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Abstract
Purpose Given the high level of expertise required for navigation and interpretation of ultrasound images, computational
simulations can facilitate the training of such skills in virtual reality. With ray-tracing based simulations, realistic ultrasound
images can be generated. However, due to computational constraints for interactivity, image quality typically needs to be
compromised.
Methods We propose herein to bypass any rendering and simulation process at interactive time, by conducting such sim-
ulations during a non-time-critical offline stage and then learning image translation from cross-sectional model slices to
such simulated frames. We use a generative adversarial framework with a dedicated generator architecture and input feeding
scheme, which both substantially improve image quality without increase in network parameters. Integral attenuation maps
derived from cross-sectional model slices, texture-friendly strided convolutions, providing stochastic noise and input maps
to intermediate layers in order to preserve locality are all shown herein to greatly facilitate such translation task.
Results Given several quality metrics, the proposed method with only tissue maps as input is shown to provide comparable
or superior results to a state-of-the-art that uses additional images of low-quality ultrasound renderings. An extensive ablation
study shows the need and benefits from the individual contributions utilized in this work, based on qualitative examples
and quantitative ultrasound similarity metrics. To that end, a local histogram statistics based error metric is proposed and
demonstrated for visualization of local dissimilarities between ultrasound images.
Conclusion A deep-learning based direct transformation from interactive tissue slices to likeness of high quality renderings
allow to obviate any complex rendering process in real-time, which could enable extremely realistic ultrasound simulations
on consumer-hardware by moving the time-intensive processes to a one-time, offline, preprocessing data preparation stage
that can be performed on dedicated high-end hardware.

Keywords Ultrasound simulation · Generative models · Attenuation

Introduction

Ultrasound (US) imaging is a real-time, non-invasive and
radiation-free imagingmodality,making it ideal for computer-
assisted interventions. Nevertheless, the challenges in ultra-
sound probe manipulation and image interpretation neces-
sitates extensive operator training. Computer-assisted ultra-
sound simulation can facilitate such training in a virtual-
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reality environment [2,17,19,25]. This does not require
volunteer patients or on-site supervisors, while enabling stu-
dents to learn and practice skills in a flexible, stress-free,
and self-supervised manner. Furthermore, rare-to-encounter
diseases and conditions can be presented and practiced in a
realistic, interactive mode.

To provide training for US probe manipulation and image
interpretation, computational simulators need to correctly
represent ultrasonic physical effects, e.g. view-dependent
artifacts and realistic tissue texture, and operate dynamically
and interactively. In the literature US simulationmethods can
be categorized into interpolative and generative approaches.
The former [4] generates 2D US images by interpolating
pre-recorded 3D volumes. However, to generate a rich vari-
ety of images, a large amount of 3D volumes needs to be
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acquired and stored. Furthermore, it is difficult to generate
novel views and contents, since the physical model is in gen-
eral not considered. In contrast to interpolativeUS simulation
approaches, advanced generativemethods [3,15,20,24] allow
to generate variety of images with plausible view-dependent
artifacts, e.g. for rare pathological cases. These techniques
model ultrasonic wave propagation using ray-tracing tech-
niques on anatomical models. New scenes of any given
anatomical model can be simulated with different imag-
ing parameters and conditions. There is a line of works on
developing sophisticated ray tracing techniques to simulate
realistic wave interactions. A deterministic surface-based
ray tracing method is introduced in [3] to simulate ultra-
sonic directional wave interactions. The method is further
extended in [20] to utilize patient-specific volumetric MRI
or CT data. Amore sophisticated stochastic wave-interaction
and surface modeling is proposed in [15] to overcome the
simplified assumption of the deterministic ray model. Given
a 3D anatomical model, ray-based techniques using the
state-of-the-art Monte-carlo ray-tracing framework manage
to simulate US images with surprisingly high realism at
interactive frame rates, as shown in [15,24] for fetal ultra-
sound imaging. Since ultrasound is a real-time, interactive
imaging modality, the fundamental challenge for any train-
ing ultrasound simulation is to achieve real-time frame rates.
Emulating ultrasound physics and appearance at an interac-
tive rate has been a challenge tackled by most above-listed
literature [3,4,15,21,23,24] and a long standing research
question. In this paper, we propose to mimic the simulation
with a deep learned model, such that the interactive image
simulation only requires a quick inference of such model.

