TP
P
� = (P

G
�)−1 ⋅ TP

G
�

by the NIR sensors. Their relative movement was con-
strained by a clamping device. Then, the tool center 
point was controlled by the robot to reach any three 
non-collinear positions p1, p2 and p3 in turn which were 
used to establish the auxiliary CS A. Obviously, A

B
� and 

A
G
� are easy to determine, and thus B

G
� can be calcu-

lated as follows:

(4)	 All surgical tool poses planned in image space should 
be eventually transmitted to the robot controller. Con-
sequently, B

I
� is necessary and can be calculated as fol-

lows:

 where P
I
� represents the patient-to-image registration 

matrix to be solved by our proposed method.

Hybrid feature‑based registration

Figure 3 illustrates the main procedures of the proposed 
hybrid feature-based registration method.

(3)B
G
� = A

G
� ⋅ (A

B
�)−1

(4)I
B
� = (B

G
�)−1 ⋅ P

G
� ⋅ (P

I
�)−1

Fig. 1   The self-developed ORS composition and the transformation relationships between CSs. G: global CS determined by the NIR sensors. P: 
patient CS determined by the RRM centers. TP: probe CS. B: robot base CS. T: surgical tool CS. I: image CS
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Data acquisition

(1)	 FPs acquisition in image space. The CT datasets of 
the patient subsystem were first scanned by a C-arm 
(ARCADIS Varic, Siemens, Germany), characterized 
by a 0.625 mm slice thickness and a 0.5 mm pixel size, 
then were filtered and denoised. Next, four RRMs 
attached to the tracked rigid body and the isolated por-
cine ilium were segmented out using a threshold-based 
method [30], and Fig. 4a shows their reconstructed vir-
tual models. Subsequently, the IPC (see Fig. 4b) was 

extracted from the surface of the virtual porcine ilium 
model, represented as Y = {yj} for j = 1, …, NI.

(2)	 FPs acquisition in patient space. Each FP was collected 
successively by a single touch of the porcine ilium sur-
face with the tracked probe. These FPs were mapped 
into the patient CS using the transformation illustrated 
in Fig. 1 to compose the PPC, represented as X = {xi} 
for i = 1, …, NP, and their distribution pattern shown in 
Fig. 4c satisfies that (i) eight sub-areas (SAs) denoted 
as SA1-SA8 were set on the unilateral smooth surface 

Fig. 2   Schematic diagram of calibration between the tracking and robot subsystems

Fig. 3   Overview of the proposed method
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of the porcine ilium; (ii) each SA contains five ran-
domly distributed FPs.

It should be clarified that during above-mentioned pro-
cedures, there must be no relative movement between the 
tracked rigid body and the porcine ilium. Besides, during 
clinical practice, the medical fixator attaching reference 
markers usually needs to be clamped on the real patient’s 
bone with a special bone clip intra-operatively, and thus 
intra-operative imaging is necessary, which provides better 
reliability and safety than pre-operative imaging.

Coarse registration

The RRMs can provide more reliable features than ana-
tomic landmarks, and their geometric centers FP = {FP1, 
FP2, FP3, FP4} (see Fig. 1) can be tracked and mapped into 
the patient CS automatically. In image space, four virtual 
spherical fiducials with the same 11.5 mm diameter as the 
real RRMs were interactively placed through the built-in 
tool “Fiducials” of 3D Slicer, and their centers FI = {FI1, 
FI2, FI3, FI4} were adjusted to be consistent with those of 
the corresponding RRM models as much as possible (see 
Fig. 4a). Note that the virtual RRM models show slight 
deformations and partial defects, and thus the interactive 
placement of the virtual fiducials is prone to large artifi-
cial errors. The coarse registration (CR) matrix P

I
�coarse 

represented by the transformation between FP and FI can 
be calculated by the singular value decomposition (SVD) 
algorithm [8]. Then the PPC X and the IPC Y can be ini-
tially aligned by updating X to CRX = {CRxi}, namely

Fine registration using RAMSICP algorithm

The fine registration matrix P
I
�fine represented by the trans-

formation between CRX and Y is calculated using the pro-
posed RAMSICP algorithm which is an extension of stand-
ard ICP algorithm to avoid falling into a local optimum and 
wrong registration tendency caused by poor CR and the large 
asymmetry of CRX and Y in the number and distribution. Fig-
ure 5 shows the basic principle of the RAMSICP algorithm.

