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Abstract
Purpose  Dental radiography represents 13% of all radiological diagnostic imaging. Eliminating the need for manual clas-
sification of digital intraoral radiographs could be especially impactful in terms of time savings and metadata quality. How-
ever, automating the task can be challenging due to the limited variation and possible overlap of the depicted anatomy. This 
study attempted to use neural networks to automate the classification of anatomical regions in intraoral radiographs among 
22 unique anatomical classes.
Methods  Thirty-six literature-based neural network models were systematically developed and trained with full supervi-
sion and three different data augmentation strategies. Only libre software and limited computational resources were utilized. 
The training and validation datasets consisted of 15,254 intraoral periapical and bite-wing radiographs, previously obtained 
for diagnostic purposes. All models were then comparatively evaluated on a separate dataset as regards their classification 
performance. Top-1 accuracy, area-under-the-curve and F1-score were used as performance metrics. Pairwise comparisons 
were performed among all models with Mc Nemar’s test.
Results  Cochran’s Q test indicated a statistically significant difference in classification performance across all models 
(p < 0.001). Post hoc analysis showed that while most models performed adequately on the task, advanced architectures used 
in deep learning such as VGG16, MobilenetV2 and InceptionResnetV2 were more robust to image distortions than those in 
the baseline group (MLPs, 3-block convolutional models). Advanced models exhibited classification accuracy ranging from 
81 to 89%, F1-score between 0.71 and 0.86 and AUC of 0.86 to 0.94.
Conclusions  According to our findings, automated classification of anatomical classes in digital intraoral radiographs is 
feasible with an expected top-1 classification accuracy of almost 90%, even for images with significant distortions or over-
lapping anatomy. Model architecture, data augmentation strategies, the use of pooling and normalization layers as well as 
model capacity were identified as the factors most contributing to classification performance.

Keywords  Machine learning · Artificial intelligence · Neural networks, computer · Dentistry · Dental informatics · 
Diagnostic imaging

Introduction

Background

According to conservative estimates, half a billion dental 
diagnostic radiological examinations are performed annu-
ally, with a global average of 74 per 1000 inhabitants, rep-
resenting 13% of all diagnostic radiology testing [1]. Three 
hundred million intraoral radiographs are produced annu-
ally in the US and the EU [2, 3]. An increasing share is 
digitally acquired due to clinical advantages, radiation pro-
tection considerations and financial barrier lifting. Being 
non-physical, digital radiographs tend to be indefinitely 
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stored, leading to accumulation in vast archives, especially 
in large institutions.

Digital X-ray images are accompanied by standardized 
metadata, ideally generated during production. However, 
manual recording is often necessary, leading to inaccura-
cies attributed to lack of staff motivation or training [4]. 
Deficiencies in healthcare datasets are a well-documented 
problem associated with labor repetition and high repair 
cost.

Automated algorithms could become a third party 
responsible for generating standardized, high-quality meta-
data, allowing labor reallocation to more creative tasks and 
uplifting metadata value above the cost of maintenance if 
deployed at scale.

An intraoral radiograph’s anatomical region is a piece 
of metadata consisting of predetermined anatomical classes 
that correspond to standard radiographic projections, cur-
rently manually recorded by the human operator. Reliable 
recording is vital for diagnosis and the benefits of DICOM 
and is a prerequisite for the implementation of hanging pro-
tocols and the creation of standardized radiographic layouts 
[5, 6]. Additionally, it can be valuable for machine learning 
model development [7] and the searchability of radiographic 
archives. Automated classification exclusively from pixel 
data would enable its generation on the modality or data-
base level and eliminate the need for manual preselection.

Since the extent of the presumably depicted anatomy is 
known, it can be expressed as a problem of image classifica-
tion among predefined classes, a fundamental problem in the 
field of computer vision. Recent advancements, especially 
after the introduction of the still-relevant AlexNet architec-
ture in the ILSCVR competition [8–10], have allowed the 
domination of the field by a variety of algorithms where 
neural networks (especially convolutional ones) achieve rela-
tively good performance in the task of classifying natural 
images into different classes [11].