Recent advances in deep learning have enabled vari-
ous learning based approaches for ultrasound simulation.
Generative adversarial networks [5] (GANs) are the most
promising models in this regard due to their outstanding per-
formance in generating photo-realistic images. Conditional
GANs are widely adopted for generating ultrasound images
conditioned on physical input, such as calibrated physical
coordinate [8] and echogenicity map [26]. A recent publi-
cation [12] has employed a generative autoencoder model
learned with a large amount of tracked ultrasound data, to
perform patient-specific image generation from transducer
position and orientation. To simulate realistic ultrasound
speckles, the authors in [1] have introduced a speckle layer
to incorporate the physical model of speckle generation into
a GAN-based data augmentation network. In [27], a cycle-
GAN [29] model is employed for improving the realism of
simulated ultrasound images. A constrained cycleGAN is
proposed in [9] for unpaired translation from echocardio-
graphic images acquired with point-of-care ultrasound to
high-end devices. Recently, a GAN-based image translation
framework has been proposed in [28] for recovering high
quality US images equivalent to computationally expensive

ray-based simulations using low-quality and thus faster sim-
ulations, by also leveraging information from corresponding
segmentation and integral attenuation maps. However, ren-
dering such low-quality ultrasound images still requires
additional computation time and sophisticated hardware
resources.

In this work, we propose to learn the rendering of
ultrasound images given only cross-sectional model slice
/ segmentation and integral attenuation maps, the latter of
which can be derived from former on-the-fly and helps dis-
till global acoustic energy information locally. An overview
of per-frame segmentation and integral attenuation map gen-
eration can be seen in Fig. 1a. Herein we adopt aMonte-carlo
simulation presented in [15] for simulating the same abdomi-
nal scene as in previous work [28]. Since low-quality images
as used in [28] provide information about wave interactions
and speckle textures, omitting this modality in the network
input renders the translation task much more challenging.
We carefully inspect the generator architecture and propose
several crucial architectural improvements to enable realistic
quality images from merely the segmentation maps as input.
Herein we present a local feature and texture preserving gen-
erator containing

• connections of network input to each intermediate layer
for improved information flow;

• smaller receptive field to preserve spatial information;
• texture-friendly strided convolutions;
• dedicated noise images fed at each resolution.

With the above mentioned architectural changes in contrast
to [28], our proposed network is able to simulate US images
with realistic structural and textural content. To the best of
our knowledge, this is the first work investigating deep neural
networks to generate simulated ultrasound images using only
structural tissue cross-sections.

Methods

Ray-based ultrasound simulation

In this work we adopt a Monte-Carlo ray tracing frame-
work presented in [15] to simulate ultrasound B-mode
images for an abdominal scene. Directional ultrasonic wave
interactions such as reflection and refraction are simu-
lated using a stochastic surface ray tracing model, which
is able to create realistic looking soft shadows and tis-
sue reflection boundaries. Ultrasound speckle formation is
modeled by convolving 3D tissue scattering representation,
parametrized by a Gaussian distribution [14], with spatially-
variant point-spread-function. Each tissue type is assigned
a set of pre-determined acoustic properties such as acous-
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(a)

(b) (c)

