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Abstract
Purpose In the context of analyzing neck vascular morphology, this work formulates and compares Mask R-CNN and U-
Net-based algorithms to automatically segment the carotid artery (CA) and internal jugular vein (IJV) from transverse neck
ultrasound (US).
Methods US scans of the neck vasculature were collected to produce a dataset of 2439 images and their respective manual
segmentations. Fourfold cross-validation was employed to train and evaluate Mask RCNN and U-Net models. The U-Net
algorithm includes a post-processing step that selects the largest connected segmentation for each class. AMaskR-CNN-based
vascular reconstruction pipeline was validated by performing a surface-to-surface distance comparison between US and CT
reconstructions from the same patient.
Results The average CA and IJVDice scores produced by theMask R-CNN across the evaluation data from all four sets were
0.90±0.08 and 0.88±0.14. The average Dice scores produced by the post-processed U-Net were 0.81±0.21 and 0.71±0.23,
for the CA and IJV, respectively. The reconstruction algorithm utilizing the Mask R-CNN was capable of producing accurate
3D reconstructions with majority of US reconstruction surface points being within 2mm of the CT equivalent.
Conclusions On average, the Mask R-CNN produced more accurate vascular segmentations compared to U-Net. The Mask
R-CNN models were used to produce 3D reconstructed vasculature with a similar accuracy to that of a manually segmented
CT scan. This implementation of the Mask R-CNN network enables automatic analysis of the neck vasculature and facilitates
3D vascular reconstruction.
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Introduction

Percutaneous internal jugular vein (IJV) needle insertions
are used to access the central venous system [4]. Carotid
artery (CA) punctures are one of the most common and
severe complications that occur during IJV cannulation [4].
Ultrasound-(US)-guided needle insertions have the potential
to reduce complications by providing clinicians with a real-
time cross-sectional view of the neck anatomy to visualize
the relationship between the IJV and CA in 2D [9,21]. The
fact that neck vasculature is extremely variable across the
patient population [9,23] has motivated research efforts in
the development of advanced US-based surgical navigation
systems [2,10], along with the characterization of neck vas-
culature morphology to further assist and improve central
venous cannulation (CVC) [9,23].
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Specifically, US imaging has been used to analyze the
effect of the anatomical relationship between the IJV and
CA on CVC [9,23], and the relationship between head rota-
tion and diameter of the vessels [16,25]. Since US produces
real-time images and does not carry the risks associated with
ionizing radiation, obtaining these images carries minimal
risk for the patient. For these applications, anatomical struc-
tures must be segmented from the US images.While the gold
standard for segmentation is often established by manual
segmentation, a process that is labor-intensive and sensi-
tive to human error [17], patient data derived from 2D US
alone have limitations, as a single cross-sectional slice cannot
adequately represent the entire structure. One example of a
measurement that requires 3D information is the assessment
of the variability of the location of the CA bifurcation, which
to date has been performed using excised vessels from cadav-
ers [15,26]. Vascular dissection is a time-consuming process
that sacrifices the structural integrity and normal physiolog-
ical properties found in vivo. Automatic segmentation of the
vessels from US in 3D that reflects the patient positioning at
the time of an intervention would therefore be ideal.

The degree of manual analysis required to quantify trends
in vascular anatomy has prompted work such as automatic
segmentation of the media-adventitia and lumen-intima
boundaries of the CA from 3D US images [28], the inner
lumen of the CA in a longitudinal orientation [27], and CA
plaques [24].As far aswe are aware, there is nomethod in cur-
rent literature to simultaneously and automatically delineate
both the IJV andCAwithin a 2D transverseUS image. Such a
procedure would allow for the automatic analysis of the mor-
phology and anatomical relationships of these vessels and to
enable accurate reconstruction of 3D volumes of the neck
vasculature without exposing the patient to radiation, remov-
ing barriers for further research on the morphology of neck
vasculature. Other applications of these vascular reconstruc-
tions include, but are not limited to, real-time intra-operative
use or during preoperative planning to augment guidance for
CVC. Therefore, the secondarymotivation of this work is the
development of 3Dmodels of the vasculature,which could be
used to develop a more clinically relevant navigation system,
while maintaining 3D information.