The subsequent release of libre software that abstracts 
underlying development processes enabled the rapid devel-
opment of relevant applications by independent research-
ers. In 2017, over 300 applications related to radiological 
imaging had been published [12], while in the US, major 
organizations in radiology recently issued a roadmap for 
future research in the field of machine learning in relation 
to radiology [7].

All the previously discussed benefits could be possibly 
provided by employing convolutional neural network archi-
tectures to achieve automated classification of intraoral 
radiograph anatomical regions.

In addition, exposing radiology workers to this recently 
introduced field through applications designed to eliminate 
trivial tasks can enhance familiarization with its concepts 
and shortcomings, leading to wider acceptance without the 
potential implications of diagnostic applications.

The purpose of this study is to systematically develop lit-
erature-based neural networks architectures (models) capable 
of classifying the anatomical region of intraoral radiographs 
based exclusively on pixel data, as well as to deduce the most 
appropriate architectures and training strategies by cross-
comparing model performance on a predefined dataset. By 
using libre software, a simple model development methodol-
ogy, a small dataset and limited computational and financial 
resources, wide adoption and reproducibility are facilitated. 
To our knowledge, no similar studies currently exist in the 
literature.

Materials and methods

The STARD 2015 [13] and CLAIM [14] checklists for the 
standardization and enhancement of the quality of diagnos-
tic accuracy and artificial intelligence studies were followed 
where applicable.

Dataset generation

The present study is a retrospective study utilizing archived 
intraoral radiographs obtained for diagnostic purposes. No 
subjects were exposed to X-rays for the purposes of this 
study. All subjects provided written consent.

Adult patients of any age and gender were included in 
chronological order without further inclusion or exclusion 
criteria. Non-adult patients were excluded. Included images 
were digital periapical or bite-wing radiographs obtained 
by the same modality (PSP plates, SOREDEX Scanora 
scanner).

The original uncompressed image data were fully 
anonymized and randomly shuffled by a hash-based algo-
rithm. The dataset was evaluated for content relevance, 
technical and visual quality and proper classification by one 
evaluator with 8 years of experience, excluding images of 
inadequate content or poor quality.

Twenty-two unique anatomical classes were identi-
fied. Class definitions assumed that each projection clearly 
depicts the region of three consecutive teeth, except for 
the anterior classes 12–22 and 32–42 which included four. 
Classes LBW1, LBW2 and RBW1, RBW2 were merged due 
to data scarcity.

The resulting dataset was then randomly split into an 
80% training subset and a 20% validation subset for model 
training. Proper dataset and split sizes were determined by 
a pilot study.

Model definition

Model definitions and training methodology were based 
on the dominant initial choices derived from an extensive 
review of the literature [11] and are described in Table 1.
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All models were developed using the Keras API v2.2.4, 
the Anaconda distribution of Python programming lan-
guage v3.6.7 and TensorFlow v1.14 as a backend, by add-
ing convolutional architectures as feature extractors on top 
of a multilayer perceptron classifier and trained using fully 
supervised learning with backpropagation of error.

Initially, a fully connected two-layer multilayer percep-
tron (1024 and 512 wide) with flattened input was trained 
as a baseline classifier. Then, a simple convolutional net-
work of three convolutional blocks as described in Ten-
sorFlow’s documentation (convolutional layers of width 
64, 128 and 128 respectively, a 3 × 3 filter size, and a max 
pooling level) was added as a baseline feature extractor.

A group of more advanced and innovative convolutional 
networks were then consecutively added; the deep but sim-
ple convolutional architecture VGG16 [15], the Mobile-
netV2 as a balanced architecture against model size and 
performance [16] and the Inception-ResNetV2 as a high-
capacity, high-performing architecture especially suitable 
for small datasets [17, 18].

Additional models were generated with the insertion 
of batch normalization layers [19] and the use of both 
the flattening or the global average pooling layer [20] as 
bridging between the feature extractor part and the MLP 
classifier.

Dropout layers of 0.20–0.50 rates [21] and three differ-
ent data augmentation strategies applied on-the-fly were 
used as regularization (described in Table 2).

The final layer of every model was a softmax-activated 
dense layer with a range equal to the number of classes 
(22), so that model output could be expressed as multiple 
percentages of per class prediction confidence that add up 
to 100%. The class with the highest confidence was the top 
model choice for the evaluation of top-1 accuracy.

