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Abstract
Purpose Deformable image registration (DIR) is essential for many image-guided therapies. Recently, deep learning
approaches have gained substantial popularity and success in DIR. Most deep learning approaches use the so-called mono-
stream high-to-low, low-to-high network structure and can achieve satisfactory overall registration results. However, accurate
alignments for some severely deformed local regions, which are crucial for pinpointing surgical targets, are often overlooked.
Consequently, these approaches are not sensitive to some hard-to-align regions, e.g., intra-patient registration of deformed
liver lobes.
Methods We propose a novel unsupervised registration network, namely full-resolution residual registration network
(F3RNet), for deformable registration of severely deformed organs. The proposed method combines two parallel processing
streams in a residual learning fashion. One stream takes advantage of the full-resolution information that facilitates accurate
voxel-level registration. The other stream learns the deep multi-scale residual representations to obtain robust recognition.
We also factorize the 3D convolution to reduce the training parameters and enhance network efficiency.
Results We validate the proposedmethod on a clinically acquired intra-patient abdominal CT-MRI dataset and a public inspi-
ratory and expiratory thorax CT dataset. Experiments on both multimodal and unimodal registration demonstrate promising
results compared to state-of-the-art approaches.
Conclusion By combining the high-resolution information and multi-scale representations in a highly interactive residual
learning fashion, the proposed F3RNet can achieve accurate overall and local registration. The run time for registering a pair
of images is less than 3 s using a GPU. In future works, we will investigate how to cost-effectively process high-resolution
information and fuse multi-scale representations.

Keywords Deformable image registration · Residual learning · Image-guided therapy · Deep learning

Introduction

In image-guided therapies (IGTs), e.g., preoperative plan-
ning, intervention and diagnosis, deformable image regis-
tration is the key to integrate complementary information
contained in different time stamps or image modalities.
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Therefore, developing fast and accurate deformable image
registrationmethods is beneficial for the performance of IGT.

Traditional registration methods such as symmetric nor-
malization (SyN) [1] align a pair of images by iteratively
minimizing the appearance dissimilarity under regulariza-
tion constraints. Furthermore, Deeds [12] utilizes discrete
optimization, which shows promising results in abdominal
registration [28]. However, solving a pairwise optimiza-
tion is computationally intensive, resulting in slow speed
in practice. Recently, due to the substantial improvement
in computational efficiency over the traditional iterative
registration, learning-based image registration approaches
are becoming more prominent in task-specific and time-
intensive applications [7]. Most learning-based registration
approaches use fully supervised [3,4,20] or semi-supervised
learning strategy [5,15] and heavily rely on ground-truth
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voxel correspondences and/or organ segmentation labels.
Although these approaches struggle with imperfect ground-
truth labels, they have made a significant impact on the
field of deformable image registration. With the develop-
ment of spatial transformer network (STN) [16], registration
approaches that are based on unsupervised learning have also
been introduced. For example, VoxelMorph [2] is a mon-
umental unsupervised registration framework that focuses
on registering brain images of the same modality (unimodal
registration). By modifying VoxelMorph, researchers have
further proposed more unsupervised unimodal registration
approaches [6,14,18,25].

Most existing learning-based registration approaches use
the so-called mono-stream high-to-low, low-to-high network
structure with augmented modules, e.g., skip-connection
[2,8], multi-resolution fusion [14] and intermediate super-
vision [19]. This structure can significantly increase the size
of the receptive field which is highly desirable for recog-
nizing object information in images, but needs to recover
the high-resolution information from the low-resolution
representations. With increased receptive field sizes, these
approaches prioritize overall registration accuracy, which
is governed by the majority of easy-to-align regions, and
overlook some severely deformed local regions. For exam-
ple, livers with tumors usually have large local deformation
due to progressed disease, and the deformations of the
surrounding kidney and spleen are less significant. In a CT-
to-MRI abdominal image registration, the aforementioned
approaches are likely to estimate a deformation field that
accurately registers kidney and spleen, yet perform poorly at
local liver lobes alignment.

Besides, most of the image registration networks utilize
3D convolutional neural networks (3D CNNs) to exploit the
semantic information in each CT/MRI slice and the spatial
relationships across consecutive slices. It is understood that
the training of 3D CNN is computationally expensive and
may lead to insufficient training due to the small number of
clinical datasets.