A U-Net convolutional neural network (CNN) architec-
ture was applied developed to automatically segment regions
of interest associated with the CA [24,28]. U-Net is a seman-
tic segmentation architecture, trained to provide pixel-wise
label maps [20]. Each pixel is classified as either the back-
ground or one of the foreground classes that were provided
during training [20]. For certain U-Net applications, false
segmentations occur due to the inability of the network to
differentiate between regions that contain pixels of a specific
class and regions that contain pixels with similar features
to the class of interest. Two methods to compensate for this
issue of false segmentation include: i) post-processing steps

to retain the largest segmentation [27], or ii) cropping the
input to a region of interest (ROI) that contains only the
anatomy of interest [24]. The Mask R-CNN architecture
provides an alternative method to segment the CA and IJV
with the potential of returning fewer or no false segmenta-
tions [11]. Mask R-CNNwas inspired by Faster R-CNN [11]
for object detection [19] and consists of two stages. In the
first, a region proposal network (RPN) determines possible
bounding boxes that may contain objects of interest. In the
second, two components execute in parallel, receiving the
region proposals from the RPN as input. The first compo-
nent, inspired by Faster R-CNN, predicts object class and
bounding box localization, while the second predicts pixel
segmentation for each ROI [11]. Therefore, segmentations
of the IJV and CA can be automatically predicted without
the requirement of pre- or post-processing the data. Mask
R-CNN has recently been applied to medical image pro-
cessing tasks including the detection and segmentation of
meniscus tears [6] and segmentation of the prostate gland
and prostatic lesions in MRI images [7]. Other applications
include a modified Mask R-CNN for breast tumor detection
and segmentation in US images [14]. These successes have
motivated the investigation of a Mask R-CNN deep learn-
ing solution to automatically segment the CA and IJV from
tracked 2D US images and reconstruct the 3D vessels’ sur-
faces for guiding intra-operative interventions.

The objectives of this research are twofold. First, we aim
to develop an automatic segmentation framework capable of
delineating both the CA and IJV from transverse US images,
with an accuracy comparable to that obtained by manual
segmentation. We then aim to formulate a vessel reconstruc-
tion pipeline to utilize these automatic vascular segmentation
and spatial tracking to reconstruct the 3D geometries of the
CA and IJV, with a accuracy comparable to that provided
by reconstructions from CT angiography. These capabilities
have the potential to automate vascular measurements in 2D
and 3D and to improve US-guided needle interventions.

Materials andmethods

Data collection

All images were collected using the Ultrasonix US scanner
(SonixTouch, BKMedical, USA) with the L-14-5 Linear US
transducer. As vascular structures can be as deep as 5.5 cm
[9], an imaging depth of 6cmwas used to acquire neck vascu-
lar US as it should include all human vascular configurations.
This US probe was spatially calibrated [5] and tracked using
a magnetic tracker (Aurora Tabletop, NDI, Canada). The US
calibration provides the spatial pose of the US image with
respect to the magnetic tracker’s coordinate system, scaled
to the true size of the US field of view. The scanning proto-
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col was defined as follows. The scan started between the two
heads of the sternocleidomastoid muscle just above the clav-
icle, ending at the mandibular border, and proceeding in an
inferior-to-superior direction. The images from these scans
were recorded using the PLUS Server [13]. Nine (9) normal
control US scans of healthy volunteers were performed by a
medical student specifically trained in this procedure, with
each subject being imaged in two positions employed in clin-
ical practice: supine on a horizontal table, and head lowered
− 15◦ below horizontal. A third-year anesthesia resident per-
formed an additional 6 scans on patients in a local hospital,
with patients laying horizontally in a standard hospital bed.
The CA and IJV were manually segmented from these US
images by a medical student with experience in US neck
imaging using 3D Slicer, such that each image had a corre-
sponding mask for both the CA and IJV.1