Fig. 1 a For each frame of ultrasound simulation, a cross-sectional
tissue slice S is extracted given the mock probe position and a set of
3D triangulated anatomical surfaces. Referencing acoustic attenuation
of each anatomical structure from a predefined indexed list, a spatial
attenuation map is generated. Aggregating such maps along ultrasound
propagation then yields the so-called integral attenuation maps A are
derived for each frame in real-time.bNetwork architecture of the gener-
ator used in [28]. cNetwork architecture proposed herein to address the

challenges of image translation from segmentation maps to complex B-
mode image content. Here the white blocks (de)conv k×k, ss, ch stands
for a (de)convolutional layer with a filter size of k × k, stride s, and ch
filters. Gray block with 2 or 2 denotes the entire up- or downsampling
block with a factor of 2. Dotted black lines stand for skip connections
and blue lines for concatenation of the network input. Solid red line
and block represents stochastic components of the network. The term
W denotes learned per-channel weighting

tic impedance, attenuation, and speed-of-sound, which are
modeled by hand according to literature and quality assess-
ment by sonographers. To obtain gray-scale B-mode images,
conventional post-processing steps are applied on simulated
RF data, including envelope detection, time-gain compen-
sation, log compression, and scan conversion. Herein we
simulate the second trimester transabdominal scene of the
entire abdomen. The US probe is placed at positions on a
regular grid on the abdominal surface and different orienta-
tions at each position are collected to uniformly sample the

fetus field-of-view. Detailed scene information and simula-
tion parameters are provided in Table 1.

Model slice is rendered as the cross-section of the tri-
angulated anatomical surfaces. It provides details about the
anatomical layout, thus is also referred to segmentation map
herein. The segmentation map is stored as an indexed image.
Each tissue type has its unique intensity value, which is
matched to a corresponding attenuation coefficient using a
look-up table prior to axial aggregation for attenuation map
generation.
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Table 1 Simulation parameters Parameter Value Parameter Value

Triangles fetus 400k Transducer frequency 8 MHz

Triangles mother 275k Transducer field-of-view 70◦

Image depth 15.0 cm Axial samples 3072

Elevational layer 3 Ray per scanline 32

One of the most characteristic features of US images is
acoustic shadow, which is important for image interpreta-
tion, since abnormal shadows may indicate the existence of
tissuemodification. This directional artifact is mainly caused
by tissue attenuation,which leads to a decrease in soundwave
intensity along the wave propagation path due to local tissue
absorption and scattering. Therefore, acoustic shadow is a
cumulative effect which requires a large network receptive
field and significant networkmodeling ability. The authors in
[28] propose to provide this cumulative information in a form
of an integral attenuation map and they demonstrates that
providing this additional information to the network greatly
helps to reproduce acoustic shadows. Integral attenuation
maps are computed as a = e−∑z

i=0 μ[i] with the image depth
z and frequency-dependent and tissue specific attenuation
coefficientμ. The acoustic shadow formation is thus approx-
imated by accumulating the attenuation strength, quantified
byμ, along the wave propagation path. For each image point,
the acoustic attenuation is inferred from the segmentation
value using a predefined look-up table. The integral attenua-
tion map is generated separately for each pre-scan-converted
image column, which corresponds to radial US propagation
direction for the given convex US probe. The integral maps
are then normalized by 98 %ile of image intensities, and
scan-converted into Cartesian coordinates.

Ultrasound simulation using a generative
adversarial network

In this work, we propose a generative adversarial network
(GAN) for generating ultrasound images from segmentation
and integral attenuation maps. Given segmentation maps and
acoustic attenuation properties of each tissue, integral maps
canbegenerated as in [28] in order tomimicwavefront traver-
sal in tissue. This is known from [28] to improve rendered
shadows and acoustic amplifications by bringing global echo
amplitude modifications to a local context. In our ablation
experiments we study the effect of attenuationmaps, referred
in the results with the acronym att.

In contrast to [28], herein we propose the following
four major architectural improvements, as also illustrated in
Fig. 1, which are later demonstrated to provide promising
generation results in our experiments.