All models were initialized with default Keras param-
eters and trained with categorical cross-entropy as a loss 
function, Adam optimizer [22], a batch size of 64, and 
learning rate reduction by 50% in validation top-1 accu-
racy plateaus. Training lasted 100 epochs with early stop-
ping if validation top-1 accuracy or loss function stopped 
improving after a set number of epochs. ReLUs [23] were 
used as activation functions. All other hyperparameters 
were constant.

Input resolution was 224 × 224 grayscale, or RGB in mod-
els requiring  three-channel input. The corresponding Keras 
preprocessing function was used; otherwise, images were 
rescaled to the 0–1 range.

Reproducibility and fair comparisons among models were 
facilitated by a common seed value for all pseudo-random 
number generators.

Class imbalance was mitigated using a weighted version 
of the loss function based on class weights calculated on the 
validation subset.

Table 1   Model definitions. MLP: multilayer perceptron, GAP: Global 
Average Pooling

Model Bridging layer Layer count Parameter 
count (mil-
lions)

Data augmen-
tation

Baseline group 1, MLP with two hidden layers
0 – 8 51.9 None
1 – 8 51.9 Typical
2 – 8 51.9 Aggressive
Baseline group 2, MLP with two hidden layers and Batch Normali-

zation
3 – 10 52.1 None
4 – 10 52.1 Typical
5 – 10 52.1 Aggressive
Baseline group 3, Convolutional network with 3 convolutional 

blocks + MLP
6 Flatten 17 178.1 None
7 Flatten 17 178.1 Typical
8 Flatten 17 178.1 Aggressive
Baseline group 4, Convolutional network with 3 convolutional 

blocks + MLP
9 GAP 17 1.1 None
10 GAP 17 1.1 Typical
11 GAP 17 1.1 Aggressive
Baseline group 5, Convolutional network with 3 convolutional 

blocks and Batch Normalization + MLP with Batch Normalization
12 Flatten 24 178.8 None
13 Flatten 24 178.8 Typical
14 Flatten 24 178.8 Aggressive
Baseline group 6, Convolutional network with 3 convolutional 

blocks and Batch Normalization + MLP with Batch Normalization
15 GAP 24 1.1 None
16 GAP 24 1.1 Typical
17 GAP 24 1.1 Aggressive
Advanced group 1, VGG16 architecture + MLP with Batch Normali-

zation
18 Flatten 30 41 None
19 Flatten 30 41 Typical
20 Flatten 30 41 Aggressive
Advanced group 2, VGG16 architecture + MLP with Batch Normali-

zation
21 GAP 30 15.7 None
22 GAP 30 15.7 Typical
23 GAP 30 15.7 Aggressive
Advanced group 3, MobilenetV2 architecture + MLP with Batch 

Normalization
24 Flatten 166 67.2 None
25 Flatten 166 67.2 Typical
26 Flatten 166 67.2 Aggressive
Advanced group 4, MobilenetV2 architecture + MLP with Batch 

Normalization
27 GAP 166 4.1 None
28 GAP 166 4.1 Typical
29 GAP 166 4.1 Aggressive
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Model evaluation

Evaluation was performed on a separate test dataset, not 
involved in model training, consisting of 261 intraoral radio-
graphs of patients, balanced for both sexes and all five age 
groups described in the NHANES [24], to reduce dataset 
bias. Its size allows the detection of large discrepancies in 
accuracy between the test and validation subsets, without 
being large enough to impact the training dataset.

Total training time, per sample prediction time, loss 
function minimization, top-1 accuracy, precision, recall, 
F1-score and area under the curve were obtained by Keras 
and Scikit-Learn.

Metrics were macro-averaged from all classes, where 
applicable. Since some classes were considerably under-
represented, in-depth per class performance analysis was 
deemed out-of-scope.

Top-1 class predictions for all test images were dichot-
omized to either true or false predictions in a one-vs-all 
fashion against the ground truth, then used for statistical 
analysis.

A significance level of 0.05 was set for all statistical 
tests. Comparison of the proportions of misclassifications 
across all models was performed with Cochran’s Q test. 
Pairwise comparisons across models were performed with 
McNemar’s test. P values were adjusted with the Bonfer-
roni correction [25–27].