The complete dataset comprises 2439 US images from 15
subjects containing cross-sectional views of the neck vas-
cular anatomy. The US images are stored as 8-bit bitmaps,
having pixel intensities in the range of [0, 255]. All images
were thresholded, with all grey levels less than 25 being
mapped to 0 and all those above 75 being mapped to 75.
To perform fourfold cross-validation, this dataset was parti-
tioned into 4 unique training, test and validation sets. Each
training set comprised a unique combination of scans and
their masks from 11 subjects (70–78% of the dataset). Each
test and validation set consisted of unique combinations of
images from both a normal control and a patient, as well as
their respective labels. The test and validation sets comprise
15–23% and 5–7% of the dataset, respectively. The number
of images included in each dataset is summarized in Table 1.
No images included in neither the test and nor validation sets
were used to train the network, as they were employed solely
for evaluation. The number of images in each set varies as the
number of images with clear vascular representations differs
for each subject, and some have both left and right scans.
Each of these training sets were augmented by randomly
scaling by a factor in the range 0.8 to 1.2 and rotating by an
angle in the range of − 15◦ to 15◦, to produce images that
represent possible variation that may occur during scanning.
These transformations were automatically performed during
training. During this process, the test and validation sets were
used to evaluate the Dice score of the trained model to form a
baseline accuracy across normal and patient data. However,
for analysis, the images within the training and test sets for
each fold were reorganized based on whether they had been
derived from a normal control or patient subject. The images
that comprise these control and patient datasetswere not used
to train the fold that they would be evaluating. These control
and patient images will be analyzed using the Dice score,
recall, and precision. This control patient split was selected

1 https://github.com/VASST/AIVascularSegmentation.

to provide a more in-depth analysis on the applications of
these networks on control and patient data independently, as
well as on the overall accuracy across a mixed cohort.

Deep learning segmentation

Computational hardware used for training the networks
included an Intel® Xeon® E5-2683 v4 CPU at 2.1 GHz and 2
NVIDIA® Tesla® P100 GPUs with 12 GB of memory each.
All code was written in Python and executed on SHAR-
CNET (Compute Canada’s High Performance Computing
Network). We trained two neural network models: one with
theMaskR-CNNarchitecture and the other withU-Net CNN
for automatic vessel segmentation [11]. Both networks were
trained using identical datasets. Memory and computational
requirements during training and inference were decreased
by resampling the images from 589×374 to 256×256 pixels
with bilinear interpolation.

The implemented U-Net architecture was motivated by
the standard U-Net encoder–decoder architecture [20]. The
encoder consisted of 3 blocks of 2 convolutions with a ker-
nel size (k) of 3, followed by a max pooling layer with k
= 2. The bottleneck consisted of 2 consecutive convolutions
with k = 3, while the decoder consisted of 3 blocks of up-
convolutions and 2 subsequent convolutions with k = 3. The
decoder’s blocks also received residual connections from the
output of blocks in the encoder of the same shape. ReLU
was used as the activation function for all intermediate lay-
ers. The output layer was a single convolution with k = 1
that employed the softmax activation function over the back-
ground and classes, producing an output with the same shape
as the input image. The network was trained to minimize the
categorical cross-entropy loss function. The learning rate (α)
was set to 0.0001 at the start of training. During training, if
the validation loss did not decrease after the most recent 3
epochs,αwasmultiplied by0.5. To encourage regularization,
early stopping was applied to halt training when the valida-
tion loss did not decrease over the 10 most recent epochs
[18]. Each fold was trained over the following number of
epochs: set A ran for 33 epochs, set B ran for 19 epochs, set
C ran for 27 epochs, and set D ran for 19 epochs. As U-Net is
susceptible to false segmentations, a connected-component
post-processing algorithm was applied to keep the largest
connected segmentation for both the IJV and CA and remove
all other segmentations, as done in work by Xie. et al. [27].

