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Abstract
Problem Intraoperative tracking of surgical instruments is an inevitable task of computer-assisted surgery. An optical tracking
system often fails to precisely reconstruct the dynamic location and pose of a surgical tool due to the acquisition noise and
measurement variance. Embedding aKalman filter (KF) or any of its extensions such as extended and unscentedKalman filters
(EKF and UKF) with the optical tracker resolves this issue by reducing the estimation variance and regularizing the temporal
behavior. However, the current KF implementations are computationally burdensome and hence takes long execution time
which hinders real-time surgical tracking.
Aim This paper introduces a fast and computationally efficient implementation of linear KF to improve the measurement
accuracy of an optical tracking system with high temporal resolution.
Methods Instead of the surgical tool as a whole, our KF framework tracks each individual fiducial mounted on it using a
Newtonian model. In addition to simulated dataset, we validate our technique against real data obtained from a high frame-rate
commercial optical tracking system. We also perform experiments wherein a diffusive material (such as a drop of blood)
blocks one of the fiducials and show that KF can substantially reduce the tracking error.
Results The proposed KF framework substantially stabilizes the tracking behavior in all of our experiments and reduces
the mean-squared error (MSE) by a factor of 26.84, from the order of 10−1 to 10−2 mm2. In addition, it exhibits a similar
performance to UKF, but with a much smaller computational complexity.

Keywords Optical tracking · Computer-assisted surgery · Kalman filter · Robust localization

Introduction

Kalman filter (KF) refers to a recursive algorithm which
minimizes mean-squared error (MSE) and refines the noisy
measurements of a system through two stages: prediction
and correction [22]. Besides many other techniques [19],
KF has extensively been used in data fusion, tracking and
prediction in numerous fields. However, one of the main
limitations of KF is that it can be only applied in linear sys-
tems. As a consequence, two notable extensions of KF called
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the extended Kalman filter (EKF) [9] and unscented Kalman
filter (UKF) [11] have been proposed. EKF linearizes the
system under consideration around the operating point and
then feeds to the KF. Aissa et al. [1] exploited EKF in con-
junction with neural networks as a feedback controller to
track a desired trajectory. To compensate disturbance, Li et
al. [13] appliedEKF as an observer to perfectly trackwheeled
robots. In [14], a proportional derivative controller associated
with EKF was used for trajectory tracking. Prevost et al. [18]
employed EKF to estimate the state and predict the trajec-
tory of a moving object. Moore et al. [16] exploited a robot
localization package equipped with EKF that can determine
which sensors should be available for estimating the current
parameter. To increase the robustness of trajectory tracking,
Mkhoyan et al. [15] used kernelized correlation filter in addi-
tion to EKF as the online parameters estimator. In [17], a
modified EKF model was utilized for oceanic data fusion.
Despite its wide applicability, EKF is inherently limited by
the sensitivity of the linearization step. In case of a highly
nonlinear process, EKFoften introduces instability to the sys-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-021-02378-1&domain=pdf


830 International Journal of Computer Assisted Radiology and Surgery (2021) 16:829–837

tem by linearizing it away from its operating point. To resolve
this important drawback of EKF, researchers have introduced
UKF. Instead of linearization, UKF tackles the nonlinearity
issue using an unscented transform, where the nonlinear sys-
tem transforms to a probability distribution function. Thus
far, UKF has been incorporated in a variety of applications.
Kraft et al. [12] utilized UKF to track the orientation using
a quaternion model in a system with six state variables. To
constrain the velocity of a mobile robot and precisely track
desired trajectories, Xu et al. [23] employed UKF and KF,
where dynamics and kinematics of the robot were taken into
account. Chowdhary et al. [3] applied three versions of KF,
namely EKF, simplified UKF and augmented UKF for aero-
dynamic parameter estimation. The results show that the third
version is faster than the ones. VanDyke et al. [21] compared
the performance of EKF and UKF in spacecraft attitude esti-
mation. The experimental results showed that UKF, besides
being more accurate, is less dependent on the initial esti-
mates.