Test calculations were performed with IBM SPSS sta-
tistical package version 25, p value adjustments with R 
statistical package version 3.6.1 and ROC curves were 
calculated with Scikit-Learn version 0.22.

Results

Dataset generation

Out of a total of 17,781 images, 15,254 were accepted for 
further processing, resulting in a training subset of 12,213 
images and a validation subset of 3041 images. Due to 
prior randomization and anonymization, the exact num-
ber of subjects included in the study is unknown. Class 
weights ranged from 1 to 26.65. A full dataset description 
is given in Table 3.

A total of 36 models were trained and evaluated. Sum-
maries of model training history and model performance 
across the test dataset are presented in Table 4. Learning 
curves for each model are found in “Appendix of ESM”.

Comparison among all models

Cochran’s Q test indicates a statistically significant dif-
ference across the 36 models in terms of the proportion 
of misclassifications on the test dataset, χ2

(35) = 3034.949, 
p < 0.001.

Table 1   (continued)

Model Bridging layer Layer count Parameter 
count (mil-
lions)

Data augmen-
tation

Advanced group 5, InceptionResnetV2 architecture + MLP with 
Batch Normalization

30 Flatten 791 94.3 None
31 Flatten 791 94.3 Typical
32 Flatten 791 94.3 Aggressive
Advanced group 6, InceptionResnetV2 architecture + MLP with 

Batch Normalization
33 GAP 791 56.4 None
34 GAP 791 56.4 Typical
35 GAP 791 56.4 Aggressive

Table 2   Data augmentation 
strategies with output examples

No augmentation Typical augmentation Aggressive augmentation

Brightness 100% 80–120% 80–120%
Rotation (degrees) 0 up to 10 up to 90
Shifting 0% 5% 10%
Zooming 100% 95–105% 90–110%
Shearing 0% 5% 10%
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Post hoc analysis—pairwise comparisons

An overview of the levels of statistical significance for the 
Bonferroni-adjusted p values for model pairwise compari-
sons with McNemar’s test is shown in Fig. 1. A complete 
table of p values is found in Appendix.

Failed models

MLPs without batch normalization (0, 1, 2) failed to train 
(top-1 accuracy 0.05–0.10, F1-score 0–0.01 and AUC 
equal to 50). Therefore, a statistically significant differ-
ence with any other model (p < 0.001 for all pairs) was to 
be expected, except for members of the same group.

Comparisons among advanced models

No statistically significant differences were observed 
among advanced group models (18–35), regardless of 
bridging layer or data augmentation strategy (p > 0.05 for 
all pairs). Advanced models had top-1 accuracy ranging 
from 0.81 to 0.89, F1-score between 0.71–0.86 and AUC 
of 0.86–0.94.

Comparison of baseline models against advanced models

Baseline models 3, 4, 6, 7, 12 and 13 showed no statistically 
significant differences against the advanced group, except for 
pairs 4–18 (p < 0.05), 4–22 (p < 0.05) and 4–31 (p < 0.05), 
indicative of comparable high performance (top-1 accuracy 
0.77–0.87, F1-score 0.70–0.81 and AUC 0.84–0.90).

In contrast, models 5, 10, 11 and 17 showed statistically 
significant differences with all models in the advanced 
group (p < 0.001 for all pairs) as a result of poor perfor-
mance (top-1 accuracy 0.46–0.61, F1-scores 0.33–0.48, 
AUC 0.67–0.75).

Models 14, 16 showed statistically significant differences 
with the advanced group except model 24 (p < 0.001 against 
models 18, 21, 22, 26–35, p < 0.01 against models 19, 23, 
24 and p < 0.05 against model 20). Their top-1 accuracy was 
0.69 and 0.68, F1-scores 0.60 and 0.61, respectively, and 
AUC 0.81 for both.