A Mask R-CNN model requires ground truth segmen-
tation masks and bounding boxes for training. The bound-
ing boxes were generated automatically by calculating the
smallest rectangle that would enclose an individual vessel
segmentation, defined by a 4-tuple consisting of two (x, y)
coordinate pairs. The input to the Mask R-CNN model was
the resized raw US image. The output of the model was a
series of 256 × 256 masks, bounding boxes, and classes for
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Table 1 Summary of number of
images allocated to each dataset
used to train and evaluate the
networks

Dataset Fold A Fold B Fold C Fold D

Training images 1717 (81%) 1799 (81%) 1902 (87%) 1819 (81%)

Test images 552 (95%) 475 (88%) 352 (80%) 481 (83%)

Validation images 170 (53%) 165 (47%) 185 (42%) 139 (53%)

Control images 623 498 360 474

Patient images 99 142 177 146

The percentage of normal control images in the training, test, and validation sets is denoted in brackets. The
number of normal and patient images for each fold is the images that will be used to evaluate the networks

each predicted vessel instance. In the rare case that there
were more than two object masks predicted by the network,
we considered only the two that the network predicted with
the highest confidence. The code to define and train the
neural network model was adapted from Matterport’s Mask
R-CNN implementation, which was built using the Keras
library with the TensorFlow backend [1]. No changes were
made to the core Mask R-CNN architecture. Our model seg-
ments objects of two classes: CA and IJV. Although the
image background may be considered as a third class, no
background segmentation masks are actually predicted by
the network. Matterport’s implementation [1] offered the
choice between ResNet-50 and ResNet-101 as the backbone
of the network. ResNet-50 was chosen here because it con-
tains significantly fewer parameters, lending itself to faster
training and prediction time [12]. Multiple hyperparameters
were tuned by performing several training experiments and
adjusting the value of one while keeping others constant.
The square anchor boxes used in the RPN had side lengths
of 8, 16, 32, 64, and 128 pixels. Sixty-four regions of interest
(ROIs) were fed to mask and classifier heads of the network
for each image. The RPN non-max suppression threshold
was set to 0.7. The learning rate (α) was set to 0.001 at the
start of training. During training, if the validation loss did
not decrease after the most recent 15 epochs, α was multi-
plied by 0.75. The batch size was 16 and was spread equally
across 2GPUsduring training. Themodelwas trained for 100
epochs to minimize the Mask R-CNN loss function, defined
as: L = Lcls+Lbox+Lmask, where Lcls and Lbox are defined
as they were for Fast R-CNN [11], Lcls is the categorical
cross-entropy loss for object classification, and Lbox is the
smooth L1 loss for bounding box localization [8]. Localiza-
tion is defined as a 4-tuple consisting of an (x, y) coordinate,
width, and height. Lmask is the mean per-pixel binary cross-
entropy loss across segmentationmasks for both classes [11].
The neural network was trained to minimize the loss func-
tion. The object segmentation with the highest probability is
selected for each class (Fig. 1).