In recent years, computer-aided applications including
surgical tracking have emerged rapidly. Optical tracking of
the surgical tools often guides the clinicians to perform high-
precision surgical procedures [6]. Infrared emitting diodes,
commonly known as active fiducials, are embedded on the
surgical tools to be used as reference points to estimate
the location and orientation of the tool. However, the noisy
observations often lead to an inaccurate estimation of the
instrument’s posewhich can increase surgical errors. Numer-
ous investigators have employed EKF and UKF to reduce
the tracking error by taking the expected noise statistics and
temporal constancy into account. Translational velocity and
acceleration and angular velocity are used as the state vari-
ables in [5] to devise an EKF model. Taylor series as well as
Rodrigues formula [4] has been used to linearize the model
and prepare for Kalman filtering. However, the performance
of EKF is highly dependent on proper linearization. In addi-
tion, [10] and [8] demonstrated that UKF provides higher
tracking accuracy compared to EKF. Vaccarella et al. [20]
exploited a quaternion-based UKF model using translation,
linear velocity, quaternion and angular velocity as the state
variables to avoid matrix singularity problem that originates
from using Euler angles in rotation tracking. The surgical
navigation tracking error due to electromagnetic perturba-
tion and occlusion was substantially decreased. In addition
to the state variables that [20] employed, Enayati et al. [7]
considered linear acceleration as a state variable for surgical
tracking which increased the robustness against environmen-
tal disturbance and occlusion.

Although the aforementionedworks have reportedpromis-
ing tracking results, they require long execution times and are
not suitable for high frame-rate optical tracking applications.
Multi-camera optical tracking system to assist total knee
arthroplasty (TKA) is such an application which operates at

a temporal resolution of approximately 200 fps. A robust and
accurate localization of surgical array is of paramount impor-
tance in TKA.However, tracking data obtained by the current
system yield high sensitivity to noise. Inspired by previous
works, our aim is to combine KF with the existing scheme
to increase tracking and localization accuracy of the system.
However, the rigid-body implementations of extended and
unscented KFmight not be suitable for the system under dis-
cussion. Therefore, instead of thewhole array as a rigid body,
this paper proposes to track each fiducial on the surgical array
individually, taking a linear KF into account. This simplifi-
cation has been possible due to the availability of sufficient
temporal information obtained from the high frame-rate sys-
tem. The advantage of the proposed technique is twofold.
First, being fast and computationally light, this framework
is compatible with the high frame-rate optical tracking sys-
tem. Second, any unusual phenomena such as occlusion of
a particular fiducial can easily be detected by this scheme
since the temporal behavior of each fiducial is assessed indi-
vidually. We have validated the proposed technique with one
simulated and three real datasets obtained using an optical
tracking system and compared the performance against that
of UKF.

Methods

Let zk = [
px,k py,k pz,k

]T
, k ∈ {1, 2, 3, . . . , n} denote the

position measurement of the center of a fiducial at time k.
We assume that zk is corrupted with anisotropic Gaussian
noise. Our purpose is to exploit the expected noise statistics
of the measured data to minimize the measurement noise and
stabilize the temporal tracking using KF.

State variables and update equations

We consider 3D components of translation ttt = [
tx ty tz

]T
,

velocity vvv = [
vx vy vz

]T
and acceleration aaa = [

ax ay az
]T

as our state variables. Since we assume a constant accel-
eration motion model, the update equations for the state
variables are:

tttk = tttk−1 + vvvk−1�t + 1

2
aaak−1�t2 (1)

vvvk = vvvk−1 + aaak−1�t (2)

aaak = aaak−1 (3)

where �t denotes the time interval.