To address the above problems, we propose a novel
unsupervised full-resolution residual registrationnetwork
(F3RNet), which is shown in Fig. 1(a). Distinct from the
conventional mono-stream network structure, F3RNet con-
sists of two parallel streams, namely “full-resolution stream”
and “multi-scale residual stream.” Inspired by the success of
using a high-resolution stream in human pose estimation and
image inpainting tasks [9,23,26], “full-resolution stream”
takes advantage of the detailed image information and facili-
tates accurate voxel-level registration, while the “multi-scale
residual stream” learns the deep multi-scale residual rep-
resentations to robustly recognize corresponding organs in
both images and guarantee a high overall registration accu-
racy. Using the multi-scale residual block (MRB) modules,
the network can progressively fuse information from the two

parallel streams in a residual learning fashion [10] to further
boost the performance. In addition, we factorize the 3D con-
volution into two correlated 2D and 1D convolutions, thus
effectively avoid over-parameterization [24].

To the best of our knowledge, we are the first to incor-
porate full-resolution representations with multi-scale high-
level representations in a residual learning fashion to boost
deformable image registration performance. The main con-
tributions of our work can be summarized as follows:

– Our approach can unite the strong capability of captur-
ing deep multi-scale representations with precise full-
resolution spatial localization of the anatomical struc-
tures by interactively combining two parallel streams
via the proposed MRB module and the residual learning
mechanism. By taking into account such full-resolution
information, the registration network is more sensitive to
the hard-to-align regions and can provide better align-
ments for severely deformed local regions.

– The factorization of 3D convolution canmarkedly reduce
the training parameters and enhance the network effi-
ciency.

– We validate the proposed F3RNet on a clinically acquired
intra-patient abdominal CT-MRI dataset and a pub-
lic inspiratory and expiratory thoracic CT dataset. The
experimental results on both multimodal and unimodal
registration show that our method achieves superior per-
formance over the existing state-of-the-art traditional and
learning-based methods.

The outline of the paper is as follows: “Methods” section
describes the details of our F3RNet, “Experiments” section
presents the experimental details and registration results on
both multimodal and unimodal datasets, and “Conclusions”
section will draw conclusions of the paper.

Methods

Representing the moving image as Im and the fixed image as
I f , medical image registration aims to estimate an optimal
deformation field φ with three channels (x , y, z displace-
ments) that can align Im–I f . In this section, we present our
full-resolution residual registration network (shown in Fig.
1) firstly. Then, we describe the detailed structure of the
designed residual block (RB) and multi-scale residual block
(MRB), respectively. The factorization of 3D convolution is
presented in “Factorized 3D convolution (F3D)” section, and
the loss function of our network is described in “Loss func-
tion” section.
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(a)

(c)(b)

Fig. 1 Illustration of full-resolution residual stream network (F3RNet).
a shows the overview of our F3RNet; b shows the residual block (RB);
c shows the multi-resolution residual block (MRB). The network learns

parameters for a dense deformation field φ that aligns themoving image
Im to the fixed image I f . N denotes the minimum volume is (1/2N )

the size of the input images

Overview of the network

Distinct from the regular high-to-low, low-to-high one-pass
network architecture, full-resolution residual registration
network (F3RNet) unifies two parallel streams:

– Full-resolution Stream. Maintaining high-resolution
features has demonstrated its superior performance for
dense prediction [9,22,23,26]. The black line in Fig. 1a
indicates the data flow of the full-resolution stream. This
stream first concatenates Im and I f , followed by a 3D
convolution and a series of residual blocks (RB, described
in “Residual block (RB)” section). Then, the low-level
features on this stream are successively computed by
adding the residual from the other parallel stream. After
that, the full-resolution stream reduces the number of
channels via consecutive RBs and 3D convolutions step-
by-step and estimates the 3-channel deformation field φ.
Spatial transformation network (STN) [16] is applied to
warp the moving image Im with φ, so that the similarity
between the warped image Iw and fixed image I f can be
evaluated. This stream does not employ any downsam-
pling operation, resulting in good boundary localization
but poor performance in deep semantic recognition. As
such, the hard-to-align regions are propagated through-
out the stream. Specifically, the convolutions in the
full-resolution stream are all with 16 channels in our
experiments except for the final 3-channel convolution
used to generate the deformation field.