Vessel reconstruction

The automatically segmented label masks and tracking infor-
mation were used to reconstruct the vessels in 3D. The
calibrated spatial tracking data provide the pose of each
image in 3D such that the automatic segmentations extracted
from each image can be positionedwith respect to the field of
view of the image where it was captured. Three-dimensional
binary morphological hole filling, with an annulus shaped
kernel of size [30, 30, 30], was used to fill the gaps between
the slices [22]. A 3D Gaussian blur filter with an α of 0.5
was applied to smooth the vessels, as visually depicted in
Fig. 2. The four trained Mask R-CNN algorithms were used
to obtain surface reconstructions on a patient left-side scan
which was not used to train or evaluate any of the folds.
The reconstruction algorithmwas evaluated through surface-
to-surface distance comparisons between the US and CT
reconstructed vessels after rigid surface-based registration.
TheUS scanning protocol consistently collected scans begin-
ning just superior to the clavicle. The CT scan segmentations
started just superior to the clavicle and ended at approxi-
mately the same location as the most superior US image.
The point data from these volumes were used to perform
an iterative closest point registration [3] that solves for the
smallest root mean-squared error between the CT and US
volumes, such that they are in a common coordinate sys-
tem for comparison. The volume and surface area (SA) of
the reconstructed vessels from US and CT were calculated.
These values were expressed as a ratio of themetric extracted
from US to the metric extracted from CT. The smaller value
was used as the numerator as to not bias the average.

Results

Fourfold cross-validation was performed, whereby all 2439
collected and segmented images were allocated into training,
test, and validation sets in four unique combinations. Dur-
ing training the test and validation sets, each comprised one
patient and one normal control scan. The images that were
excluded from training were reorganized into patient and
control datasets for evaluation. The manual and automatic
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Fig. 1 The Mask R-CNN architecture depicting the CNN backbone,
the region proposal network, and the RoIAlign layer. The “box head”
is a series of fully connected layers that outputs the predicted class

and bounding box for each object. The “mask head” outputs binary
segmentation masks for each object instance

Fig. 2 Visual depiction of the reconstruction process. The first image
showing a calibrated US image positioned and scaled to capture the
field-of-view of the US image when captured. The second image is a
segmented and calibrated US image, where the CA and IJV have been
delineated. The third image depicts a vascular skeleton where each

image in the tracked scan has been segmented and these segmenta-
tions are spatially calibrated to form a skeleton. The final image depicts
the closed surface reconstructed vessels after the application of binary
morphological hole filling and Gaussian blur smoothing

segmentations produced by the Mask R-CNN and U-Net
algorithms were compared by calculating the Dice score,
recall, and precision across each class. These results along
with the average across all folds and all evaluation images
are summarized in Figs. 3, 4, 5. Four sample images were
selected to show the potential issues that occur with the U-
Net segmentation, and post-processing is depicted in Fig. 6.

The surface-to-surface distance between the registered
vessel models from all fourfold is depicted in Figs. 7 and 8,
where colors progress from blue (cool) to red (hot) as the
distance increases. The SA and volume ratios of the values

extracted from the four Mask R-CNN reconstructions and
the CT vessels and the average are summarized in Table 2.

The four representative vasculature reconstructions are
visualized with respect to the calibrated US image for refer-
ence in Fig. 9. These subjects did not have associated neckCT
scans, and therefore, a more comprehensive analysis could
not be performed.
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Fig. 3 Summary of the Dice, recall, and precision averaged across the patient and control data from all fourfold for the raw U-Net, post-processed
U-Net, and Mask R-CNN. These data are presented for the IJV and CA separately

Fig. 4 Average Dice, recall, and precision for the CA from each of the fourfold. These results are reported separately for normal and patient data
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Fig. 5 Average Dice, recall, and precision for the IJV from each of the fourfold. These results are reported separately for normal and patient data

Discussion

In this work, we compare U-Net and Mask R-CNN algo-
rithms both capable of automatically segmenting the CA and
IJV from transverse US images. These segmentations can be
used to obtain automatic vascular measurements or perform
vascular surface reconstruction used for vascular morphol-
ogy analysis or surgical navigation.

