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Abstract
Purpose The knowledge of laparoscope vision can greatly improve the surgical operation room (OR) efficiency. For the 
vision-based computer-assisted surgery, the hand–eye calibration establishes the coordinate relationship between laparoscope 
and robot slave arm. While significant advances have been made for hand–eye calibration in recent years, efficient algorithm 
for minimally invasive surgical robot is still a major challenge. Removing the external calibration object in abdominal envi-
ronment to estimate the hand–eye transformation is still a critical problem.
Methods We propose a novel hand–eye calibration algorithm to tackle the problem which relies purely on surgical instru-
ment already in the operating scenario for robot-assisted minimally invasive surgery (RMIS). Our model is formed by the 
geometry information of the surgical instrument and the remote center-of-motion (RCM) constraint. We also enhance the 
algorithm with stereo laparoscope model.
Results Promising validation of synthetic simulation and experimental surgical robot system have been conducted to evaluate 
the proposed method. We report results that the proposed method can exhibit the hand–eye calibration without calibration 
object.
Conclusion Vision-based hand–eye calibration is developed. We demonstrate the feasibility to perform hand–eye calibration 
by taking advantage of the components of surgical robot system, leading to the efficiency of surgical OR.

Keywords Surgical robot · Hand–eye calibration · Stereo laparoscope · Minimally invasive surgery

Introduction

The application of the RMIS greatly improves the surgical 
OR efficiency, enabling minimally invasive surgery to be 
more dexterous and beneficial for improving surgeon per-
formance [1]. Future research will focus on the semi-autono-
mous and autonomous surgery [2, 3], and the surgical intelli-
gence is still a challenging problem in surgical OR, especially 
for some critical sub-tasks such as suturing and cutting [4–6]. 
Normally, the hand–eye calibration links the kinematics 
information and the vision information between robot slave 
arm and the laparoscope system. This relationship forms the 
basis for incorporating more significant components such as 

multi-model data to enhance the surgical intelligence and 
improve the surgical OR efficiency [7–9].

In the typical hand–eye calibration problem, conventional 
solution estimates the hand–eye relationship by using a cali-
bration object. The geometry parameters of calibration object 
are taken as known conditions to solve hand–eye calibration 
equation. Mathematically speaking, the hand–eye calibration 
problem can be represented as AX = XB [10]. There are exten-
sive solutions to solve the hand–eye calibration separately, 
and the rotation and translation components are estimated 
individually [11, 12]. For another approach, there are some 
studies to solve the AX = XB problem simultaneously [13, 
14]. Some recent works further study the hand–eye calibra-
tion algorithms for the RMIS scenario [15–18]. However, for 
the typical configuration of the minimally invasive surgical 
robot system, the hand–eye calibration for RMIS is still a chal-
lenging problem, the traditional hand–eye calibration methods 
directly applied to the RMIS are not applicable in practice, the 
hand–eye calibration must be carried out before the surgery, 
and placing external calibration object is not possible in the 
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abdominal environment. In addition, due to the movement of 
robot slave arm, the hand–eye calibration must be executed to 
adapt to the changes of hand–eye transformation. This progress 
will disturb the normal surgical workflow and reduce the effi-
ciency of surgical OR. Furthermore, the typically RCM con-
straint of minimally invasive surgical robot limits the motion 
range of the hand–eye calibration, which lower the calibra-
tion accuracy [19]. To cope this problem, some researchers 
study the structure-from-motion (SFM) method to realize the 
hand–eye calibration, and this approach may be appropriate 
for this requirement [20]. However, the typical configuration 
of surgical robot will lead to insufficient viewpoints. Accord-
ing to the literature [10, 21], hand–eye calibration without the 
calibration object relies purely on surgical instrument already 
in the RMIS scenario is attractive, the method can solve this 
problem efficiently. In [21], the authors estimate the hand–eye 
transformation by surgical instrument tracking. However, this 
approach requires accurate 3D surgical instrument pose track-
ing to form the basis for accurate hand–eye calibration. It may 
be difficult to obtain the appropriate surgical instrument detec-
tion and pose estimation.

To cope this challenge, in this paper, we demonstrate a 
novel hand–eye calibration algorithm to link the laparoscope 
information and the kinematics information. The proposed 
method does not need accurate high-level 3D pose surgical 
tracking. We acquire the line feature of the surgical instru-
ment to realize the hand–eye calibration. We enhance the 
calibration algorithm through stereo laparoscope system 
[22–24]. Our hand–eye calibration algorithm is inspired by 
[16, 25]. In view of the surgical intelligence, the proposed 
method explores the minimal and practical minimally inva-
sive surgical robot system in the surgical OR. Promising 
evaluations are conducted through simulation and experi-
mental surgical robot system.