Kalman filter pipeline

TheKalman filter consists of two steps. The first step predicts
the current state and the state covariance matrix based on the
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estimates of theprevious time step and the state updatemodel.
The second step takes the actual measurement into account to
refine the predictions made in the first step. The state update
model described earlier obtains x−

k , the prior estimate of the
current state, using the following linear equation:

x−
k = Axk−1 (4)

where xk−1 = [
tx vx ax ty vy ay tz vz az

]T
denotes the pos-

terior state estimate of the previous time step. A describes the
motion model and is defined as follows:

A =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

1 �t 1
2�t2 0 0 0 0 0 0

0 1 �t 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 �t 1

2�t2 0 0 0
0 0 0 0 1 �t 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 �t 1

2�t2

0 0 0 0 0 0 0 1 �t
0 0 0 0 0 0 0 0 1

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

(5)

The prior estimate of the state noise covariancematrix P−
k

is obtained as follows:

P−
k = APk−1A

T + Q (6)

where Pk−1 refers to the posterior estimate of the state covari-
ance matrix obtained from the previous time step. Q denotes
the process covariance matrix. Taking P−

k into account, the
Kalman gain Kk is calculated as follows:

Kk = P−
k HT (HP−

k HT + R)−1 (7)

where R stands for the measurement covariance matrix. H
obtains a prediction of the measurement using the state pre-
diction and is defined as:

H =
⎡

⎣
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

⎤

⎦ (8)

Once the priori estimates and the Kalman gain are calcu-
lated, the actual measurement is incorporated to fine-tune
the state prediction. We use the difference between predicted
and actual measurements to obtain the posterior state esti-
mate according to the following equation:

xk = x−
k + Kk(zk − Hx−

k ) (9)

The posterior estimate of the state covariance matrix is cal-
culated as follows:

Pk = (I − KkH)P−
k (10)

Algorithm 1: Workflow of the proposed Kalman filter-
ing algorithm
Input: The previous state xk−1 and the previous state covariance

matrix Pk−1, process covariance matrix Q and
measurement covariance matrix R

Output: Refined measurements of the fiducial positions and the
pose of the array.

1 for all fiducials do
2 Estimate x−

k : Priori state estimate using the process model
matrix A and the previous state estimate xk−1;

3 Calculate P−
k : Priori estimate of the state covariance matrix

using A, Q and the previous state covariance estimate Pk−1;
4 Compute Kk : Kalman gain using P−

k and R;
5 Estimate xk : Posterior state estimate using Kk , x

−
k and the

measurement zk ;
6 Calculate Pk : Posterior state covariance estimate using Kk

and P−
k ;

7 Extract the refined position measurements from xk ;
8 end
9 Utilize [2] to calculate the array’s pose in terms of rotation matrix
and translation vector;

10 Convert the rotation matrix to a rotation vector

The refined measurement zk,r is calculated using:

zk,r = Hxk (11)

Once the fiducial positions are filtered, we utilize a point-
matching algorithm [2] to calculate the marker pose in terms
of a rotation matrix and a translation vector. We then convert
the rotation matrix to a rotation vector for the sake of con-
ciseness. The workflow of the proposed technique is outlined
in Algorithm 1.

Experimental setup and data acquisition

In this section, we first describe the simulation experiment
conducted to generate synthetic dataset. Then, we describe
the experimental setup and data collection protocol.

Simulated dataset

Wedesigned a surgical arraywith four coplanar fiducials. The
marker geometry is defined by the mutual distances among
the centers of the fiducials. The distances from fiducial 1 to
2, 2 to 3, 3 to 4 and 4 to 1 are 67.08 mm, 36.06 mm, 72.80
mm and 41.23 mm, respectively. The motion model of the
marker as well as the fiducials is stated below.