U-Net is a semantic segmentation algorithm where each
pixel is assigned to a class. Our implementation produces a
label map where each pixel has been assigned to one of three
classes: background, CA, or IJV. The raw output of theU-Net
may produce multiple clusters of pixels labeled as either the
CA or the IJV, with some pixels being misclassified as seen
in Fig. 6. These erroneous segmentations motivated using a
post-processing step to identify one segmentation for each

of the CA and IJV classes. A major factor that contributes
to the high number of false segmentations is the non-unique
appearance of the neck vascular structures under US. The
CA and IJV are vascular trunks with several branching ves-
sels that have similar features under US. The CA and IJV
are the major vascular structures in the neck and should be
the largest vascular structures in the US images acquired. For
this reason, similar to the work of Xie. et al. [27], we applied
a post-processing step that identifies the largest connected-
component for each of the CA and IJV classes. The average
Dice score for the CA and IJV for the post-processed U-
Net is 0.71 ± 0.23 and 0.81 ± 0.21, respectively. Applying
this post-processing step improved the Dice score by 0.11
and 0.17, compared to the raw output, for the IJV and CA,
respectively. This post-processing algorithm fails in cases
where an erroneous segmentation has the largest number of
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Fig. 6 Four sample images with their respective outputs from theMask
R-CNN andU-Net with andwithout processing. Row a shows an exam-
ple of a small cluster of misclassified pixels from the U-Net. Row b
provides an example of a large group of pixels that have been mis-
classified as CA when they should be IJV in the U-Net output. Row c
depicts a vessel-like structure that has been misclassified as the IJV and

the post-processing algorithm selecting this false segment as the IJV.
Rowd depicts an image that has accurate outputs across all 3 algorithms.
Despite the U-Net output from images a-c containing erroneous seg-
mentations the Mask R-CNN produced accurate segmentations across
all sample images

connected components, and thus, the post-processing selects
the wrong cluster of pixels (Fig. 6c). Moreover, the U-Net
output commonly misclassifies pixels between the CA and
IJV (Fig. 6b), an issue that would persist regardless of the
post-processing algorithm applied. Both of these issues con-
tribute to the small change in Dice scores. As the accuracy
of the post-processed U-Net was still lower than desired, for
this application we investigated the use of Mask R-CNN.

The Mask R-CNN contains a regional proposal sub-
network that identifies bounding boxes within the image
where segmentations are most likely to occur. The algo-
rithm then segments these structures within the bounding
box and returns a probability that they belong to the class
to which they have been assigned by the label. The out-

put of our Mask R-CNN algorithm selects the segmentation
with the highest probability of belonging to the CA and IJV
class. Thus, our algorithm returns a single fully connected
segmentation for the CA and IJV based on a trained statisti-
cal probability with reduced number of misclassified pixels.
The average Dice score for the IJV and CA for the Mask
R-CNN is 0.88 ± 0.14 and 0.90 ± 0.08, respectively. The
Mask R-CNN improved the Dice score by 0.17 and 0.09
compared to the post-processed U-Net, for the IJV and CA,
respectively. For US imaging segmentation problems where
features in the image are not unique, orwheremany structures
similar to the structure of interest reside will likely expe-
rience similar issues with the U-Net approach. The Mask
R-CNN thus serves as a good alternative to U-Net in these
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Fig. 7 IJV surface-to-surface
distances between the
reconstructed US and the
ground truth CT for all fourfold.
The color progresses to warm
colors as distances increase

Fig. 8 CA surface-to-surface
distances between the
reconstructed US and the
ground truth CT. The color
progresses to warm colors as
distances increase
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Fig. 9 Each letter (a–d) represents a unique human subject who was not used to train the algorithm used to produce the segmentations

cases as the architecture is similar to U-Net but does not
require post-processing and allows for these segmentations
to be selected based on statistical probability. However, the
Mask R-CNNmodel has higher computational requirements
when compared to U-Net. The use of a high-end GPU would
likely allow the vascular reconstructions to be obtained in
near real time. Overall, the Mask R-CNN achieved average
Dice scores, recall, and precision of values above 0.85, which
are sufficiently accurate to be used for vascular reconstruc-
tion andmeasurements pertaining to the relationship between
vessels.