Method

Consider the RMIS configuration shown in Fig. 1, the mis-
sion is to estimate the transformation from the laparoscope 
frame FCamera to robot laparoscope slave arm end-effector 
frame Farm . The minimally invasive surgical robot system 
mainly contains robot instrument slave arm and robot lapa-
roscope slave arm. In our case, the base frames of two slave 
arms locate at one base, and the base frame is set as Fbase . 
The RCM point frame on the robot instrument arm is set as 
FRCM . Typically speaking, the slave arms are all moved with 
RCM constraint. The RCM point is located at trocar point 
on the abdomen of patient.

We set the reference plane according to the optic origin 
point and the surgical instrument axis. A novel redundant 
constraint based on the stereo laparoscope configuration is 
proposed to enhance the algorithm. The normal vector of the 
reference plane can be calculated as Eqs. 1 and 2, Vl(i) and 
Vr(i) denote the left and right reference plane, respectively, 
and i denotes the number of motion, as shown in Fig. 1.

In Eqs. 1 and 2, we set the projection points in the 
image plane of stereo laparoscope from arbitrary points 
on the surgical instrument. PM_l =

[
Mlx,Mly,Mlz

]T 
and PN_l =

[
Nlx,Nly,Nlz

]T  denote the projection points 
on the  lef t  camera ,  and PM_r =

[
Mrx,Mry,Mrz

]T  , 
PN_r =

[
Nrx,Nry,Nrz

]T  denote the projection points on the 
right camera. Geometrically speaking, we can conclude 
that Mlz = Nlz = fl , Mrz = Nrz = fr , and fl and fr are the focal 
length of two cameras.

(1)Vl(i) = PM_l(i) × PN_l(i)

(2)Vr(i) = PM_r(i) × PN_r(i)

Fig. 1  Geometric schematic for proposed hand–eye calibration algorithm. a The relative transformation of each frame. b Geometric model of 
right camera for hand–eye calibration
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The target estimated right camera hand–eye calibration 
transformation is set as X, as shown in Eq. 3. The target 
estimated right camera hand–eye calibration transforma-
tion with redundant constraint based on left camera is set 
as Y. In this paper, in view of the stereo laparoscope, we 
take the right camera’s hand–eye calibration process as an 
example to illustrate algorithm.

The transformation between robot laparoscope slave arm 
and RCM point on the robot instrument slave arm is shown 
as Eq. 4. Here, thanks to the typical structure of minimally 
invasive surgical robot and the minimally invasive surgery sce-
nario, RCM point is fixed at the trocar point on the abdomen of 
patient. We set RCM frame on the RCM point, and the instru-
ment always goes through this RCM point. The transformation 
is set as N motions, the relationship can be obtained from the 
forward kinematics provided by the joint encoders and DH 
parameters, and the joint positions of robot instrument arm 
and robot laparoscope arm are set as N motions, respectively.

The transformation relationship between left and right 
camera of laparoscope is shown as Eq. 5. The relationship 
can be determined by a pre-calibration procedure.

(3)

X = CameraR
arm

T =

[
RX tX
0 1

]
, Y = CameraR

arm
TY =

[
RY tY
0 1

]

(4)TA(i) =
arm
base

T(i)base
RCM

T(i) =

[
RA(i) RA(i)

0 1

]

(5)l
r
T =

[
RZ tZ
0 1

]

where VS(i) denotes the direction of surgical instrument axis. 
Then, we add the redundant constraint to enhance the cali-
bration accuracy. The stereo laparoscope has two cameras 
with rigidly transformation. The hand–eye transformation of 
right camera can be represented by the left camera projec-
tion model, as shown in Eq. 7:

We set the relationship as shown in Eq. 8. Equation 7 can 
be rearranged to Eq. 9. Two equations can be solved with 
the same method. We propose a two-step method for right 
camera as follows:

For the first step, we can obtain the estimated rotation com-
ponent of right camera hand–eye transformation for initializa-
tion. In this case, to solve Eqs. 6 and 9, according to [12], we 
introduce the Kronecker product to rearrange the equation as:

Then, we can solve Eqs. 10 and 11 through Eqs. 12 and 
13 [12, 26]. Equation 12 denotes the estimated value accord-
ing to the right camera, and Eq. 13 denotes the redundant 
constraint estimated value according to the left camera.