– Multi-scale Residual Stream. The data flow of multi-
scale residual stream is depicted as the orange line in
Fig. 1a. In contrast to the full-resolution stream, this
stream is good at capturing high-level features that can
improve the organ recognition performance. Specifically,
successive pooling and convolution operations are lever-
aged to increase the receptive fields and enhance the
robustness against small noises in the images. We also
inherit the skip-connection design in regular high-to-
low, low-to-high architecture that the feature spaces with
same resolution are skip-connected by addition opera-
tion. Besides, with the help of our proposed multi-scale
residual blocks (MRBs) that can simultaneously operate
on both streams, the high-level features can directly inter-
act with low-level features. The interior architecture of
MRB is shown in Fig. 1c with elaboration in “Multi-scale
residual block (MRB)” section. In our experiments, we
set N to 4,which is the same asVoxelMorph [2], denoting
that the lowest resolution is 1/16 of the original image.
Specifically, at the resolution of 1/2 and 1/4 scale, the
channel number of the feature map is set to 16. At the
resolution of 1/8 and 1/16 scale, the number of feature
channels becomes 32.

The information of the two distinct streams is automati-
cally fused via residual learning [10]. By repeatedly fusing
the features between two streams via computing succes-
sive multi-scale residuals, the full-resolution representations
become rich for the dense deformation field prediction. At
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the same time, richer low-level full-resolution information
can in turn enhance the high-level multi-scale information.

Residual block (RB)

ResNets, proposed in [10], have demonstrated that residual
learning can improve the training characteristics over tradi-
tional one-pass feed-forward learning. The interior architec-
ture of the residual block (RB) is depicted in Fig. 1b. The
output zn of the RB can be formulated as:

zn = zn−1 + R (zn−1) , (1)

where R represents the residual branch consisting of two
3D convolutions with a kernel size of 3 × 3 × 3 followed
by LeakyReLU activations. Instead of computing zn directly
as in the traditional feed-forward network, the convolutional
branch only needs to compute the residual R in this archi-
tecture.

Multi-scale residual block (MRB)

The multi-scale residual block (MRB) follows the basic idea
of residual block (RB) but elegantly achieves interaction
between the full-resolution stream and multi-scale residual
stream. AnMRB consists of a series of pooling, 3D convolu-
tion and upsampling layers, as shown in Fig. 1c. Each MRB
has two inputs, ln−1 as full-resolution low-level features and
hn−1 as multi-resolution high-level features, and two corre-
sponding outputs ln and hn . Intuitively, denoting the entire
MRB operation as M, the output ln can be computed as:

ln = ln−1 + M (ln−1, hn−1) . (2)

Specifically, first, the resolution of ln−1 is reduced to that
of hn−1 by a pooling operation, followed by a feature map
concatenation. Then, the concatenated feature map under-
goes a 3D convolutionwith a kernel size of 3×3×3, followed
by a Residual Block (RB) with the same number of channels,
and the output hn is connected to the next process of themulti-
scale residual stream. Meanwhile, the output of the 3×3×3
convolutional module adjusts the number of channels and
the resolution to be consistent with ln−1 through a 1× 1× 1
convolutional bottleneck layer and an upsampling layer at
the other end. By such a process, we can readily use addition
operations to integrate the residuals learned in the MRB in
the full-resolution stream, thus forming a dual-stream highly
interactive residual module.

Factorized 3D convolution (F3D)

Most medical images, as shown in Fig. 2a, consist of 3D
image stacks with the size of W × H × D, where W , H ,

(b)  3D Conv Block (c)  F3D Conv Block(a) Image Slices

Fig. 2 Illustration of a 3D medical image scans, b regular 3D convo-
lution with kernel size of 3 × 3 × 3, c F3D convolution block

D represents the width, height, and the number of sequen-
tial slices. Inspired by the Inception [24] where large 2D
convolution is factorized into two smaller ones, we factorize
3D convolution block for learning the volumetric represen-
tation. Specifically, suppose that we have a 3D convolution
with kernel size of 3 × 3 × 3 (Fig. 2b), it can be factorized
into a 3 × 3 × 1 convolution and a 1 × 1 × 3 convolution in
a cascaded fashion (Fig. 2c) to continuously capture dense
2D features in W × H slices with 1D attention weights that
build sparse sequential relationships across adjacent slices.
As such, the number of trainable parameters is reduced from
O(33 = 27) to O(3× 3+3 = 12), where we can reduce the
parameters by half.