Let X0 = [
x f y f z f

]T
denote the initial position of the

center of a fiducial. Xk , the position of the fiducial at time

sample k, can be calculated by Xk = TTT k
[
XT
0 1

]T
where

TTT k ∈ R
4×4 refers to a transformation matrix explaining the

pose of the marker at time k. TTT k is defined as follows:
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TTT k =
[
RRRk tttk
O 1

]
(12)

where RRRk ∈ R
3×3 denotes a 3D rotation matrix. O ∈ R

1×3

refers to a zero vector. We consider a constant acceleration
translation model. Therefore, the translation update model is
governed by Eqs. 1–3. Considering the time interval �t to
be tiny, the rotation matrix RRRk at time sample k is calculated
using the following forward kinematics:

RRRk ≈ RRRk−1 + �tR
′

R
′

R
′
k−1 (13)

where R
′

R
′

R
′
k−1 refers to the temporal derivative of the rotation

matrix at time sample k − 1 which is defined as follows:

R
′

R
′

R
′
k−1 = ωωωRRRk−1 (14)

where ωωω ∈ R
3×3 denotes a skew symmetric matrix which is

obtained from the angular velocity vector ω = [
ωx ωy ωz

]

and defined as:

ωωω =
⎡

⎣
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤

⎦ (15)

We assumed a constant angular velocity vector[−0.08 0.08 −0.08
]
for our simulation experiment. The ini-

tial translational velocity vectorwas considered to be
[
0 0 0

]
,

whereas the translational acceleration vector was set to[
1 −1 1

]
. The initial positions of fiducials 1 to 4 were set

to
[
110 −120 123

]T
,
[
170 −150 123

]T
,
[
140 −130 123

]T

and
[
70 −110 123

]T
, respectively. Considering 200 tempo-

ral samples per second, the fiducial positions for 30 s were
obtained. Once the ground truth fiducial positions are gen-
erated, anisotropic zero-mean random Gaussian noise with
a variance of 0.07 mm2 in x and y directions was added to
obtain noisy measurement data. To emulate the real scenario,
the noise variance in z direction was considered to be 40%
higher than the other two directions.

Real datasets

The experimental setup includes a multi-camera optical
tracking device which is mounted horizontally on a stable
arm above a sturdy table (see Fig. 1a). The tracker is con-
nected to a host computer that is used to operate the tracker
and collect the data. The experiment uses a single medi-
cal array with four calibrated fiducials (see Fig. 1b). The
fiducials emit high-intensity near-infrared light with 850 nm
wavelength. The tracker is equipped with infrared filters and
reconstructs the 3D position of each fiducial using a standard
linear triangulation stereomethod.The position of the array is
determined by matching the reconstructed 3D points against

(a) multi-camera system (b) Surgical array

Fig. 1 Experimental setup of a multi-camera system

the calibrated geometry of the array. The resulting pose and
3D points are sent to the host at a rate of approximately 200
fps. The host stores the data in a relational database for later
analysis.

We ran 3 recording sessions under different conditions.
For the first recording, the array was left in a static position
relative to the tracker and was positioned slightly off-center
of the tracker’s optical axis. The array was recorded for about
2 min, providing 23, 452 data points.

The second recordingwas performed on an array undergo-
ing rotational and translation motion, emulating the scenario
of a real surgical environment. The recording lasted for about
30 s and obtained 6000 temporal data points.

The third dataset was acquired from a static array where
one of the fiducials was partially occluded using a 220 GRIT
diffuser (Edmund Optics, Barrington, USA). This experi-
ment aimed at imitating the scenario of an Operating Room
(OR) where fiducials are often blocked by translucent mate-
rials such as a drop of blood. The experiment was repeated 4
times, each time occluding one of the 4 fiducials. The array
of interest was recorded for about 2 min, and 22, 897 data
points were obtained.

Results

We examine qualitative and quantitative tracking perfor-
mance of KF and UKF by employing simulation and real
datasets obtained from multi-camera system. UKF has been
implemented for comparison purpose using the FilterPy
library ofPython.Temporal behavior of fiducial positions and
the array’s pose in terms of rotation and translation vectors
have been utilized to investigate the qualitative performance
of the techniques under consideration.We useMSE and vari-
ance for the quantitative analysis, with MSE defined as:
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MSE =
∑n

k=1(�r ,k − �g,k)
2

n
(16)

where�r ,k and�g,k denotemeasured and ground truth com-
ponents of the array’s pose, respectively. We obtain Q by
calculating the covariance matrices corresponding to zero-
mean Gaussian random noise with variances of 0.002 mm2

and 0.01 mm2 for simulation and real datasets, respectively.
For simulated and real datasets, respectively, R is obtained
by computing the covariance of anisotropic zero-meanGaus-
sian random noise with variances of 0.07mm2 and 0.15mm2

in x and y directions, and 0.1 mm2 and 0.21 mm2 in the z
direction.