Input to all channels: To enable an effective information
flow from the input images to each spatial resolution in the
network, we provide the information at each intermediate
layer by concatenating themaps along the channel dimension
to the network activations, indicated by dotted blue connec-
tions in Fig. 1c.Although thiswas shown in [18] to be inferior
to spatially-adaptive normalization (SPADE) layers in the
context of natural images, we found this approach to outper-
form SPADE in our application setting, since it enables the
network to generate location-specific features conditioned on
both segmentation and integral attenuation map. In our abla-
tion experiments, we refer to this concatenation approach
with the acronym concat.

Preserving spatial information: To further preserve the
local information from input maps to output images, we use
a comparatively small receptive field in our network archi-
tecture. Since the integral attenuation map helps to transform
global effects of acoustic shadows into local features, under-
standing and encoding the entire scene in a compact form is
not required andwouldwaste network capacity.We therefore
use 4 downsampling blocks.

Texture-friendly decoder: Transposed convolutions are
known to be prone to characteristic checkerboard artifacts
due to uneven overlap when using odd kernel sizes [16].
Therefore they are not an ideal choice in texture genera-
tion tasks. To improve texture generation performance, we
therefore enhance the decoding blocks by introducing addi-
tional stride-1 convolution layers, which helps to circumvent
both low and high frequency artifacts. These changes in the
convolutional architecture are referred collectively using the
acronym conv in our ablation study.

Stochastic texture generation: To generate random speckle
textures, the network needs access to a stochastic source,
especially when omitting low-quality B-mode image input.
A straightforward approach to ensure a stochastic process is
to feed an explicit noise image as an additional input channel.
Recently, Karras et al. [10] proposed an alternative method,
by perturbing feature channels using additive Gaussian noise
with learned per-channel weighting. This warrants the net-
work to disentangle global and local stochastic variations.
Motivated by its astonishing performance in generating fine
stochastic details such as hair, we study this approach for
the generation of ultrasound textures. Accordingly, Gaussian
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noise images with different sizes are generated and weighted
by a learned per-channel scaling factor. The weighted noise
channels are then added to the decoding feature layers after
skip connections, shown as solid red lines in Fig. 1c. In the
ablation studywe referred to this technique with the acronym
noise. Themore conventional way of adding noise as an input
layer is equivalent to replacing the low-quality image in [28]
with noise, and therefore is referred as NSA2H in our com-
parative study.

We adopt the patchGAN discriminator and the training
objective from [28]. The loss function consists of a GAN
training objective LGAN and an L1-based data fidelity term
LF as follows:

L = LGAN(G, D) + λLF(G),

LGAN = Es,a,y[log D(y|s, a)] (1)

+ Es,a[log(1 − D(m ◦ G(s, a)|s, a)], (2)

LF = Es,a,y[||y − m ◦ G(s, a)||1], (3)

where s ∈ S is segmentation map, a ∈ A is integral
attenuation map, and m is the binary mask indicating the
convex imaging region. Es,a,y and Es,a are the expected val-
ues, respectively, over all samples of {s, a, y} triples and
{s, a} pairs. The generator G maps the source segmenta-
tion/attenuation map to the target US image, whereas the
discriminator D discriminates real and generated images
conditioned on the generator input. Before computing the
loss, the generator output is pixel-wise multiplied with the
binary mask m, which is denoted by the operator ◦.

Results and discussion

Implementation and network details. All our models are
trained using the Adam optimizer [11] with a learning rate of
0.0002 and exponential decay rates β1 = 0.5 and β2 = 0.999.
The batch size is set to 4 and the loss weighting parameter
λ set to 100. The leaky rectified linear unit is used in the
encoder and the rectified linear unit throughout the decoder,
except its output layer, which is activated using tanh. Nonlin-
ear activations are followed by instance normalization. We
use the same dataset as in [28] consisting of 6669 3-tuples
(s, a, y) with an image size of 1000 × 1386. The network is
trained using on-the-fly cropped image patches with a size
of 512× 512 to make the training more efficient. Randomly
selected 6000 images were used for training and the rest for
evaluation, following the same dataset split as in [28].