However, it is noteworthy that the factorization is not
totally equivalent to regular 3D convolution, and a further
ablation study over factorized 3D convolution is presented in
“Ablation study of F3D convolution” section.

Loss function

The loss function of our network consists of two components
as shown inEq. (3). The similarity lossLsim penalizes the dis-
similarity between the fixed image I f and the warped image
Iw(Im ◦ φ). The deformation regularization Lreg adopts an
L2-norm of the gradients of the final deformation field φ with
a trade-off weight λ. We write the total loss as:

L(Im, I f , φ) = Lsim(I f , Im ◦ φ) + λLreg(φ). (3)

Specifically,modality independent neighborhood descrip-
tor (MIND) [11] can be used to measure the similarity of
both multimodal and unimodal images. MIND is a modality-
invariant structural representation, and we can minimize the
difference in the MIND features between the warped image
Iw(Im ◦ φ) and the fixed image I f to effectively train the
registration network. We define:

Lsim
(
I f , Im ◦ φ

) = 1

N |R|
∑

x

‖MI ND (Im ◦ φ)

−MI ND
(
I f

)∥∥
1 , (4)
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where N denotes the number of voxels in input images
Iw(Im ◦ φ) and I f , R is a non-local region around voxel
x .

Experiments

Dataset and implementation

In this work, we focus on the application of abdominal CT-
MRI multimodal registration to improve the accuracy of
percutaneous nephrolithotomy (PCNL). To further validate
the effectiveness of our method, we also evaluate the pro-
posed method on a public lung CT unimodal dataset [13].

– Abdominal CT-MRI dataset: Under the IRB approved
study, we obtained an proprietary intra-patient CT-MRI
dataset containing paired CT and MR images from 50
patients. The liver, kidney and spleen in both CT and
MRI were manually segmented for quantitative eval-
uation. Standard preprocessing steps, including affine
spatial normalization, resampling and intensity normal-
ization, were performed. The images were cropped into
144 × 144 × 128 subvolume with 1mm isotropic voxels
and divided into two groups for training (40 cases) and
testing (10 cases).

– Learn2reg 2020 Lung CT dataset [13]: This dataset con-
tains paired inspiratory and expiratory thorax CT images
from 30 subjects (20 cases for training and 10 cases for
testing). For all scans, the lung segmentation masks are
provided for evaluation. Standard preprocessing steps,
including affine spatial normalization and resampling,
had been performed by the challenge organization. We
further carried out intensity normalization and cropped
images into 128 × 128 × 160 subvolume.

The proposed method is implemented using Keras with
the Tensorflow backend. We train the network on a NVIDIA
Titan X (Pascal) GPU using Adam optimizer [17] with a
learning rate of 1e-5. The batch size is set to 1. As for the
optimal trade-offweightλ,we conduct exhaustive grid search
and select the value that achieves the highest average Dice
scores of ROIs on hold-out test set.

Measurement

We evaluate the registration performance using a series of
metrics for each method, mainly including average surface
distance (ASD) (lower is better) and the average Dice score
(higher is better) between the segmentation masks of warped
images and fixed images. Besides, the average number of
voxels with non-positive Jacobian determinant (|Jφ | ≤ 0)
in the deformation fields is counted for evaluating the dif-

Fig. 3 Results of varying the trade-off weight λ on average Dice score
of ROIs

feomorphism of the local deformation (lower is better). The
standard deviation of the Jacobian determinant (σ(|Jφ |)) is
also calculated for evaluating the smoothness of transforma-
tions (lower is better).