We used all four trained Mask R-CNN networks to obtain
vascular US surface reconstructions of the CA and IJV on
a patient scan that was not part of the training or evaluation
datasets. Each reconstruction was compared to a manually
segmented CT scan of the same patient’s vasculature, using
a surface-to-surface distance analysis (Figs. 7, 8). The CA is
slightly more accurate than the IJV, as the IJV is susceptible
to deformation under the pressure of the US probe during
scanning, and thus is more representative of the true accu-
racy of the reconstruction. We calculated the ratio of the SA
and volume values extracted from the US to the values from
the CT reconstructed vessels, as summarized in Table 2. On
average, the SA ratio was 0.94 and 0.88, for the CA and IJV,
respectively. The average volume ratio was 0.86 for both the
CA and IJV. The errors present in the Mask R-CNN results
are typically in the form of a loss of detail at the border of the
vessel lumen. These small details have minor effects on the
ability to use these reconstructions for surgical navigation or
vascular measurements. With the majority of points being
within 2mm of the CT reconstructed vessels and with sub-
millimeter difference in metrics produced, this algorithm is
capable of producing accurate vascular reconstructions.

In future work, we intend to perform a comprehensive
accuracy analysis of our reconstructed vasculature through
comparing to a larger cohort of patient CT scans. We also
aim to apply this vascular reconstruction pipeline to guide
central line insertions. Additionally, the multi-class seg-
mentation using Mask R-CNN can trivially be extended

Table 2 Summary of the SA and volume ratio between the metrics
produced from the US reconstructions from the four trained networks
to the metrics extracted from the CT segmented vasculature

Fold Fold A Fold B Fold C Fold D Average

CA SA ratio 0.97 0.84 0.96 0.98 0.94

IJV SA ratio 0.94 0.85 0.81 0.93 0.88

CA volume ratio 0.87 0.70 0.94 0.93 0.86

IJV volume ratio 0.95 0.82 0.75 0.93 0.86

to include additional pathologies and anatomical structures.
One possible extension for future work is segmentation of
calcified plaques. Plaques have a non-unique appearance in
US images. Relying on a network such as U-Net or algo-
rithms based on feature detection would likely result in many
incorrect segmentations of plaques.As the size of plaques can
vary drastically, a more rigorous post-processing selection
algorithm is required. TheMaskR-CNN ismore suitable than
U-Net for this type of application, as it provides a statistical
method for selecting the appropriate segmentation, which is
important for multi-class segmentation problems where fea-
tures are not inherently unique to the structure of interest.
Furthermore, segmentation of plaques could be framed as an
instance segmentation problem, in which the Mask-RCNN
was designed to accomplish. The ability to automatically seg-
ment pathologies and visualize them with respect to the CA
and IJVUS reconstructionswould provide improved surgical
guidance with no harm to patients. As a result, measurements
related to pathologies such as total plaque volume or com-
mon locations of plaque within the CA may be determined.
We also aim to validate the usefulness of 3D reconstructed
models for surgical navigation or planning.

Conclusions

In this work, we compared Mask R-CNN and U-Net algo-
rithms developed to automatically segment the CA and IJV
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from transverse US images. The Mask R-CNN algorithm
was more accurate than the U-Net alternative and achieved
average Dice scores of 0.88 ± 0.14 and 0.90 ± 0.08, for the
IJV and CA, respectively. The Mask R-CNN-based vascu-
lar reconstruction pipeline was accurate compared to the CT
equivalent with majority of distances between the surfaces
being less than 2mm. These reconstructions were able to
produce accurate metrics with the average ratio of the vol-
ume produced by the US to the volume produced by the CT
being 0.86 for both the CA and IJV. This work can be used
to analyze neck vasculature morphology in both 2D and 3D.
Furthermore, the 3Dmodels can be used for surgical planning
or surgical navigation. Overall, we have developed and eval-
uated a highly accurate Mask R-CNN algorithm for instance
segmentation of the CA and IJV in transverse US images.
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