Compared methods.We refer our proposed network archi-
tecture as SA2H, which translates from segmentation map S
and integral attenuation map A to a high-quality image H .
To evaluate individual architectural proposals of SA2H, we
ablate each component separately and refer to as “SA2H-

component” in the ablation studies below. We accordingly
compare SA2H against the following alternatives:

• SA2H-att omitting integral attenuation maps as input to
the network;

• SA2H-concat providing segmentation and attenuation
maps at the input layer only without concatenating in the
hidden layers (removing the blue connections in Fig. 1
(c));

• SA2H-convomitting texture-friendly convolutional com-
ponents in the decoder and falling back to even sized
transposed convolution kernels;

• SA2H-noise omitting Gaussian noise images as stochas-
tic input and provide an input noise layer instead (remov-
ing the red connections in Fig. 1 (c));

• LSA2H the recent low-to-high-quality image translation
network presented in [28], which has a low-quality ren-
dered ultrasound image L as an additional network input.
Given the additional ultrasound physics and texture infor-
mation encoded in the low-quality image input, LSA2H
represents an upper-bound (or, considering our architec-
tural improvements, rather a silver-standard).

• NSA2H a lower-bound baseline by replacing the low-
quality image L in LSA2Hwith an uncorrelatedGaussian
noise image N .

Qualitative evaluation. Fig. 2 depicts the qualitative results
for all the models mentioned above, with arrows point-
ing at structures relevant to discussion points below. The
visual results of the ablated variants of SA2H show sub-
stantial quality degradation compared to the full SA2H
model, demonstrating the importance of each proposed archi-
tectural contribution. Given only segmentation map in the
network input, SA2H-att fails to generate acoustic shad-
ows, e.g. those cast by the ribs. Detailed structures such as
the cervical vertebrae are blurred out in the SA2H-concat
results, which also contain hallucinated structures mainly
due to insufficient preservation of input information along
the encoding-decoding path.With SA2H-conv, checkerboard
artefacts are observed due to the lack of proposed addi-
tional stride-1 convolutional layers. SA2H-noise without any
explicit noise input is seen to be sub-optimal at generat-
ing textural details. The baseline method NSA2H fails to
preserve anatomical structures and acoustic shadows in all
cases, while the simulated textures also show significant
artefacts such as checkerboard patterns. Realism of differ-
ent simulation aspects may become relevant given different
clinical applications and scenarios. For instance, improved
structural preservation, e.g. with the hyperechoic bony struc-
tures such as the skull and the ribs, of the final model over
its ablated variants and NSA2H may prove relevant in fetal
head measurements, while the textural improvements facil-
itating screening fetal organ maturity, e.g. lungs. Compared
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Fig. 2 Inference on full
field-of-view (FoV) images.
Segmentation and integral
attenuation maps are shown,
respectively, at the top left and
bottom right corners of the
simulated B-mode images
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to the silver-standard model LSA2H with a low-quality ren-
dered image as additional input, SA2H is seen to be on par
in structural preservation. Note that shadowing on homoge-
nous regions (e.g. the rib shadowing on the homogenous lung
region on the 4th column of Fig. 2) with our proposedmethod
SA2H is represented more faithfully compared to LSA2H,
whereas shadows on structurally complex regions (e.g. the
skull shadowing around the heart and surrounding tissues
on the 3rd column of Fig. 2) are suboptimal with our SA2H.
Therefore, onemay have to evaluate ourmethod given partic-
ular simulation tasks, e.g. its clinical validity for fetal heart
exams. However, even with low quality rendered images,
LSA2H leads to artificial enhancements of intensities, lack
of acoustic shadows, and low-quality textures especially near

the probe, for which SA2H yields satisfactory results as illus-
trated in Fig. 2.