(7)VT
l
(i)RZRYRA(i)VS(i) = 0

(8)VT
lr
(i) = VT

l
(i)RZ

(9)VT
lr
(i)RYRA(i)VS(i) = 0

(10)
((

RA(i)VS(i)
)T

⊗ VT
r
(i)
)
vecRX = 0

(11)
((

RA(i)VS(i)
)T

⊗ VT
lr
(i)
)
vecRY = 0

(12)argmin
vecVX∈ℝ

9

∑

i

‖‖‖‖

((
RA(i)VS(i)

)T
⊗ VT

r
(i)
)
vecVX

‖‖‖‖

2

2

, RX =
sign

(
det(VX)

)

||det(VX)
||
1∕ 3

VX

(13)argmin
vecVY∈ℝ

9

∑

i

‖‖‖‖

((
RA(i)VS(i)

)T
⊗ VT

lr
(i)
)
vecVY

‖‖‖‖

2

2

, RY =
sign

(
det(VY )

)

||det(VY )
||
1∕ 3

VY

In view of the configuration of surgical instrument, 
the instrument always goes through the RCM point. Geo-
metrically speaking, the surgical instrument axis is always 
located on the reference plane, and the direction vector of 
the surgical instrument axis is always perpendicular to the 
normal vector of reference plane. We model the relation-
ship as shown in Eq. 6:

(6)VT
r
(i)RXRA(i)VS(i) = 0

After the first step initialization, we adopt the nonlin-
ear optimization method to refine the rotation component. 
According to [13, 25], the unit quaternion q and q0 corre-
spond to RX and RY, respectively. q̃ and q̃0 denote the conju-
gate of q and q0. We can arrange Eqs. 7 and 9 as:

(14)

���V
T
r
(i)RXRA(i)VS(i)

���
2

2
=
���vri ⋅

�
qvSiq̃

����
2

2
‖q‖2

2

=
���
�
vriq

�
⋅

�
qvSi

����
2

2
=
���q

TVT
ri
VSiq

���
2

2

=
���q

TKXq
���
2

2
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Here, the definition of Vri, Vlri and VSi can be found in 
[13]. In addition, we can define the parameters in the equa-
tions as:

Then, we can obtain rotation component of right camera 
hand–eye transformation by solving Eqs. 16 and 17. Equa-
tion 16 denotes the estimated value according to the right 
camera, and Eq. 17 denotes the redundant constraint esti-
mated value according to the left camera.

As for the translation component of hand–eye transforma-
tion, we also construct the geometric model as follows. Geo-
metrically speaking, the surgical instrument axis is always 
located on the reference plane, even though the RCM point 
is not visible in the laparoscope image plane, the origin of 
the RCM frame is always in the reference plane. Thanks to 
this geometry relationship, we can model the relationship as 
shown in Eqs. 18 and 19:

(15)

‖‖‖V
T
lr
(i)RYRA(i)VS(i)

‖‖‖
2

2
=
‖‖‖vlri ⋅

(
q0vSiq̃0

)‖‖‖
2

2

‖‖q0‖‖
2

2

=
‖‖‖
(
vlriq0

)
⋅

(
q0vSi

)‖‖‖
2

2
=
‖‖‖q

T
0
VT
lri
VSiq0

‖‖‖
2

2

=
‖‖‖q

T
0
KYq0

‖‖‖
2

2

vri =
(
0,VT

r
(i)
)
, v

Si
=
(
0,R

A
(i)V

S
(i)
)
, vlri =

(
0,VT

lr
(i)
)
,

K
X
= V

T

ri
V
Si
, K

Y
= V

T

lri
V
Si

(16)

argmin
RX∈SO(3)

∑

i

‖‖Vr(i)RXRA(i)VS(i)
‖‖
2

2
= argmin

q∈SU(2)

∑

i

‖‖‖q
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2

2

(17)

argmin
RY∈SO(3)

∑

i

‖‖Vlr(i)RYRA(i)VS(i)
‖‖
2

2
= argmin

q0∈SU(2)

∑

i

‖‖‖q
T
0
KYq0

‖‖‖
2

2

Then, the hand–eye transformation of right camera can be 
represented by the left camera projection model, as shown 
in Eqs. 20 and 21:

Then, we can obtain the translation component of right 
camera hand–eye transformation by solving Eqs. 22 and 23. 
Equation 22 denotes the estimated value according to the 
right camera, and Eq. 23 denotes the redundant constraint 
estimated value according to the left camera.