Experimental results

Ablation study of F3D convolution

Asmentioned in “Factorized 3D convolution (F3D)” section,
although convolution factorization can dramatically reduce
the training parameters, it may not be totally equivalent to
the regular 3D convolution in practice. Therefore, we inves-
tigate the different combinations of F3D convolution in our
F3RNet. In our experiments, except for the final 3-channel
3D convolution used to generate the deformation field, other
3 × 3 × 3 convolutions can be replaced. The variants of
F3RNet are presented in Table 1. In particular, the number of
parameters of F3RNet-w/ F3D is only 56.8% of the original
F3RNet. “More MRBs” indicate that two extra MRBs are
added at the lowest resolution path, which means that it is
possible to use the reduced parameters to add more MRBs to
enhance the network’s learning capability.

Figure 3 presents the average Dice scores of ROIs on the
hold-out test set for varying values of the smoothing trade-
off weight λ. The best Dice scores occur when λ = 1.5 for
F3RNet-w/o F3D, F3RNet-w/ F3D, F3RNet-Dec, F3RNet-
FR and F3RNet-MRB, and λ = 2 for F3RNet-Enc and
F3RNet-MS. In particular, F3RNet-w/o F3D and F3RNet-
MRB achieve better Dice scores than all other variants.
Moreover, after achieving the best Dice scores at λ = 1.5,
the results vary slowly over larger λ for F3RNet-w/o F3D
and F3RNet-MRB, showing that the two models are more
robust to the choice of λ.

Figure 4 shows visual results of warped images for the
ablation analysis. We can firstly see that the original F3RNet
(F3RNet-w/o F3D) can effectively register the multimodal
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Table 1 Different combinations
of F3D convolution (�) in
proposed F3RNet

Network FR stream MS stream More MRBs
Encoder Decoder

F3RNet-w/o F3D

F3RNet-w/ F3D � � �
F3RNet-Enc �
F3RNet-Dec �
F3RNet-FR �
F3RNet-MS � �
F3RNet-MRB � � � �

VM-1 VM-2 FAIM F3RNet-w/o F3DSyN

F3RNet-MRBF3RNet-MSF3RNet-FRF3RNet-EncF3RNet-DecF3RNet-w/ F3D

Deeds

Fig. 4 Visual results of an example for CT-to-MRI registration. Out-
side the grey box shows an example fixed MR image and a zoom-in
region with the segmentation masks of the liver (green), kidney (red),
and spleen (blue). The corresponding warped CT images and zoom-in

regions for baselines and ablation study are presented in the grey box.
A good registration will cause structures in warped images to close to
the corresponding fixed segmentation masks. The red arrows indicate
the registration of interest at the boundary of the organ

images. Ifwe replace all 3D convolutionswith F3D (F3RNet-
w/ F3D) or only replace the convolution in encoder and
decoder (F3RNet-Enc and F3RNet-Dec), our methods can
still effectively register the CT image but have slight perfor-
mance degradation. Interestingly, if we replace the regular
convolution on the entire multi-scale residual stream or full-
resolution stream alone, this will cause the information of the
two streams to not effectively interact and introduce noise,
resulting in unstable performance and significant registration
degradation. Therefore, if we use F3D to reduce the model
parameters, the 3D convolution on both streams should be

replaced at the same time. Further, we can use the reduced
parameters to add more MRBs (F3RNet-MRB). From the
visual results, it can be seen that the registration performance
is either maintained or slightly improved.

Table 2 also provides the comprehensive quantitative
results for all baseline methods and the variants of our
F3RNet with different combinations of F3D. As for the
results for ablation analysis,we can see that F3RNet-w/oF3D
and F3RNet-MRB achieve the best performance. Specif-
ically, with only 80.2% parameters of F3RNet-w/o F3D,
F3RNet-MRB achieves better ASD results in the liver and
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kidney registration than F3RNet-w/o F3D, while it also
achieves betterDice score in liver and spleen registrationwith
reasonable diffeomorphism and smoothness of the deforma-
tion fields.Meanwhile, consistentwith the visual assessment,
we can also see that F3RNet-FR and F3RNet-MS both yield
significant performance degradation over ASD and Dice
score as they cause the features of the two streams to be
disjointed.