Quantitative evaluation. Metrics for assessment of US
image quality and realism is an open research topic. Pixel-
wise difference and SNR metrics assuming paired ground-
truth images are often suboptimal and potentially inconclu-
sive in judging US image realism, given the noisy speckle
appearance and the inherent features and artifacts of B-mode
images. To assess such local image matching, we herein also
utilize a sliding path-based histogram comparison metric.
Additionally, we utilize a typical metric for generative mod-
els that quantify distributions given features of a pretrained
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Fig. 3 Spatial pχ2 error map
for the examples shown in
Fig. 2. Error map is displayed
within the range [0,1]. The
corresponding ultrasound image
is shown below the map. Target
image is shown in the right most
column

Table 2 Quantitative results.
Bold number indicates the best
performance. Mean and
standard deviation are reported
for PSNR, MAE and pχ2.
Network capacity is given as
number of trainable parameters

PSNR MAE pχ2 (×10−2) FID #params
mean std mean std mean std

LSA2H 27.38 0.52 6.21 1.56 13.61 1.39 64.42 57.2M

NSA2H 25.59 1.81 8.22 2.77 31.39 5.51 67.28 57.2M

SA2H-att 25.04 1.61 8.75 2.75 29.40 5.07 92.49 14.4M

SA2H-concat 26.23 1.22 9.08 2.93 29.36 5.87 76.40 14.4M

SA2H-conv 24.85 1.31 8.87 2.55 32.70 4.33 93.18 16.2M

SA2H-noise 26.45 1.34 8.14 2.66 25.95 4.64 97.85 14.5M

SA2H 28.19 1.23 6.37 2.08 18.60 5.23 32.34 14.5M

visual model. Accorindingly, we utilize the following com-
plementary quantiative metrics:

• Peak signal-to-noise ratio (PSNR) is computed as PSNR
= 10 log10(

255
MSE )with mean squared error MSE between

two images.
• Mean absolute error (MAE) measures pixel-wise differ-
ence between two images. HighMAE valuemay indicate
large intensity shift or structural mismatch. However, it
cannot provide information about texture difference.

• pχ2: We use χ2 distance to measure the difference in
image histogram statistics, which are commonly used
for tissue characterization [13,22]. This metric indicates
potential mismatch in tissue speckle patterns, which
affects image histogram statistics. χ2 distance com-
putes the difference between histograms hA and hB as:

χ2(hA||hB) = 1
2

∑
l=1..d

(hA[l]−hB [l])2
hA[l]+hB [l] . The number of

histogram bins d is set to 50. We compute this met-

ric locally within non-overlapping sliding patches with
a size of 20× 20 to capture local textural information of
US speckle patterns. Herein we compute the root mean
squared error, referred to patch χ2 (pχ2).

• Fréchet Inception Distance (FID) [7] quantifies the simi-
larity of generated samples to real samples by computing
the distance between the feature vectors of the classi-
fication network Inception v3. The feature vectors are
fitted to multivariate Gaussian and the difference is com-
puted using Fréchet distance. FID score is a widely used
metric for assessing GAN performance. Lower FID indi-
cates better image quality.We compute FID on 512×512
sized center crops of generated full field-of-view images,
which are further divided into four sub-crops of 299 ×
299, to increase the number of samples and match Incep-
tion v3 input size.
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Fig. 4 Box plot of paired difference between SA2H and its ablated variants, LSA2H and NSA2H. Note that higher PSNR, lower MAE and pχ2

indicates better performance. For FID, no image-wise metric can be computed

For the interpretation of the local errors, sample spatial
pχ2 error maps are depicted in Fig. 3 for LSA2H, NSA2H,
and SA2H for themiddle two examples shown in Fig. 2. Both
images generated by NSA2H have a lot of missing structures
and accordingly have high error almost all over themap.Arti-
ficial skull enhancement with LSA2H is seem to evoke large
pχ2 error, as shown in the corresponding error map, whereas
the bright spots in the error map of SA2H reflect some hal-
lucinated shadows and structure in the brain. All of above
mentioned regions of interest are marked by red arrows. In
the bottom example, SA2H fails to generate faithful content
at the bottom region marked by red circles, which is well
indicated by the error map as well.