Simulated data

The position tracking results for one of the fiducials of the
simulated array in all three directions are reported in Fig. 2.
To better demonstrate the variability in measurement and the
tracking performance of KF and UKF, we also show tracking
results for only 300 samples in all three directions. KF and
UKF exhibit similar filtering performance and substantially
stabilize the temporal behavior. Since a similar level of noise
suppression is observed in all fiducials, we show the results
for only one fiducial. To investigate the overall tracking per-
formanceofKFandUKF,wepresent the array’s pose in terms
of rotation and translation vectors in Fig. 3. To maintain con-
ciseness, we show only the z component of the translation
vector. In addition, we magnify the measurement noise as

well as the filtering performance by also showing only 200
temporal samples. It is evident that KF and UKF minimize
the acquisition noise and notably improve the tracking qual-
ity. The filtered outputs of the rotation components exhibit
almost no difference with the ground truth. The tracking
errors of translation are slightly higher than those of rota-
tion. MSE values reported in Table 1 substantiate our visual
assessment, showing a substantial error reduction. Since KF
as well as its extensions requires some time in the beginning
to adapt with the motion trajectory, we consider the first 5 s
as the burnout period and therefore disregard the first 1000
temporal samples during error calculation.

Real dataset

Our first experiment analyzes the performance with the
dataset acquired from the static digitizer, where the ground
truth velocity is zero. Since this dataset is collected from a
steady marker, a constant pose throughout the acquisition
period is expected. Figure 4 shows that the current track-
ing system exhibits extensive variation around the expected
pose components. It is evident from this figure that KF and
UKF yield nearly identical tracking performance, and there-
fore, the temporal pose plots obtained by them overlap on
each other. A substantial reduction in measurement variabil-
ity is observed which is corroborated by the variance values
reported in Table 2.

(a) (b) (c)

(d) (e) (f)

Fig. 2 Temporal tracking plots for fiducial 2 of the simulated array. Columns 1–3 refer to x , y and z directions, respectively. Rows 1 and 2,
respectively, show the overall and magnified views of the temporal behavior
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(a) (b) (d)(c)

(e) (f) (h)(g)

Fig. 3 Temporal plots of pose for the simulated array. Columns 1–3 refer to x , y and z components of the rotation vector, respectively, whereas
column 4 shows the z component of translation vector. Rows 1 and 2 correspond to the overall and magnified views of the trend of the array’s pose

Table 1 MSE for the pose of simulated array

Measurement UKF KF

Rotation, x 1.58 × 10−2 2.63 × 10−3 2.63 × 10−3

Rotation, y 1.58 × 10−2 2.63 × 10−3 2.63 × 10−3

Rotation, z 1.58 × 10−2 2.63 × 10−3 2.63 × 10−3

Translation, x 0.29 4.9 × 10−2 1.13 × 10−2

Translation, y 1.72 6.07 × 10−2 6.52 × 10−2

Translation, z 0.73 2.07 × 10−2 2.72 × 10−2

In the second experiment, we investigate the tracking
results for themarker that undergoes a realistic rotational and
translationalmotion. The results of noisymeasurement of the
marker pose along with the KF and UKF measurements are
presented in Fig. 5. The rapid fluctuations of the rotation and
translation components demonstrate that the array’s motion
is representative of the one in an OR. To magnify the mea-
surement noise as well as the tracking performance of KF
and UKF, we show 200 temporal samples out of a total of
6000 samples. The pose plots show that the filtered outputs

manifest substantially lower variability compared to the raw
measurement which is supported by the variances shown in
Table 3. The data variability in this case originates from noise
as well as the array’s movement. Since we are interested only
in the variance due to noise, the last 100 temporal samples are
employed in variance calculation where the array’s pose is
comparatively stationary.AlthoughKFandUKFexhibit sim-
ilar noise cancellation performance, a small bias is observed
in the tracking results of UKF which might happen due to
the array’s fast movement.