The k-distance neighborhood (k-DN) si of CRxi is selected 
as the matching sub-range, excluding numerous possible 
disturbances (e.g., outliers or noises) from X. Define the 
complete matching range set S as follows:

(5)CR
� = P

I
�coarse ⋅ �

Fig. 4   a 3D virtual model of the patient subsystem and placed virtual fiducials (blue points). b The IPC with 194 568 FPs. c The PPC with 40 
FPs (blue points)

Fig. 5   Schematic diagram of the RAMSICP algorithm
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 where ki represents the size of si. In iterations, only the 
FPs limited in S can participate in registration. Thus, Y is 
updated to MRY = {MRyil(i)}, namely

Then, Each FP in MRY closest to CRxi is searched out to 
compose the point set SY = {Syi}. ki determines the IPC 
samples in iterations and thus affects the registration accu-
racy. We assume that whether ki is so large that numer-
ous outliers and noises exist in MRY or too small to retain 
essential FPs in MRY, it is likely to cause mismatches. Con-
sequently, a suitable ki seems necessary to minimize the 
registration error. In this study, considering the various 
CR results and local distributions of the IPC samples near 
each FP in the PPC, ki is adjusted adaptively by multiply-
ing a positive scale factor Li and the Euclidean distance 
Di between the corresponding closest point pairs CRxi and 
Syi, namely

where Li is set as a uniform value L for simplification.
Actually, certain mismatched point pairs may be una-

voidable due to the asymmetry of the PPC and the IPC. 
However, in this study, we disuse the rejection strategy 
[23] due to the few FPs in the PPC, and omit the weight-
ing process due to the insignificant contribution to the 
accuracy improvement [31]. The objective function dh is 
defined to iteratively update the current transformation:

(6)� =
{
si||||si −

CRxi
||| < ki

}
for i = 1,… ,NP

(7)MR
� = �∩� ≠ �

(8)ki = Li ⋅ Di

where h is the iteration number, and P
I
�fine is solved by 

the SVD method [8]. Iterations are terminated when 
dh+1 − dh < 𝜀 where ε is set to 10−5 mm. Eventually, P

I
� can 

be calculated as follows:

Results and discussion

Experimental preparation

A series of experiments were performed to demonstrate the 
effectiveness of our proposed CR-RAMSICP in improving the 
registration accuracy characterized by the TRE, by compari-
son with that of CR and CR combined with the standard ICP 
algorithm (termed CR-ICP). First, depending on the planned 
osteotomy trajectory, a small bone block was resected from 
the compete isolated porcine ilium using our self-developed 
ORS (see Fig. 6), and the retained part was used for experi-
ments. Then, follow our aforementioned procedures to acquire 
FPs. The TRE was computed using four distinct endpoints (see 
Fig. 6b) on the resected surface of the retained part, which can 
be expressed mathematically as:

(9)dh =

√√√√
min

NP∑
i=1

|||S�i,h −
P
I
�fine,h ⋅

CR�i,h
|||
2

(10)P
I
� = P

I
�coarse ⋅

P
I
�fine

(11)TRE =

√√√√1

4

4∑
n=1

|||Yn − P
I
� ⋅ Xn

|||
2

Fig. 6   a Osteotomy scene. b Effects of planned and actual osteotomy. The target points in image and patient spaces are marked with red and 
blue, respectively
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where Xn represents the nth target point collected by the 
tracked probe in patient space and Yn represents the corre-
sponding one placed interactively in image space. It should 
be clarified that the operation processes of collecting the 
target point coordinates were very carefully carried out, 
and each real target point coordinate was estimated by the 
mean of the corresponding measured ones in ten repeated 
measurements.

Effect of the scale factor

To investigate the impact of the scale factor L involved 
in the RAMSICP algorithm on the registration accuracy, 
FPs located in three different SA combinations (denoted as 
Combs. 1, 2 and 3) were selected to register with the IPC, 
respectively. The TRE changes corresponding to Combs. 
1, 2 and 3 with different scale factors varying from 1 to 5 
are shown in Fig. 7, which first decrease and then increase. 
Note that an optimal scale factor range Ropt corresponding 
to the minimum TRE can be reached in each case, but is 
different in different registrations.

However, it is very difficult to preset an optimal scale 
factor Lopt located in Ropt. To enhance the fault tolerance 
of the algorithm, in all subsequent experiments, the ref-
erence range (1 to 5) of L was discretized with an incre-
ment ∆L = 0.2 to calculate the TRE corresponding to each 
assigned L, and Lopt that yields the minimum TRE was 
picked out directly. It should be clearly stated that in this 
case, the longest calculation time is less than 10 s, far less 
than that of the whole operation process (about 8–15 min).

Reproducibility and robustness to different CR 
errors

(1)	 Reproducibility. To evaluate the reproducibility of 
accuracy for the three aforementioned methods, 
fifteen prepared experimental subjects were regis-
tered by different operators, respectively. The cor-
responding results shown in Fig. 8 indicate that the 
mean TREs for CR, CR-ICP and CR-RAMSICP are 
1.33 ± 0.27 mm, 0.89 ± 0.14 mm and 0.56 ± 0.08 mm, 
respectively. Obviously, CR-RAMSICP exhibits the 
lowest mean and standard deviation of the TREs and 
thus is more accurate and reproducible than CR and 
CR-ICP.