Comparisons among baseline models

Models 11 and 17 (top-1 accuracy 0.46, F1-score 0.33, AUC 
0.67 and top-1 accuracy 0.47, F1-score 0.36, AUC 0.68) had 
the lowest performance among all models (except for mod-
els 0, 1, 2) and showed a statistically significant difference 

Table 3   Per anatomic class 
sample populations and weights. 
RBW: right bite-wing, LBW: 
left bite-wing

Class Anatomic Region Training samples Validation 
samples

Test samples Class weight

0 RBW 562 140 20 4.95
1 16–18 134 33 3 21.00
2 15–17 333 83 7 8.35
3 14–16 644 160 21 4.33
4 12–14 360 89 14 7.79
5 11–13 674 168 8 4.13
6 12–22 1796 448 13 1.55
7 21–23 831 207 12 3.35
8 22–24 383 95 7 7.29
9 24–26 784 195 23 3.55
10 25–27 287 71 9 9.76
11 26–28 106 26 1 26.65
12 36–38 312 78 8 8.88
13 35–37 253 63 7 11.00
14 34–36 215 53 15 13.08
15 32–34 220 55 12 12.60
16 32–42 2776 693 26 1.00
17 42–44 198 49 9 14.14
18 44–46 289 72 11 9.63
19 45–47 244 60 7 11.55
20 46–48 256 64 7 10.83
21 LBW 556 139 21 4.99
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with any other baseline model (p < 0.001 except pairs 11–10, 
17–10 where p < 0.01 and 11–5, 17–5 where p < 0.05).

Models 5 and 10 also showed a statistically significant 
difference compared to all baseline models (p < 0.001 with 
models 3, 4, 6, 7, 12, 13 and p < 0.05 with models 8, 11, 15, 
17) as well as low performance (top-1 accuracy 0.61, F1-
score 0.47, AUC 0.74 and top-1 accuracy 0.61, F1-score 
0.48, area AUC 0.75), excluding pairs 5–9, 5–10, 5–14, 
5–16, 10–5, 10–9, 10–14, 10–16 where no statistically sig-
nificant difference was observed.

Models 8, 9, 14, 15, 16 (top-1 accuracy 0.68–0.75, F1-
score 0.58–0.67, AUC 0.79–0.84) showed a statistically 
significant difference in the proportion of errors against 
models 11, 17 (p < 0.001) and the highest performing base-
line model 7 (p < 0.001 with models 9, 14, 16 and p < 0.01 
with models 8, 15). In addition, model 8 showed a statisti-
cally significant difference with models 5 and 10 (p < 0.05). 
Models 14, 15, 16 also showed significant differences in the 
pairs 14–12 (p < 0.01), 14–13 (p < 0.01), 15- 5 (p < 0.05), 
15–10 (p < 0.05) 16–12 (p < 0.001), 16–13 (p < 0.05). This 

Table 4   Training history and model performance evaluation on the test dataset. AUC: area under the curve