The third experiment examines the tracking performance
when the fiducial of interest is blocked by a translucent mate-
rial. Figure 6 reports the temporal regions where fiducials 1
and 3 are blocked. In all components of the array’s pose,
extensive discontinuities are observed at the instants of dis-
posal and removal of the glass diffuser. However, during the
stable placement of diffuser, the pose components experience
an erroneous upward or downward shift in measurement. In
all cases, the outputs of KF and UKF follow the trends of the
actual measurements, but with substantially lower variances.
In terms of suppressing the spurious spikes introduced by dif-

(a) (b) (c) (d)

Fig. 4 Temporal plots for the pose of the static array. Columns 1–3 refer to x , y and z components of rotation, respectively. Column 4 shows the z
component of translation
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fuser placement and withdrawal, KFmarginally outperforms
UKF.

Execution time

Both KF and UKF have been executed with Python 3.5.2
on a 6th generation Intel Core i7-6600U CPU. The memory
requirements of both UKF and KF are minimal and less than
512MB of RAM. The execution times reported in Table 4
demonstrate that the proposed linear KF technique is compu-
tationally efficient, taking only 0.47 milliseconds, and thus
is a promising algorithm for real-time implementation on
commercial optical trackers.

Discussion

Accurate surgical tracking is of immense importance due to
its direct impact on healthcare. Since the tracker’s output
prompts the physician’s action in an OR, a small tracking
error may lead to serious consequences. Alongside accuracy,
execution time is an important factor in a high frame-rate
optical tracking system. The proposed framework offers both
the attributes of high accuracy and low implementation time
by employing a linear KF to track each fiducial individually.

The first experiment conducted in this study simulates
a synthetic surgical array undergoing a realistic motion
which contains both rotation and translation in the three-
dimensional space. Both KF and UKF sufficiently suppress

Table 2 Variance for the pose of the static array

Measurement UKF KF

Rotation, x 2.28 × 10−8 1.65 × 10−9 1.53 × 10−9

Rotation, y 7 × 10−8 2.49 × 10−9 2.51 × 10−9

Rotation, z 2.24 × 10−10 5.83 × 10−9 1.79 × 10−11

Translation, x 7.3 × 10−3 9.57 × 10−4 7.26 × 10−4

Translation, y 6.93 × 10−2 2.72 × 10−3 2.45 × 10−3

Translation, z 8.02 × 10−3 2.96 × 10−4 3.08 × 10−4

Table 3 Variance for the pose in a static temporal region of the dynamic
array

Measurement UKF KF

Rotation, x 3.85 × 10−7 6.88 × 10−9 7.74 × 10−9

Rotation, y 4.66 × 10−7 6.56 × 10−9 7.40 × 10−9

Rotation, z 1.94 × 10−5 2.88 × 10−7 3.30 × 10−7

Translation, x 0.73 1.06 × 10−2 1.2 × 10−2

Translation, y 14.19 0.21 0.24

Translation, z 4.5 × 10−3 8.62 × 10−5 9.86 × 10−5

the acquisition noise. The position and pose plots reveal that
the proposed technique as well as UKF closely resembles the
ground truth in both linear and nonlinear regions.