The final stage in estimating hand–eye transformation 
is to average the left and right camera calibration results 
according to [21]. To sum up, the algorithm is shown in 
Algorithm 1.

(18)

[
Vr(i)

1

]T

X

[
tA(i)

1

]
= 1

(19)

[
Vl(i)

1

]T

l
r
TX

[
tA(i)

1

]
= 1

(20)VT
r
(i)RXtA(i) + VT

r
(i)tX = 0

(21)VT
l
(i)RZRYtA(i) + VT

l
(i)RZtY + VT

l
(i)tZ = 0

(22)argmin
tX∈ℝ

3

∑

i

‖‖ViRXtA(i) + VitX
‖‖
2

2

(23)argmin
tY∈ℝ

3

∑

i

‖‖‖V
T
l
(i)RZRYtA(i) + VT

l
(i)RZtY + VT

l
(i)tZ

‖‖‖
2

2

Algorithm 1: Vision-based Hand-eye calibration.

1: Procedure Hand-Eye calibration
2: Construct N motions of robot laparoscope slave arm and surgical instrument.
3: For i motion of N motions, 
4:  Construct left and right reference plane of stereo laparoscope using Eq.1 and Eq. 2
5:  Construct the matrix using Eq. 4 
6:  Construct the reference axis of Eq. 6
7: End For
8: Compute the initialization rotation component by solving Eq. 12 and Eq. 13
9: Compute the rotation component by solving Eq. 16 and Eq. 17
10: Compute the translation component by solving Eq. 22 and Eq. 23
11: Computer the hand-eye transformation X of right camera of laparoscope by averaging 

transformations of left camera and right camera.
12: Return X
13: End procedure
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Experimental and simulation results

Simulation study

In this section, synthetic data are generated by MATLAB 
(MathWorks Inc.). The experiments are run on a 4.2 GHz 
Intel Core i7-7700 k workstation with 32 GB RAM. The 
overall algorithm takes the processor around 1 s with 343 
motion configurations. The minimally invasive surgical 
robot developed by our laboratory is used to construct the 
simulated robot model [27], as shown in Fig. 4. Inspired by 
[25], we use the 3D visualizer Rviz to make scenario visu-
alization. The method guarantees that the surgical instru-
ment is always visible in the laparoscope image plane. The 
motion of minimally invasive surgical robot, the reference 
axis of surgical instrument and the RCM point can be linked 
to the Rviz environment. The motion range is around 20 mm 
in translation and the 10 degree in rotation. In this simula-
tion, we generate the ground truth of hand–eye transforma-
tion according to the simulated robot model along with ran-
dom robot pose of two slave arms. Then, we can calculate 
the reference plane and the reference axis from the robot 
pose transformation and the ground-truth transformation. 
Before the transformations are input to hand–eye calibration 
algorithm, they are corrupted by the noise according to [26]. 
Finally, the estimated hand–eye transformation can be cal-
culated and compared with the ground truth. We define the 
error of translation and rotation components in hand–eye 
transformation. The translation error is defined as the norm 
of the difference between calculated value and ground-truth 
value �t = ‖‖tG − tX

‖‖ . The rotation error is defined as 
�� =

‖‖‖Ro
(
�G�

−1
X

)‖‖‖ , and Ro() denotes the Rodrigues’ func-
tion. The code and the robot model of our implementation 
for the work will naturally be made available in the future 
for further research (https ://githu b.com/hiter syw/
hand-eye).

The performance of the algorithm with synthetic data 
is shown in Fig. 2. We start by displaying the comparison 
between using monocular information and stereoscopic con-
straint. Later, we use the synthetic simulation to explore how 
increasing Gaussian noise affects the performance of algo-
rithm. We first evaluate the noise with a constant step size 
added to the robot kinematics, and then, we add the noise to 
both the laparoscope and the robot kinematics. Last, we add 
the noise to the laparoscope, kinematics and the transfor-
mation between left and right camera of stereo laparoscope 
system. The noise is the zero-mean Gaussian noise, and the 
value of abscissa in Fig. 2 denotes the noise coefficients. In 
the RMIS hand–eye calibration scenario, the noise in lapa-
roscope, kinematics and extrinsic stereo laparoscope calibra-
tion is the most fit condition. Furthermore, we set the motion 
configurations as large as possible to lower the influence of 

motion configuration, and the number of motions is set as 
1728. We repeat each synthetic parameter for 100 trials. The 
results we display show that the estimated error increases 
with increasing Gaussian noise. Moreover, we can conclude 
that the proposed redundant stereo laparoscope constraint is 
efficient in view of improving the calibration accuracy and 
stability against error with respect to the same simulation 
conditions.