Model Training duration Epochs Per-sample 
prediction time

Test loss Test top-1 
accuracy

Test precision Test recall Test  F1-score Test AUC​

0 0:47:35 32 0.01 15.31 0.05 0.00 0.05 0.00 0.50
1 1:12:28 32 0.01 14.51 0.10 0.00 0.05 0.01 0.50
2 1:12:17 32 0.01 14.51 0.10 0.00 0.05 0.01 0.50
3 2:29:51 100 0.01 0.67 0.80 0.76 0.75 0.74 0.87
4 3:44:45 100 0.01 0.62 0.77 0.73 0.70 0.70 0.84
5 3:42:03 100 0.01 1.07 0.61 0.50 0.50 0.47 0.74
6 1:01:57 26 0.01 0.54 0.81 0.78 0.75 0.75 0.87
7 4:47:11 100 0.01 0.32 0.87 0.81 0.81 0.81 0.90
8 4:45:29 100 0.01 0.68 0.75 0.71 0.70 0.67 0.84
9 3:05:34 100 0.01 0.69 0.72 0.59 0.59 0.58 0.79
10 4:21:05 100 0.01 1.19 0.61 0.49 0.52 0.48 0.75
11 4:09:30 97 0.01 1.48 0.46 0.36 0.37 0.33 0.67
12 4:36:47 100 0.02 0.63 0.84 0.83 0.79 0.78 0.89
13 2:38:00 52 0.02 0.54 0.81 0.79 0.80 0.74 0.90
14 4:09:10 83 0.02 0.84 0.69 0.71 0.63 0.60 0.81
15 3:19:08 100 0.01 0.73 0.75 0.72 0.70 0.66 0.84
16 3:01:18 66 0.01 0.78 0.68 0.68 0.63 0.61 0.81
17 4:25:10 100 0.01 1.47 0.47 0.49 0.39 0.36 0.68
18 2:39:04 27 0.03 0.39 0.87 0.82 0.85 0.82 0.92
19 3:15:59 31 0.03 0.40 0.84 0.82 0.80 0.78 0.90
20 7:19:47 71 0.03 0.46 0.83 0.78 0.77 0.76 0.88
21 2:40:13 29 0.03 0.34 0.86 0.79 0.79 0.78 0.89
22 5:48:16 58 0.03 0.32 0.88 0.82 0.85 0.82 0.92
23 6:23:39 65 0.03 0.47 0.83 0.78 0.75 0.75 0.87
24 1:19:44 26 0.03 0.56 0.81 0.77 0.73 0.71 0.86
25 3:17:16 40 0.03 0.42 0.84 0.81 0.82 0.79 0.90
26 4:58:44 62 0.03 0.47 0.84 0.81 0.81 0.79 0.91
27 2:14:40 48 0.02 0.48 0.89 0.83 0.86 0.82 0.93
28 3:16:23 41 0.02 0.32 0.88 0.85 0.82 0.81 0.91
29 5:11:48 66 0.02 0.47 0.86 0.81 0.80 0.79 0.90
30 4:07:29 26 0.12 0.32 0.87 0.84 0.84 0.81 0.92
31 5:54:21 31 0.11 0.30 0.89 0.85 0.87 0.84 0.93
32 7:33:58 48 0.11 0.40 0.85 0.80 0.83 0.79 0.91
33 4:45:28 29 0.12 0.42 0.85 0.78 0.79 0.77 0.89
34 5:16:05 32 0.12 0.28 0.89 0.85 0.88 0.86 0.94
35 7:47:02 48 0.13 0.37 0.86 0.77 0.77 0.76 0.88
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implies that this subset of models lies in the middle in terms 
of performance of the baseline model group.

Baseline models 3, 4, 6, 12, 13 (top-1 accuracy 0.77–0.84, 
F1-score 0.70–0.79, AUC 0.84–0.90) showed a statistically 
significant difference with models 5, 10, 11, 17 (p < 0.001 
except pair 4–10 where p < 0.01), as well as pairs 4–7 
(p < 0.05), 12–14 (p < 0.01), 12–16 (p < 0.001), 13–14 
(p < 0.01), 13–16 (p < 0.05), while no statistically significant 
difference was observed between them.

Baseline model 7 was the highest performing model of 
the baseline group (top-1 accuracy 0.87, F1-score 0.81, area 
AUC 90). There was a statistically significant difference with 
every other model in the baseline group (p < 0.001 with 
models 5, 9, 10, 11, 14, 16, 17, p < 0.01 with models 8, 15 
and p < 0.05 with model 4) except for the high-performing 
baseline models 3, 6, 12, 13, with which no statistically sig-
nificant difference was observed.

Discussion

This study investigated whether neural networks could clas-
sify the anatomical region of intraoral radiographs based 
solely on image data, and the influence of their architectural 
elements. According to our findings, it is feasible with an 
expected top-1 accuracy of 80–90%, when trained with small 
datasets.

Intraoral images usually depict very similar anatomi-
cal features, especially when they are part of a series from 
the same patient, where a significant amount of overlap 
is expected. Therefore, an understanding of the relative 
positioning of the depicted structures is essential for their 

classification. On the contrary, deep learning classifiers have 
mostly been studied with images of discrete objects against 
different backgrounds. Bearing that in mind, testing with a 
multitude of architectures was deemed appropriate as some 
of them could fail to address this unique challenge.

Multilayer perceptrons (MLPs)

MLPs without normalization failed to train. However, the 
introduction of batch normalization [19] allowed training 
comparable to that of advanced models. This finding indi-
cates that input and layer normalization may allow non-
convolutional architectures to perform adequately in radio-
graphic image classification tasks. However, these models 
performed poorly alongside data augmentation, indicating a 
dependency on input images with little variation.