The quantitative results are summarized in Table 2. The
effectiveness of all the proposed architectural improvements
is well demonstrated by the significant performance drop of
the ablated variants in all the metrics, which also corrobo-
rate with our qualitative results shown above. The proposed
model SA2H has achieves an improvement of over 50% in
FID and 40% in pχ2 over the baseline NSA2H, indicating
a significantly higher fidelity in generated images using the
proposed method. Surprisingly, for PSNR and FID metrics,
SA2H outperforms the LSA2Hmodel, which has extra ultra-
sound information provided as a low-quality image input.

In Fig. 4 we show the distribution of paired differences in
PSNR, MAE, and pχ2 between each tested model and the
proposed SA2H one. As seen, for all ablated variants and the
baselineNSA2H, our proposedmethod provides a significant
improvement for all metrics.

The presented method is aimed to replace the computa-
tionally expensive online rendering process, such that image
quality is not restricted by the interactivity constraint of a
simulation complexity and runtime. Using training images
from a wide range of positions and orientations on a given
abdominal model, our generator learns to simulate B-mode
images from arbitrary slices of this model, as assessed with
unseen image locations in our evaluation. For other anatom-
ical models or locations, one can retrain the network with
their corresponding simulated images and cross-sections.

Note that paired segmentation/attenuation maps and US
images are required to train our network. The choice of train-
ing data is therefore restricted to synthetic images. Hence, the
realism of the generated images by our proposed approach
cannot go beyond the realism of the underlying simula-
tion. To incorporate real ultrasound images, one may utilize
unpaired deep learning models, e.g. cycleGAN [27,29] , as a
potential future research direction.
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Our work similarly to many other GAN-based tech-
niques for US simulation [8,26,27] deal with single image
translation or generation. However, for sonographer training
purposes, interactive and dynamic simulators are required
to generate temporally consistent image sequences. How-
ever,without explicitly enforcing temporal consistency, these
methods are not guaranteed to generate images free from
temporal artifacts, which is a potential research direction for
future work.

Conclusions

In this work, we demonstrate a GAN-based framework with
a local feature preserving generator architecture for learn-
ing ultrasound rendering from cross-sectional segmentation
and subsequent integral attenuation maps, the latter of which
greatly facilitates the generation of directional acoustic shad-
ows. Combining with texture-friendly decoder blocks and
a proposed noise feeding strategy, the presented network
improves quality of translated images in terms of struc-
ture and texture compared to the state-of-the-art and any
baseline method with an improvement of over 50% in FID
score. An extensive ablation study has been carried out to
demonstrate the effectiveness of each proposed architectural
contribution. Compared to an earlier approach of simu-
lated ultrasound generation using image translation from
low-quality rendered images, the current approach does not
require sophisticated online rendering step, while still able to
generate ultrasound images with good anatomical structural
correspondence and superior texture appearance compared
to that state-of-the-art. For evaluation, besides traditional
metrics we also propose a local histogram statistics based
metric, while demonstrating on examples how it captures
visually-perceived local differences between images, which
is a typically challenging task due to the inherent speckle
noise in ultrasound images.

Learning rendering with GANs warrants sophisticated
rendering for ultrasound simulation to be carried out on
consumer-hardware. The current rendering simulation set-
tings lead to a frame time of 75 ms, a low-end of visually-
acceptable US interactivity. Our GAN requires a constant
computation time of 40 ms per frame using TensorRT, hence
nearly doubling the frame rate. Moreover, pre-trained net-
work can further be efficiently transferred and implemented
on low-end devices, such as with FPGAs [6]. With a wider
availability of simulated training of ultrasound with realistic
imagery, future sonographers can be trained more effectively
and also for rare-cases both for diagnostic and interventional
imaging applications.
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