(2)	 Robustness. To investigate the robustness of CR-RAM-
SICP to CR errors, we artificially adjusted the place-
ment deviations of the virtual fiducials to extend the 
CR error range which was limited within 1 to 5 mm 
and divided into eight levels (denoted as Levels 1 to 8) 
with a 0.5 mm interval. For each CR error level, five 
groups of experiments were performed, and the TREs 
for CR-RAMSICP and CR-ICP are shown in Fig. 9. 
The results indicate that the TREs for CR-ICP display a 
general increasing trend proportional to the CR errors, 
which are always higher than those for CR-RAMSICP; 
in contrast, the TREs for CR-RAMSICP are stable 
within 1 mm under the CR errors at Levels 1 to 6, but 
sharply increase and gradually tend to approach those 
for CR-ICP when the CR error is more than 4 mm. In 
general, compared with CR-ICP, CR-RAMSICP can 
enhance the robustness to poor CR errors to a certain 
extent.

Fig. 7   The TRE changes with the scale factor Fig. 8   Comparison of the TREs for different registration methods
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Sensitivity to sampling with the tracked probe

During practical surgical intervention, sampling with the 
tracked probe is limited by the accessibility of exposed ana-
tomic surfaces, and thus fewer points and more compact 
sample distribution are expected on the premise of ensuring 
the accuracy. Therefore, we compared the sensitivity of CR-
ICP and CR-RAMSICP to the number and distribution of 
FPs collected by the tracked probe, respectively.

(1)	 Sensitivity to the distribution of FPs collected by the 
tracked probe. The only five FPs located in each SA 
(see Fig. 4c) were separately extracted for registration, 

and the experiments were repeated 10 times by differ-
ent operators. The TREs for different methods under 
different distributions of FPs collected by the tracked 
probe are shown in Fig. 10a. The results indicate that 
SA3, SA4 and SA5 show low TREs, which may be 
associated with the short distances from the measured 
target points; however, SA7 and SA8 exhibit high TREs 
due to the long distances from the target points. Gener-
ally, for each SA, the TREs for CR-RAMSICP exhibit 
lower values and smaller differences than those for CR-
ICP.

(2)	 Sensitivity to the number of FPs collected by the tracked 
probe. 1, 2, 3 and 4 FPs were selected from each SA, 

Fig. 9   Comparison of the TREs 
for CR-RAMSICP and CR-ICP 
under different CR errors

Fig. 10   Comparison of the TREs for CR-RAMSICP and CR-ICP under different distributions and numbers of FPs collected by the tracked 
probe. a The case for different FP distributions. b The case for different FP numbers
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respectively; that is, a total of 8, 16, 24 and 32 FPs in 
patient space were used for registration, respectively. 
The experiments were repeated 10 times by different 
operators. The TREs for different methods under dif-
ferent numbers of FPs collected by the tracked probe 
are shown in Fig. 10b. The results illustrate that the 
TREs of CR-RAMSICP and CR-ICP decreases with the 
increase of the number of FPs; however, CR-RAMSICP 
shows lower TREs and sensitivity to the FP number. 
Besides, it can be deducted that CR-RAMSICP has the 
potentials to provide higher accuracy with fewer FPs 
because, for example, the TREs for CR-RAMSICP with 
8 FPs are generally lower and more stable than those 
for CR-ICP with 32 FPs.

Conclusion

In this paper, a hybrid feature-based registration method CR-
RAMSICP is proposed, which sufficiently meets the required 
accuracy of 1 mm without invasive bone-implanted mark-
ers. Four RRMs attached to the tracked rigid body which 
is rigidly fixed out of the bone with an extending bracket 
are used for CR, and their centers can be tracked automati-
cally in patient space and placed interactively in image 
space. The proposed RAMSICP algorithm is adopted for 
fine registration to precisely match the PPC collected on the 
bone surfaces by the tracked probe and the IPC extracted 
from the corresponding CT datasets. It does not require the 
establishments of complex metrics and models except the 
point-to-point distance, which is convenient to program. A 
series of experiments based on isolated porcine iliums were 
performed to preliminarily verify the effectiveness of CR-
RAMSICP in accuracy improvement. The results illustrate 
that CR-RAMSICP is not only more accurate and reproduc-
ible than CR and CR-ICP, but also exhibits better robust-
ness to CR errors, and lower sensitivity to the distribution 
and number of FPs collected by the tracked probe than CR-
ICP. Besides, it should be clarified that when collecting the 
PPC with the tracked probe, without loss of generality, we 
avoided the tendency to select rich features on the porcine 
ilium surfaces, but the relatively smooth areas. Therefore, 
from this point of view, CR-RAMSICP may provide the clin-
ical potentials to be extended to other types of long bones.

In future work, we will study robust bone surface segmen-
tation and the determination of optimal IPC resolution to 
further improve the registration accuracy. More practically, 
the human phantom experiments will be performed to fur-
ther evaluate the applicability of CR-RAMSICP and provide 
relevant practical guidelines for clinical trials.
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