Baseline convolutional models

Most baseline convolutional models achieved adequate per-
formance. Batch normalization [19] improved training and 
performance in some architectures. A typical data augmenta-
tion strategy resulted in better training, but the introduction 
of an aggressive strategy led to deteriorating performance.

Advanced models

All advanced models had comparable performance and out-
performed most baselines. However, due to the strict nature 
of the Bonferroni p value adjustment, subtle differences 
may not be elucidated, while different errors may occur on 
the test dataset for each model. Furthermore, some models 
trained irregularly, as it is evident by their learning curves.

Data augmentation

Data augmentation is a common technique for generating 
more samples from small datasets, and it is considered vital 
to prevent overfitting, especially in models with large capaci-
ties. It can also function as a measure of a model’s resilience 
to improper input, as represented by the aggressive strategy.

Baseline model performance was severely downgraded 
with aggressive data augmentation, although some were 
robust or even benefited from subtle transformations. Most 
advanced group models were resistant to aggressive data 
augmentation and capable of managing degraded images.

Global average pooling

Using a global average pooling layer [20] in baseline models 
significantly limited their performance, a finding directly 
associated with the resulting marked reduction in model 
capacity.

Fig. 1   Significance levels of multiple pairwise comparisons among 
models with McNemar’s test, adjusted with the Bonferroni correc-
tion. NS: non-significant
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On the other hand, parameter reduction seemed to favor 
the advanced group, where it showed no detrimental effects 
even when applied concurrently with aggressive data aug-
mentation. A regularization effect could also be observed in 
many models’ learning curves.

Clinical recommendations

Based on the above, the use of models from the advanced 
group trained with aggressive data augmentation and a 
Global Average Pooling layer [20] as a bridge between the 
feature extractor and the classifier parts is recommended.

Choosing an architecture should be a compromise 
between other parameters, such as resources and time avail-
ability. In a clinical setting where long waiting times can be 
a major disadvantage, a smaller and faster model such as 
MobilenetV2 might be more useful, while the Inception-
ResnetV2-based architecture could be better suited for tasks 
such as database maintenance.

Limitations

Our models demonstrate all limitations inherent in most 
deep learning models. They were developed empirically 
on natural images, which prior studies have shown not to 
be the same as X-ray imaging feature-wise [28]; they lack 
theoretical explanation for their performance and have high 
computational costs not favoring experimentation. They also 
lack outcome justification and are vulnerable against specific 
images containing irrelevant features able to trigger a pre-
dictable output (adversarial samples), making trusted input 
a necessity.

Such models supposedly require large amounts of data to 
train. Building large data sets with medical data is a labo-
rious undertaking with serious ethical, legal and financial 
considerations, while for smaller datasets containing well-
structured images, solutions other than neural networks may 
be more efficient. However, in this study good performance 
was achieved with limited data.

In addition to the fore-mentioned, a significant limitation 
is the introduction of dataset bias in model outputs. Sources 
of dataset bias in this study were the use of only high-quality 
radiographs out of a single modality, which were diagnostic 
and contained mostly tooth or prosthesis imaging (rarely 
depicted exclusively bone structures or contained instru-
ments). Equally important is the fact that these models 
are only able to replicate the classification criteria applied 
by the evaluator (evaluator bias). The above could signifi-
cantly limit our models from performing consistently under 
different conditions. Training with a multitude of diverse 
datasets could partially resolve this issue. Currently, model 

generalizability to datasets with different specifications is 
not guaranteed.

Another limitation is class imbalance, a direct result 
of uneven clinical demand and the retrospective nature 
of the study. Creating a perfectly balanced dataset would 
require either excluding a large portion of our dataset, with 
a possible decline in performance, or a prospective study 
design, exposing subjects to X-rays for study purposes and 
breaching the ALARA principle without clearly determined 
benefits. In view of the above, using a weighted loss func-
tion seems to be an appropriate compromise. However, all 
models exhibited their worst performance in the underrep-
resented classes.

Recommendations for further research

Further gains in performance are anticipated by training with 
a larger and more balanced dataset, by using loss functions 
that count in the inherent order of anatomical regions, with 
the transfer learning and fine-tuning technique and with the 
combined use of model ensembles.
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