Comparison with baselines on abdominal CT-to-MRI
registration

To evaluate our proposed method, five open-source state-of-
the-art baseline approaches are also compared, including two
traditional methods SyN [1] with mutual information (MI)
metric [27] and Deeds [12] with five-levels of discrete opti-
mization, and three unsupervised learning-based methods,
marked as VoxelMorph-1 (VM-1) [2], VoxelMorph-2 (VM-
2) [2], and FAIM [18]. The three learning-based methods are
initially proposed for unimodal registration, and we extend
them for bothmultimodal and unimodal registration by using
MIND-based similarity metric. We use the same test set to
search for the best regularization weights and then set the
weights to 1.5 for VM-1, VM-2 and FAIM. Other parame-
ters, such as learning rate and batch size, remain the same as
our method.

Figure 4 also illustrates the warped CT images produced
by other baseline methods. As we have mentioned above,
liver registration is much more challenging in the abdominal
image registration task. From the results, we can see that the
traditional method SyN fails to align the liver with large local
deformation while Deeds performs much better. As for other
deep learningmethods, VM-1, VM-2, and FAIM achieve rel-
atively satisfactory performance but still have considerable
disagreements. Except for F3RNet-FR and F3RNet-MS, our
methods have the most visually appealing boundary align-
ment, which demonstrates that our F3RNet can better register
the hard-to-align regions.

The quantitative results for the baseline methods are also
presented in Table 2. Consistent with the visual results,
the evaluations over ASD and Dice scores of our pro-
posed methods are better than the traditional methods and
other state-of-the-art unsupervised registrationmethods with
reasonable quality of the deformation fields, except for
F3RNet-FR and F3RNet-MS. Among the baseline meth-
ods, Deeds provides competitive results over SyN and other
learning-based methods. Furthermore, the traditional meth-
ods take much more time (97s for SyN and 37s for Deeds) to
register an image pair. In contrast, all deep learning methods
can complete a registration task in 3 seconds with a GPU,
making it appealing for image-guided therapies with intense
time demand.
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VM-1 VM-2 FAIM F3RNet-w/o F3DSyN F3RNet-MRBDeeds

Fig. 5 Visual results of an example for MRI-to-CT registration. Out-
side the grey box shows an example fixed CT image and a zoom-in
region with the segmentation masks of the liver (green), kidney (red),

and spleen (blue). The corresponding warped MR images and zoom-in
regions for all methods are presented in the grey box. The red arrows
indicate the registration of interest at the boundary of the organ

Table 3 Average Dice scores and average ASD evaluations (mean ± std) for MRI-to-CT registration

Methods ASD(mm) Dice(%)
∣∣Jφ

∣∣ ≤ 0 (σ (|Jφ |))
Liver Spleen Kidney Liver Spleen Kidney

Moving 4.95±0.82 1.97±0.52 2.01±0.36 77.18±4.13 78.24±3.21 80.14±3.17 –

SyN 4.73±0.68 1.63±0.57 1.99±0.33 78.36±4.67 78.53±3.39 81.38±2.98 89.2(0.33)

Deeds 3.58±0.53 1.56±0.44 1.84±0.40 83.59±3.87 82.63±3.41 83.06±3.49 1.20(0.14)

VM-1 4.02±0.73 1.61±0.64 1.95±0.28 81.34±4.06 80.72±3.02 82.46±3.07 0.10(0.05)

VM-2 3.59±0.67 1.53±0.52 1.87±0.36 83.28±4.03 82.81±3.14 83.37±2.83 0.00(0.03)

FAIM 3.71±0.87 1.51±0.63 1.89±0.31 84.33±3.64 81.06±3.48 83.44±2.92 0.00(0.04)

F3RNet-w/o F3D 3.12±0.59 1.43±0.59 1.68±0.42 85.75±4.11 83.02±3.26 84.07±3.04 0.00(0.06)

F3RNet-MRB 3.04±0.65 1.38±0.51 1.67±0.35 85.93±3.52 83.47±3.51 84.39±2.77 0.00(0.04)

Best results are shown in bold. Besides, |Jφ | ≤ 0 (average number of folding voxels in the deformation fields) and σ(|Jφ |) (the smoothness of the
deformation fields) are also provided

Experiments on abdominal MRI-to-CT registration

Among all the proposed networks for CT-to-MRI registra-
tion, F3RNet-w/o F3D and F3RNet-MRB provide superior
results. To further validate the effectiveness of the two pro-
posed methods, we also perform the MRI-to-CT registration
in turn. The division of the dataset and the other training set-
tings of the networks, e.g., regularization trade-off weights,
etc., are consistent with the CT-to-MRI registration task.