A second benchmarking experiment has been carried out
utilizing the real dataset acquired from a static surgical array.
The pose estimation constancy in this stationary case demon-
strates the proposed KF scheme’s potential in high-accuracy
surgical tracking. However, this experiment with a static
marker does not represent the scenario of an OR. Our third
experiment takes this fact into account by tracking an array
experiencing a 3D motion containing rotational and transla-
tional components. The proposed KF framework proves its
strength by showing high noise-cancellation performance in
this realistic case. One interesting observation about UKF
is that it yields estimation bias in the dynamic array experi-
ment which might stem from the rapid motion of the array.
However, it should be noted that UKF has been implemented
using a built-in Python function in this work. An advanced
implementation of UKF might be able to tackle this issue
which is subject to further investigation.

Besides EKF and UKF, particle filter (PF) [19] also
improves tracking accuracy given noisymeasurements and is
a potential alternative toKF.While PF andKF share the same
high-level algorithmic steps such as prediction and update,
their basic principles are substantially different. Unlike KF,
PF incorporates weighted random samples to refine the prior
estimate of the density function and updates the weights
exploiting the likelihood theory. The main strength of PF
is its ability to handle non-Gaussian noise and nonlinear sys-

(a) (b) (d)(c)

Fig. 5 Temporal pose plots for the array with realistic motion. Columns 1–3 correspond to x , y and z components of the rotation vector, respectively.
Column 4 presents the z component of translation
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(a) (b) (d)(c)

(e) (f) (h)(g)

Fig. 6 Temporal pose plots for the array with partially occluded fiducials. Rows 1 and 2 correspond to two different occlusion experiments. Columns
1–3, respectively, correspond to x , y and z components of rotation, whereas column 4 shows the y components of translation

Table 4 Runtime for filtering one temporal sample

Time (ms)

UKF 7.48

KF 0.47

tems. However, PF is computationally more expensive than
KF. A quantitative study to compare the advantages and dis-
advantages of KF and PF is an avenue of future work.

As reported in Fig. 6, the proposed implementation of
KF follows the trend of the incorrect position measurement
when any of the fiducials moves out of the field of view
or gets blocked by a translucent material such as a drop of
blood. Although it reduces the estimation variance, it can-
not amend the step-like over- or underestimation of fiducial
position, likely caused by light diffraction. The advanced
rigid-body implementations of EKF and UKF might be able
to better adapt with the situation of fiducial occlusion and
reconstruct the surgical tool with moderate tracking error.
However, since this scheme tracks the instrument as a whole,
it cannot instantly notify the surgeon which of the fiducials
is blocked or out of field of view (FOV). This drawback can
potentially be resolvedwith the proposedKF framework. It is
worth mentioning that the commercial optical tracker incor-
porated in this study does not impose any rigidity constraint
during data acquisition. Instead, once the tracking data are
acquired, the ground truth geometry of the array is utilized
to detect whether any of the fiducials is occluded.

We have conducted several experiments in this work
to represent realistic scenarios in the OR. Since simula-
tion studies are expected to be realistic, we have adopted

a forward kinematics model to create a 3D dataset with non-
linear dynamics. In addition, anisotropic Gaussian noise has
been added to emulate a real noise statistics. Besides, the
experiments with the multi-camera tracker include extensive
analyses of static, dynamic and occlusion scenarios. The pro-
posed technique yields consistent performance in the real as
well as the simulation experiments to prove its potential in
high-quality surgical tracking.

Themost attractive feature of the proposed KF framework
is its low running time. A straightforward implementation of
the linear KF which takes a Newtonian model into account
provides the proposed technique with the powerful attribute
of negligible execution time. Although filtering is performed
offline in this work, a runtime as low as 0.47 milliseconds
proves the proposed scheme’s potential for real-time imple-
mentation on a high temporal resolution commercial optical
tracking system.

Conclusion

Herein, we proposed a fast implementation of linear KF on
a high frame-rate tracking system where a Newtonian model
was taken into account to track each fiducial of a surgical tool
individually. Besides facilitating real-time surgical tracking,
this technique efficiently suppresses acquisition and esti-
mation noise experienced by an optical tracking system. In
addition, high performance in dynamic localization of intra-
operative instruments proves that the proposed framework
eliminates the requirement of rigid-body constraint while
tracking a surgical tool at high temporal resolution.
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