Finally, the simulation is done by checking how algorithm 
performs under varying number of motions, and the perfor-
mance of algorithm with synthetic data is shown in Fig. 3. 
In our minimally invasive surgical robot model, the active 
joints of surgical instruments and laparoscope are used to 
realize the RCM constraint and perform intra-operative task, 
and there are three joints for two types of slave arm. Thus, 
the motion configurations can be obtained as M3

L
×M3

I
 [25], 

and the ML and MI are set as the position conditions for each 
joint. Later, we can obtain varying motion configurations 
as shown in the abscissa values of Fig. 3. In the simula-
tion, we inject the noise to robot motion, laparoscope and 
the stereo configuration as a constant value, including noise 
coefficients 1 mm in translation and 1 degree in rotation, 
and these values are the middle value of previous experi-
ment. The simulation results output that calibration error 
decreases with increasing motion configurations. After the 
motion configurations are increased to a certain degree, the 
accuracy no longer refines significantly, and the curve tends 
to be flat. Obviously, the motion configurations workload of 
this method is larger compared to the state-of-art method. 
But from the perspective of the RMIS scenario, this way 
of sacrificing workload to remove the dependency on the 
calibration object is somewhat desirable. It is true that future 
work in this article can be studied from this perspective.

Experimental results

In this section, the minimally invasive surgical robot system 
developed by our laboratory is used to implement the evalua-
tion, as shown in Fig. 4. The Storz 3D laparoscope system is 
attached to end-effector of robot laparoscope slave arm. The 
minimally invasive surgical robot system has two slave arms 
to hold the surgical instrument, and we only use one robot 
instrument slave arm to realize the hand–eye calibration. In 
the robot experiments, ground truth cannot be accurately 
obtained. We evaluate the performance of hand–eye calibra-
tion by measuring the reprojection error of a known point 
inspired by [15, 16]. The head point [7, 9] on the surgical 
instrument is chosen as the tracked point, in this case, in 
view of the instrument structure and the literature, the clasp-
ers rotate together around the same axis, we set the point on 
this axis as head point, and the forward kinematics of head 
point can be calculated according to the DH parameters. 

https://github.com/hitersyw/hand-eye
https://github.com/hitersyw/hand-eye
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Then, the head point is projected to the image plane of lapa-
roscope with the estimated hand–eye transformation. The 
reprojection error in pixels can be obtained according to 
the projected image coordinate and on-screen locations. The 
computation time is not explored as the calibration can be 
executed offline in the preoperative procedure of surgical 
OR. The calibration is executed before the surgical opera-
tion, but in this case, surgical instrument and laparoscope 
have been placed in the abdomen of patient. According to 
Refs. [15, 21], the challenging problem of hand–eye calibra-
tion in the RMIS scenario is to prevent affecting the nor-
mal workflow while in view of changing the laparoscope 

and surgical instrument. The proposed method removes the 
need that pull out the laparoscope from abdomen to con-
duct hand–eye calibration. The proposed method without 
conventional calibration target also provides potential for 
autonomous hand–eye calibration [21].

As the focus of this paper is not to develop surgical instru-
ment line feature detection algorithms, we do not explore 
the line detection algorithm deeply. We employ the simple 
method to verify our idea that implements hand–eye cali-
bration with the surgical tool axis line feature. The detec-
tion method is applied according to the computer vision 
technology [29, 30]. In the simulation RMIS scenario and 

Fig. 2  Performance of the 
algorithm with synthetic data. 
a, b The rotation and translation 
error with increasing noise in 
robot motion. c, d The rota-
tion and translation error with 
increasing noise in robot motion 
and laparoscope. e, f The 
rotation and translation error 
with increasing noise in robot 
motion, laparoscope and stereo 
configuration
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vivo environment, the background mainly consists of the 
tissue and organ, and the main color of the scene is red. On 
the contrast, the surgical instrument of our robot system is 
made by carbon fiber, and the main color is black. The area 
of the surgical instrument can be segmented between the 
two colors [28]. The line feature information of the surgi-
cal instrument can be obtained by feature extraction of the 
region after segmentation. The experimental scenario is 
shown in Fig. 4b.