The visualization of the registration results in Fig. 5
shows that our methods, F3RNet-w/o F3D and F3RNet-
MRB, achieve more accurate organ alignment than other
traditional and deep learning approaches, especially for the
liver.

The quantitative evaluation of MRI-to-CT registration is
summarized in Table 3. Our proposed methods achieve bet-
ter results in terms of ASD and Dice scores than that of the
traditional method and other state-of-the-art unsupervised
learning registration methods. In particular, F3RNet-MRB
achieves the best registration accuracy among all the meth-
ods with reasonably low |Jφ | ≤ 0 and σ(|Jφ |).

Experiments on expiration-to-inspiration lung CT
registration

Apart from the large local deformation between expiratory
and inspiratory lung CT images, another challenge of the
Learn2Reg 2020 Lung CT dataset [13] is that the lungs are
not fully visible in several expiratory scans as shown in Im
in Fig. 6. In our experiment, MIND-based similarity metric
[11] is still used to guide the network training. Empirically,
the regularization weights are all set to 1.5 for VM-1, VM-
2, FAIM and F3RNet. Other parameters, such as learning
rate and batch size, remain the same as the aforementioned
experiments.

We visualize an example of the registration results from
both axial and coronal views in Fig. 6. Apparently, the
proposed methods, F3RNet-w/o F3D and F3RNet-MRB,
achieve more accurate lung alignment than other traditional
and deep learning approaches, especially from the coronal
view.

The quantitative evaluation of expiration-to-inspiration
lung CT registration is summarized in Table 4. Our proposed
methods achieve better results in terms of ASD and Dice
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SyN Deeds VM-1 VM-2 FAIM F3RNet-w/o F3D F3RNet-MRB
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Fig. 6 Visual results of an example for expiration-to-inspiration lung CT registration from both axial and coronal views. The red contours represent
the lung segmentation of the fixed inspiratory CT image

Table 4 Average Dice scores
and average ASD evaluations
(mean ± std) for lung CT
registration

Methods ASD(mm) Dice(%)
∣∣Jφ

∣∣ ≤ 0 (σ (|Jφ |))
Moving 2.51±0.83 86.37±3.45 –

SyN(MI) 2.34±0.31 86.27±2.62 133.50(0.36)

Deeds 2.35±0.72 87.28±2.78 7.50(0.11)

VM-1 2.46±0.84 86.63±3.49 0.00(0.08)

VM-2 2.38±0.82 87.05±3.39 1.20(0.09)

FAIM 2.43±0.85 86.86±3.39 4.50(0.11)

F3RNet-w/o F3D 1.95±0.37 87.84±2.50 1.80(0.16)

F3RNet-MRB 1.69±0.34 88.95±2.59 2.10(0.13)

Best results are shown in bold. Besides, |Jφ | ≤ 0 (average number of folding voxels in the deformation fields)
and σ(|Jφ |) (the smoothness of the deformation fields) are also provided

scores than that of the traditional methods and other state-
of-the-art unsupervised learning registration networks with
reasonable tradeoff in the diffeomorphism and smoothness of
the deformation fields. In particular, F3RNet-MRB achieves
the best performance among all the methods.

Conclusions

In this work, we propose a novel unsupervised registration
network, namely full-resolution residual registration network
(F3RNet), which takes advantage of full-resolution informa-
tion, multi-scale fusion, deep residual learning framework
and 3D convolution factorization, to improve the deformable
registration performance. The experimental results on both
multimodal and unimodal tasks indicate that our network
can better register the hard-to-align region, yielding supe-
rior accuracy of registration. In our experiments, we found
the current input size to be a compromise between image
resolution and GPUmemory limitation. Recently, the Lapla-
cian pyramid image registration network (LapIRN) [21] that
includes three pyramid branches to register the image pairs
at different resolutions with a coarse-to-fine optimization
scheme is proposed, which brings promising enlightenment
on improving multi-scale fusion-based registration. Future
workswill continuously focus on the lighter andmore elegant
ways to leverage high-resolution information andmulti-scale

fusion to cope with the large local deformation under limited
GPU memory.
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