We evaluate our approach with increasing number of 
motions to test the performance. We execute the experi-
ment with the 1728 motions to get as more data as possible 
only used for indicating the trend, and this value may not be 
reached in practical applications. During the experiment, 
we move the robots randomly within robot work space to 
obtain the relative surgical instrument positions and ori-
entations, and record the joint encoder data to obtain the 
kinematics. Meanwhile, the surgical instrument information 
in the camera coordinate was also derived from the stereo 

image. We repeat each motion configuration for 20 trials. 
To calculate the pixel error for each trial, 15 data sets with 
different motions of surgical instrument are captured, and 
the average pixel error of head point is acquired as the pixel 
error for each trial. The experimental performance is out-
lined in Fig. 5. The results demonstrate that projection error 
decreases with increasing motion configurations, which is 
in line with simulation results. Analysis of the experimental 
results shows that calibration error mainly contains the fol-
lowing components. To evaluate the hand–eye calibration, 
we construct the relationship between camera and the target 
point, and the inaccurate laparoscope intrinsic calibration 
and the inaccuracy of forward kinematics will output an 
inaccurate image coordinate projection. The measured on-
screen locations may also contain the error. Obviously, the 
system model error is the same as the simulation conditions, 
and the noise in robot model and camera model and camera 
calibration, lead to the calibration error. Furthermore, the 

Fig. 3  Performance of the algorithm with synthetic data with increasing motion configurations. a Estimated rotation error. b Estimated transla-
tion error

Fig. 4  a Experimental setup. 
b Example scenario of the 
laparoscope. The blue line 
demonstrates the detection axis 
of surgical instrument
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line feature projection error of surgical instrument axis may 
also contribute to the calibration inaccuracy.

We compare the estimated results between our proposed 
method and the ATA hand–eye approach with custom sterile 
calibration grid [26]. From the previous study, we can see 
that the curve tends to be flat with increasing motions, and 
we try to choose a small number when the curve becomes 
flat to reduce the workload of the experimental process. 
Therefore, the number of motion configurations is set as 343. 
For the ATA method, we choose 12 motions according to the 
literature. The proposed method and state-of-the-art method 
are validated by measuring the reprojection error. We totally 
carry out 6 experiments and report the quantitative analysis 
in Fig. 6. In each experiment, we repeat 10 trials for each 

method. To calculate the reprojection error, 15 data sets with 
different motions of surgical instrument are captured, and 
the average pixel error of head point is acquired as the pixel 
error for each trial. The error of our algorithm is set as Error 
1, and the state-of-art method reprojection error is set as 
Error 2. We can find that the reprojection error of proposed 
method is a little lower than the traditional hand–eye calibra-
tion method, and the gap between two methods is small. The 
results agree with [21, 26]. The performance of compara-
tive experiment demonstrates the efficiency of our method, 
while removing the need for calibration grid, providing the 
practical application in RMIS scenario. Furthermore, the 
proposed method using line feature lowers the requirement 
of surgical instrument tracking of the literature. Normally, 
the method in [21] requires accurate 3D pose tracking using 
priori knowledge of 3D model to form the basis for accurate 
hand–eye calibration. In our proposed method, we just use 
the line feature as calibration object. In the future, it will be 
significant to explore the reliability and accuracy of surgi-
cal instrument axis line detection algorithm. The robust and 
accurate detection algorithms can make our proposed algo-
rithm resilient to the RMIS scenario clutters.

Conclusion

In this paper, we have proposed a vision-based hand–eye 
calibration for minimally invasive surgical robot. This work, 
to the best of our knowledge, represents a novel attempt to 
perform a practical hand–eye calibration without the cus-
tom calibration grid based on the geometry model in the 
RMIS scenario. This level of hand–eye calibration for the 
RMIS is broadly unexplored, and the approach and the pro-
posed method can be extended to handle even more accurate 
hand–eye calibration by incorporating additional mathemati-
cally model. In our algorithm, the geometry model of sur-
gical instrument is first adopted to construct the reference 
plane and the reference axis, and typically, RCM configura-
tion of the minimally invasive surgical robot is used as the 
geometry constraint. Moreover, a novel redundant constraint 
based on the stereo laparoscope configuration is adopted to 
improve the calibration accuracy and stability against error. 
The proposed approach has been evaluated by the simulation 
and robot experiments. The performance of our experiments 
demonstrates that our approach can exhibit hand–eye cali-
bration without calibration object.
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